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Abstract 
The temperature dependence of the density of states in strong magnetic fields. On the basis of the 
model constructed, a computer program calculating the density of electronic states in a quantizing 
magnetic field. Used new, based on quantum statistics, the approach to the calculation of the tem-
perature dependence of the density of states in a strong magnetic field. Mathematical modeling of 
the density of states using the experimental values of a continuous density of states makes it 
possible to calculate the Landau levels. 
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1. Introduction 
In a strong magnetic field, the energy spectrum of electrons in a semiconductor or metal becomes quantized, so 
that the density of energy states as a function of energy acquires an oscillating character. It is this fact is the ori-
gin of the oscillatory magnetic field dependence of a number of equilibrium and no equilibrium quantities cha- 
racterizing the state and behavior of the electrons in the crystal in a quantizing magnetic field [1]. In [2] [3] in-
vestigated the dependence of the longitudinal resistance and static magnetic susceptibility of the magnetic field 
perpendicular to the plane over a narrow silicon quantum well bounded by δ-barriers heavily doped with boron 
detected oscillations of the Shubnikov-de Haas and de Haas-van Alphen at high temperatures in weak magnetic 
fields.  
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[4]-[7] calculated the temperature dependence of the density of states defined by relaxation spectroscopy of 
the energy levels in semiconductors. It is shown that due to the thermal broadening of the levels of a discrete 
spectrum with hanging temperature turns into a continuous energy spectrum. With the expansion of the energy 
spectrum density of states as functions GN (GN―energy derivative of the probability of the devastation of the 
discrete level), it was shown that the magnitude of the energy gap is temperature dependent. These works have 
not considered the effect of temperature on the density of energy states in a strong magnetic field. 

The aim of this work is to develop a new approach to the explanation of the temperature dependence of the 
density of states in a strong magnetic field. 

2. Model 
The temperature dependence of the density of states due to thermal broadening of discrete energy states [4]-[7]. 
Thermal broadening can be described by the temperature dependence of the occupation probabilities of the 
energy levels. Time thermal emission of electrons from deep levels Ei in the allowed band energy E is deter- 

mined by the exponential factor exp iE E
kT
− 

 
 

 and the probability of deep desolation filled levels depends ex- 

ponentially on the energy of the state and the sample temperature. 
To describe the temperature dependence of the density of states, we assume that the density of states at zero 

temperature known function of energy Ns(E0). In particular, for a free electron gas in a magnetic field density of 
states is determined by the following expression [8] 

( )
3 2 1 2*

2 2

1 2 1,
24πH H H

n

mN E H E nω ω
−    = − +    

   
∑ 



                   (1) 

Here, Нω ―cyclotron frequency, m* and Е―effective mass and the energy of a free electron, n―number of 
Landau levels. 

Each state with energy Ei broadens with increasing temperature. Temperature broadening of the state with 
energy Ei describes statistics Shockley-Read-Hall. Meaning broadening described derivative energy on the con- 
tent of the devastation ρ  the state with energy E [5] 

( ) ( ) ( ) ( )0
0 0 0

0

, , 1 1 1, exp exp
E E T

GN Е E E E E E
E kT kT kT

ρ∂   = = − − −  ∂   
 

E0―energy parameter of the time-dependent. The resulting density of states, taking into account the contribu- 
tion of thermal broadening of all states, will be described by the sum of all of the broadening in the energy re- 
gion. Mathematically, this reduces to the expansion in the number density of states Ns(E, H, T) at a temperature 
T by GN-functions. Moreover, the coefficient of expansion is the energy density of states, which does not ac- 
count for thermal broadening of the levels. At absolute zero, GN-function turns into the Dirac delta function 
[5]-[7]. When the temperature tends to absolute zero density of states turn to the expansion coefficients in a se-
ries of GN-functions. If you know the density of states at finite temperature Ns(E, T), then using a series expan-
sion in GN-functions can calculate the density of states at any temperature. In [5], it was shown that the conti-
nuous spectrum defined at room temperature, are formed by the thermal broadening of the number of discrete 
levels in the band gap. Thermal broadening of the energy states of the conduction band and valence band gap of 
the semiconductor explains the temperature dependence of the band gap of the semiconductor [6]. 

