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Abstract 
In this paper, time series modelling is examined with a special application to modelling inflation 
data in Tanzania. In particular the theory of univariate non linear time series analysis is explored 
and applied to the inflation data spanning from January 1997 to December 2010. Time series 
models namely, the autoregressive conditional heteroscedastic (ARCH) (with their extensions to 
the generalized autoregressive conditional heteroscedasticity ARCH (GARCH)) models are fitted to 
the data. The stages in the model building namely, identification, estimation and checking have 
been explored and applied to the data. The best fitting model is selected based on how well the 
model captures the stochastic variation in the data (goodness of fit). The goodness of fit is as-
sessed through the Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC) and 
minimum standard error (MSE). Based on minimum AIC and BIC values, the best fit GARCH models 
tend to be GARCH(1,1) and GARCH(1,2). After estimation of the parameters of selected models, a 
series of diagnostic and forecast accuracy test are performed. Having satisfied with all the model 
assumptions, GARCH(1,1) model is found to be the best model for forecasting. Based on the se-
lected model, twelve months inflation rates of Tanzania are forecasted in sample period (that is 
from January 2010 to December 2010). From the results, it is observed that the forecasted series 
are close to the actual data series. 
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1. Introduction 
The concept of time series is based on the historical observations. It involves explaining past observations in or-
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der to try to predict those in the future [1]. A time series is a collection of observations measured sequentially 
through time. These measurements may be made continuously through time or be taken at a discrete set of time 
points [2]. 

Inflation as described by [3] is the persistent increase in the level of consumer prices or persistent decline in 
the purchasing power of money. Inflation can also be expressed as a situation where the demand for goods and 
services exceeds their supply in the economy [4]. In reality inflation means that your money can not buy as 
much as what it could have bought yesterday. 

In recent years, inflation has become one of the major economic challenges facing most countries in the world 
especially those in Africa including Tanzania. Inflation is a major focus of economic policy worldwide as de- 
scribed by [5]. Inflation dynamics and evolution can be studied using a stochastic modelling approach that cap- 
tures the time dependent structure embedded in the time series inflation data. The autoregressive conditional he- 
teroscedasticity (ARCH) models, with its extension to generalized autoregressive conditional heteroscedasticity 
(GARCH) models as introduced by [6] and [7] respectively accommodate the dynamics of conditional heteros- 
cedasticity (the changing variance nature of the data). Heteroscedasticity affects the accuracy of forecast confi- 
dence limits and thus has to be handled properly by constructing appropriate non-constant variance models [8]. 

The most common way of measuring inflation is the consumer price index (CPI) over monthly, quarterly or 
yearly. The inflation rate tI  at time t  is calculated as 
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where 
tP  is the current average price level of an economic basket of goods and services; 

1tP−  is the average price level of the basket a year ago. 
Within time series modelling, there are two approaches available for forecasting: the univariate and multiva- 

riate. In particular this paper will forecast future values of inflation time series data using the univariate fore- 
casting approach, in which forecasts depend only on present and past values of a single series being forecasted. 

2. Conditional Heteroscedasticity: Arch-Garch Models 
Let { }tr  be the mean-corrected return or rate of inflation, tε  be the Gaussian white noise with zero mean and 
unit variance and tH  be the information set at time t  given by { }1 2 1, , ,t tH r r r −=  . Then according to Engle 
[6], the process { }tr  is ARCH ( )q  if 

t t tr σ ε=  

where σ  is the standard deviation and 

( ) 0t tE r H =                                           (1) 

( ) 2 2
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and the error term tε  is such that 

( ) 0t tE Hε =                                          (3) 

( )Var 1t tHε =                                         (4) 

with non-negativity condition that 0 0α ≥  and 0iα ≥  for all 1, , .i q=   
The ARCH (1) model is a particular case of the general ARCH ( )q  model given by  

2 2
0 1 1,t trσ α α −= +                                        (5) 

with non-negativity condition that 0 0α ≥  and 1 0α ≥ . 0α  and 1α  are unknown parameters. 