3. The Temperature Dependence of the Density of States in a Strong Magnetic  
Field 

Dependence of the energy E of the electron with ellipsoidal quadratic dispersion law in a magnetic field of prin- 
cipal quantum number n, the number of quanta of spin s and projection pz momentum on the direction of the 
magnetic field H takes the following form [9]: 

( )
2

0 *
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2 2 2
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z с B
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Here, g―factor is defined only in the orientation of the magnetic field H and does not depend on the projec- 
tion of the momentum pz, µВ―Bohr magnetrons, mz―longitudinal effective mass. 

The total density of energy states in a magnetic field in an electronic system with a quadratic isotropic disper- 
sion law excluding spinal splitting of the Landau levels can be written as [9]: 

( )
1 23 2

2 3
0

1,
22π

En
c

H c
n

m
N E H E n

ω
ω

−

=

  = − +    
∑







                      (3)  

where, Е―energy of a free electron, 0,1,n = ―number of Landau levels, m―cyclotron mass, с
eH
mc

ω = ― 

cyclotron frequency. 
With a decrease in the density of the magnetic field H increases Landau parabolas. Obviously, in the limit 

0Н →  we need from discrete parabolas Landau again go to the quasi-continuous spectrum of three-dimen- 
sional system ( ), , .x y zЕ Е р p p=  

In particular, if the energy spectrum of a purely discrete (point), the density of energy states is the sum of δ - 
functions concentrated at the points of the spectrum of Ei, whose amplitude ( ) ( )2 20 0 ,si i iN ψ ψ ′= +  where 

( )i iE и xψ ―normalized to unity own functions [10]: 

( ) ( )s si i
i

N E N E Eδ= −∑                                 (4) 

Thermal broadening of the levels in the magnetic field leads to a smoothing of discrete levels. Thermal broa- 
dening is taken into account using the GN function. As in [4]-[7], ( ), ,sN Е H Т in a series in GN functions 

( ) ( ) ( )
1

, , , , , ,
n

s si i i
i

N E H T N E E H GN Е E Т
=

= ∑                        (5)  

where, ( ), ,si iN E H E ―density of states in a quantizing magnetic field at absolute zero temperature. 
Considered energy interval in the allowed bands and the band gap divide into equal smaller parts. Summing 

the formula (5) we obtain ( ), ,sN E Н T  temperature dependent. This expression when 0Т →  transformed 
into (3). In this case, the Landau levels appear sharply (in Figure 1). 

With increasing temperature starts to smooth sharp spikes and oscillations of the density of states are gradu- 
ally disappearing. At sufficiently high temperatures kT ω>  , ( ), ,sN Е Н T  is converted into a solid state 
density in zero magnetic field. Figure 1 shows the density of states in a magnetic field calculated series expan- 
sion in GN functions, functions for the derivative of the Fermi-Dirac distribution function and Gauss, 

0.01с эВω =  at temperature T = 0.4 K, ckT ω<  . At such low temperatures the effect of thermal broadening 
of the weak and the density of states does not feel Ns deviations from the ideal form, which does not account for 
the influence of temperature. 

Figure 2 shows ( ),sN E H  the temperature to 10 K. As can be seen from these figures, with increasing 
temperature, sharp peaks of the Landau levels are gradually smoothed. At a temperature of 35 K peaks of the 
Landau levels is almost invisible, and coincides with the density of states of expansion in the Gaussian function 
and the derivative function of the Fermi-Dirac (in Figure 3). 

Change *с
eH
m c

ω =  alters the energy separation between the peaks of the Landau levels. Thus, the oscillations  

of the density of states is observed at temperatures ckT ω . Beginning with temperatures on the order 
0.5 ~ ckT ω  of the oscillations of the density of states due to the Landau quantization is observed. In this case, 
the measurements provide a continuous range of density of states. For the detection of quantum levels necessary 
to solve the inverse problem. In this case, it is necessary to find a discrete level due to the Landau quantization. 
For this it is necessary to measure ( ), ,sN E Н T  the temperature of the experiment, followed by calculation to 
obtain ( ), ,sN E Н T  at low temperatures. 

Methods of determining the Ns can be constructed as follows. Experimentally ( ), ,sN E Н T  determined for 
two different temperatures T1 and T2, so that it was the same for both ( )1, ,sN E Н T  and ( )2, ,sN E Н T . The 
same measurements and calculations can be done for several values of the magnetic fields H1 and H2. To im- 
prove the accuracy of ( ),sN E H  you can use the results found experimentally ( ), ,sN E Н T  more than three 
or four different values of temperature. If the simulation results ( ), ,sN E Н T  for various values of T and H are 



G. Gulyamov et al. 
 

 
683 

 
Figure 1. Density of energy states calculated using a series expansion in func-
tions GN, function derivative Fermi-Dirac and Gaussian function in a strong 
magnetic field H = 10 kOe at Т = 0.4 K.                                 

 

 
Figure 2. The temperature dependence of the density of states in a strong 
magnetic field (Н = 10 kOe) at temperatura Т = 10 K.                       

 

 
Figure 3. The temperature dependence of the density of states in a strong 
magnetic field (H = 10 kOe) at T = 35 K.                                   
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the same, then finding the density of states can be considered complete. Thus, measurements ( ),sN E H  for 
various values of T and H should complement each other and this should ensure the accuracy of the results. 

4. Analysis of the Experimental Results 
Analyze the density of the energy states of specific semiconductors in a quantizing magnetic field. Figure 4(a) 
shows the density of states PbS at temperature T = 77 K and a magnetic field H = 32 kOe [11]. Within experi- 
mental accuracy, the density of states is continuous, monotonically increasing, smooth function of energy. In this 
figure, the oscillations of the density of states are observed. This indicates that с kTω < . We decompose a 
graph density of states in a series of GN-functions. When the expansion will take perfect ( )0 ,sN E H . However, 
in contrast to the ideal we consider the dependence of the electron mass energy. Peak height ( ), ,sN E Н T , we 
assume an energy-dependent. Then choosing coefficients in the sum before ( )0 ,sN E H  customize theoretical 

( ),sN E H  to the experimental, and, fitting parameter and are the coefficients of the ( )0 ,sN E H . Further, in 
Formula (5) will reduce the temperature. Starting with T = 20 K smooth curve begins to oscillate and stands 
Landau levels (Figure 4). Thus at temperatures ckT ω , Landau levels are beginning to stand out as sharply 
distinct peaks ( ),sN E Т . In a strong magnetic field, the energy states of the continuous spectrum is strongly 
deformed and transformed into oscillating line. With increasing temperature, the discrete levels are washed away, 
and the density of states is transformed into a continuous spectrum. In the experiment, the density of states de-
pends on the energy, temperature, and the effective mass. Thus, with increasing energy separation between, the 
peaks vary. 

At constant effective mass dependence of the density of states of the energy is ( ) ~s cN E E E−  [9] [10]. If 
with increasing electron energy increases the effective electron mass, decreases the distance between Landau 
levels, the density of states curve moves toward larger values of the density of states and moves upward along 
the axis of the density of states. On the contrary, if m decreases with increasing energy density of states curve 
moves down along the axis of the energy density of states. 

Thus, the magnetic field moves in a plane state density sN E−  even at temperatures where Landau levels 
are not visible due to thermal broadening. 

Comparison between theory and experiment with different values of the magnetic fields is shown in Figure 4. 
As seen from Figure 4 with increasing tension ( ),sN E H  compressed in a lower energy and rises axially Ns. 
This means that the distance between Landau levels in different energy gaps are different. 
 

  
(a)                                                   (b) 

Figure 4. Changing the density of states with decreasing temperature in strong magnetic fields. (a) The density of 
states against the energy in the conduction band for an experiment in PbS, PbTe and PbSe at H = 32 kOe, T = 77 K 
[11]; (b) Model calculation of the density of states in a strong magnetic field for three different values of temperature 
for PbS.                                                                                          
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5. Conclusion 
A model of the temperature dependence of the density of states in a strong magnetic field. The method of deter-
mination of the density of states in a quantizing magnetic field. Investigated the dependence of the density of 
states of the temperature. A parabolic dispersion law shows that the density of states in a strong magnetic field at 
a temperature increase coincides with the density of states in the sample without a magnetic field. It is shown 
that with increasing temperature, the Landau levels due to thermal broadening and washed away ( ), ,sN E Н T  
converted into the density of states in the absence of a magnetic field. With the proposed model the experimental 
results PbS [11]. Using the proposed model of the high temperature, ( ), ,sN E Н T  calculated density of states 
at low temperatures. Simulation of the temperature dependence ( ), ,sN E Н T  possible to determine the Landau 
levels in PbS. 
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