Forecasting with the ARCH Model 
The ARCH models provide good estimates of the series before it is realized. Let 1 2 3, , , , tr r r r

 be an observed 
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time series. Then the l-step ahead forecast, for 1, 2, ,l =   at the origin t , denoted by ( )tr l , is taken to be the  

minimum mean squared error prediction, that is ( )tr l  minimizes ( )( )2
,t lE r f r+ −  where ( )f r  is a function  

of the observations. Then according to [9], 

( ) 1, ,t t l tr l E r r r+ =                                    (6) 

The forecasts for the tr  series do not provide helpful information. It is therefore more useful to consider the 
squared returns 2

tr  given by 
2 2 2 2

1 , ,t t l tr E r r r+
 =    

[10]. The l-step ahead forecast for the 2
tr  is given by 

( )    ( )  ( )
2 12 2 2 2

0 1 1 1 11 .
l l

t t l t t tr l E r r r lα α α α α σ
−

+ = = + + + + + =             (7) 

The obvious possible problem in using the ARCH formulation is that the approach can lead to a highly para- 
metric model if the lagq  is large. This necessitates the use of the GARCH model as an extension to the ARCH 
model. 

3. The GARCH Model 
A process { }tr  is GARCH ( ),p q  if 

,t t tr σ ε=  

( ) ( )2 2 2 2 2
0 0

1 1

q p

t i t i j t j t t
i j

r B r Bσ α α β σ α α β σ− −
= =
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where ( )Bα  and ( )Bβ  are polynomials in the backshift operator given by 

( ) 1 ,q
qB B Bα α α= + +  

( ) 1 .q
qB B Bβ β β= + +  

with the restrictions 0 0α >  0iα ≥  and 0jβ ≥  for 1, 2, ,i q=   and 1,2, ,j p=   being imposed in order 
to have the conditional variance remaining positive. Equation (8) can be expressed as 

( )( ) ( )2 2
01 .t tB B rβ σ α α− = +                              (9) 

The GARCH ( ),p q  model does not show autocorrelation in the return series { }tr . However the squared re-
turns show autocorrelation even though the returns are not correlated. Writing 2

rr  in terms of 2 2
t t tv r σ= −  

yields  

2 2 2
0

1 1 1
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Let ( )max ,m p q= . Then 

( )2 2
0
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where 0iα =  for i q>  and 0jβ =  for i p> . Thus the equation of 2
tr  has an autoregressive moving av-

erage ARMA ( ),m p  representation. 
In order to find the GARCH ( ),p q  process, we consider solving for 0α  in Equation (8) and let the variance 

of tr  be 2
εσ , getting 

2
0

1 1
1

q p

i j
i j
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= =
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= − − 

 
∑ ∑ .                               (12) 

Substituting Equation (12) into the Equation (11) one gets 
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( )( )2 2 2 2

1 1
.
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= =
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Therefore 
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Multiplying both sides of Equation (14) by ( )2 2 ,t kr εσ− −  and taking expectations we get 
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But

 
( ) ( ) ( )2 2 2 2 0,t t k t k t tE v r E r E v rε εσ σ− −

   − = − =     

and since tv  is a martingale difference, also 

( ) ( ) ( )2 2 2 2 0j t j t k t k t j t kE v r E r E v rε εβ σ σ− − − − −
   − = − =     for .k j<  

Thus the autocovariance of the squared returns for the GARCH ( ),p q  model is given by 

( ) ( )( )( ) ( ) ( )2 2 2 2 2 2 2 2
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Dividing both sides of Equation (15) by ( )2var tr  gives the autocorrelation function at lagk  as  

( )
1

for 1
m

k i i k i
i

k pρ α β ρ −
=

= + ≥ +∑ .                          (16) 

Letting mmφ  to denote the thm  partial autocorrelation for 2
tr , Equation (16) can be written as 

1
, 1, ,

m
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i

k mρ φ ρ −
=

= =∑                                  (17) 

By Equation (17), mmφ  cuts off after lagq  for an ARCH ( )q  process such that 0mmφ ≠  for k q≤  and
0mmφ =  for k q> . This is identical to the partial ACF (PACF) for an AR ( )q  process and decays exponen-

tially [11]. 
Assuming 1, , qr r  and 2 2

1 , , pσ σ  are known, the conditional maximum likelihood estimates of the GARCH 
Model can be obtained by maximizing the conditional log-likelihood given by 
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with ( )0 1 1 2, , , ; , , , ,p qθ α α α β β β=    and ( )max , .m p q=  

Forecasting with GARCH(p,q) Models 
The l-step ahead forecast of the conditional variance in a GARCH ( ),p q  model is given by 
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4. Data Analysis 
This section is dedicated to fitting the GARCH family of models to the Tanzania inflation rate data which we 
obtained from the Tanzania National Bureau of Statistics. The original data set consist of 168 monthly observa- 
tions of the Tanzania inflation rates spanning from January 1997 to December 2010 as shown in Table 1. 

4.1. Pre-Estimation Analysis 
To avoid the difficulties of possible premature convergence we perform a pre-fit analysis. This will lead to se-
lecting the appropriate model that adequately describes the data. In this pre-estimation or pre-fit analysis, data 
are loaded in the form of a price series, and then converted to a return series (stabilized series). The pre-fit anal- 
ysis checks the return series for correlation and then quantifies the correlation. Because GARCH modelling as- 
sumes a return series, we need to convert inflation data (raw data) to returns. Figure 1 below displays raw data 
of inflation rate and Figure 2 displays the return series converted from the raw. 

The returns appear to be quite stable over time and the transformations from Inflation rate data to returns has 
produced a stationary time series. The GARCH model assumes that return series is a stationary process. This 
may seem limiting, but the inflation data to return transformation is common and generally guarantees a stable 
data set for GARCH modelling. 

According to [6] any autocorrelations in the series have to be removed before a GARCH model is constructed. 
This is done by regressing the squares of the series tr  on its past squared values 2 2

1, ,t tr r −   with the number of 
lags determined by the form of the ACF and PACF. The figures below display the sample autocorrelation func-
tion (ACF) of the returns based on the assumption that all autocorrelations are zero beyond lag zero. 

In Figure 3 and Figure 4, the ACF and PACF provide no indication of the correlation characteristics of the 
returns. The ACF of squared returns in Figure 5 shows significant correlation and die out slowly. These results 
indicate that the variance of returns series is conditional on its past history and may change over time. 

Statistical test for heteroscedasticity is carried out in order to establish the presence of ARCH effects in the 
data. This is shown in Table 2, Table 3 and Table 4. This is done using Ljung-Box-Pierce -testQ  and Engle’s 
ARCH test ([6] [12]). 
 

Table 1. Summary for statistics for Tanzania’s monthly inflation. 

Period Average Standard Deviation 

Jan 1997-Sept 2001 9.94 4.3 

Oct 2001-July 2005 5.1 1.58 

Aug 2005-April 2009 8.24 2.52 

May 2009-Dec 2010 8.9 3.0 

Overall Period 

Jan 1997-Dec 2010 8.1 3.7 

 

 
Figure 1. Time plot of monthly inflation in Tanzania.             
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Figure 2. First difference of Log of CPI.                       

 

 
Figure 3. ACF with bounds for raw return series.           

 

 
Figure 4. PACF with bounds for the raw returns series.          
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Figure 5. ACF of the squared returns.                                        

 
Table 2. Ljung-Box-Pierce Q-test for autocorrelation (at 95% confidence).                                          

Lag H p-value Stat Critical Value 

10 0 0.0721 17.1019 18.3070 

15 0 0.2359 18.529 24.9958 

20 0 0.3888 21.1416 31.4104 

 
Table 3. Ljung-Box-Pierce Q-test for squared returns (at 95% confidence).                                         

Lag H P-value Stat Critical Value 

10 1.000 0.0000 57.3782 18.3070 

15 1.000 0.0000 76.7057 24.9958 

20 1.000 0.0000 82.7525 31.4104 

 
Table 4. Engle ARCH test for heteroscedasticity (at 95% confidence).                                             

Lag H p-value Stat Critical value 

10 1.000 0.0000 68.6467 18.3070 

15 1.000 0.0000 67.9727 24.9958 

20 1.000 0.0000 66.2913 31.4104 

 
From Table 2 it can be seen that there is no significant correlation in the raw returns at the 5% level of signi-

ficance since H = 0. However, there is significant serial correlation in the squared returns in Table 3 when tested 
with the same inputs. 

Table 4 is the Engle’s test for return series which shows that there is a significant correlation in the series, in-
dicating presence of ARCH effects that is heteroscedasticity. Each of these tests extracts the sample mean from 
the actual inflation series. 
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4.2. Model Estimation and Evaluation 
4.2.1. Model Selection 
The strategy used in selecting the appropriate model from competing models is based on the Akaike information 
criterion ( )AIC , the Bayesian information criterion ( )BIC  and standard error ( )MSE  and on the signific-
ance tests. 

MATLAB software is used to perform trial and error evaluations to determine the best fitting model. The idea 
is to have a parsimonious model that captures as much variation in the data as possible. Usually the simple 
GARCH model captures most of the variability in most stabilized series. Small lags for p and q are common in 
applications. Typically GARCH ( )1,1 , GARCH ( )2,1  or GARCH ( )1,2  models are adequate for modelling vo- 
latilities even over long sample periods [7]. 

From the derived models, using the method of maximum likelihood the estimated parameters of GARCH
( )1,1  model is summarized in the Table 5: 

0.0272 ,t tr ε= +  
2 2 2

1 10.0753 0.45730 0.54266 .t t trσ σ− −= + +  

The standard errors are used to assess the accuracy of the estimates, the smaller the better. The model fit sta- 
tistics used to assess how well the model fit the data are the AIC and BIC. The corresponding values are: AIC = 
474.8 and BIC = 487.3 with the log likelihood function of 233.4. The standard errors are quiet small suggesting 
precise estimates. Based on 95% confidence level, the coefficients of the GARCH ( )1,1  model are significantly 
different from zero and the estimated values satisfy the stability condition, that is 1α β+ < . 

Table 6 below summarizes fit statistics for the other GARCH models which were considered. 
In conclusion, it can be established that, amongst all the identified models, the GARCH ( )1,1  proves the best 

fit model. 

4.2.2. Diagnostic Checking of the GARCH(1,1) Model 
One of the assumptions of GARCH models is that, for a good model, the residuals must follow a white noise 
process. Figure 6 inspects the relationship between the innovations (residuals) derived from the fitted model, the 
corresponding conditional standard deviations and the observed returns. 

It can be observed that both innovations and returns exhibit volatility clustering. However if we plot the, 
standardized innovations (the innovations divided by their conditional standard deviation), they appear generally 
stable with little clustering as seen in Figure 7. 

The time plot of the residuals given in Figure 7 is used to check whether the residuals are random. The nor-
mality check is also done by analyzing the histogram of residuals and normal probability plot. Figure 8 gives 
 
Table 5. Parameter estimates for GARCH(1,1).                                                               

Parameter C K GARCH (1) ARCH(1) 

Estimates 0.0272 0.0753 0.4573 0.5427 

Standard Error 0.0283 0.0254 0.0681 0.0958 

t-value 0.9627 2.9656 6.7136 5.6619 

( )t>  0.8315 <0.0001 <0.0001 >0.0001  

 
Table 6. Comparison of suggested GARCH models.                                                            

Model AIC BIC MSE Log-Likelihood 

GARCH(0,1) 489.0200 498.3560 0.1026 241.5100 

GARCH(1,1) 474.8236 487.2715 0.0544 233.4118 

GARCH(0,2) 478.5589 491.0068 0.0860 235.2794 

GARCH(1,2) 491.1419 491.1419 0.0863 232.7910 

GARCH(2,1) 476.8236 492.3835 0.0735 233.4118 

GARCH(2,2) 477.1047 495.7766 0.0654 232.5524 
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Figure 6. Plot for return, estimated volatility and innovations (residuals). 

 

 
Figure 7. Time plot of residuals from GARCH(1,1).         

 

 
Figure 8. Histogram of residuals from GARCH (1, 1).          

 
the histogram of the residuals from the GARCH(1,1) model. The histogram shows almost a symmetric bell- 
shaped distribution which is indicative of the residuals following a normal distribution. The slight negative 
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skewness is expected since the residuals may also come from student’s t  distribution. The negative skewness 
tendency is also supported by negative large residuals in Figure 7. 

Figure 9 gives the plot of the ACF of the squared standardized innovations. The plot shows no correlation left. 
Table 7 and Table 8 compare the results of the -testQ  and the ARCH test with the results of these same tests 
in the pre-estimation analysis in Table 2 and Table 3 respectively. In the pre-estimation analysis, both the 

-testQ  and the ARCH test indicated rejection ( 1H =  with p  value 0= ) of their respective null hypothesis 
showing significant evidence in support of GARCH effects. In the post estimation analysis using standardized 
innovations based on the estimated model, these same tests indicate acceptance ( 0H =  with highly significant 
p -values) of their respective null hypothesis and confirm the explanatory power of GARCH ( )1,1 . The tests 

showed that no any ARCH effects left (no heteroscedasticity). 

4.3. Forecasting with the GARCH(1,1) Model 
Table 7 shows the various measures of forecasting errors, namely the mean absolute error (MAE), the root mean 
squared error (RMSE), and Thiele’s U test for two models seemed to be adequately suitable to fit the data. The 
first two forecast error statistics depend on the scale of the dependent variable. These are used as relative meas-
ure to compare forecasts for the same series across different models. The smaller the error, the better the fore- 

 

 
Figure 9. Time plot of inflation rate and one year forecasts by 
GARCH(1,1).                                         

 
Table 7. Forecast Accuracy Test on the most likely suggested GARCH models.                                      

Model MSE MAE RMSE Thiele’s U test 

GARCH(1,1) 0.5848 0.7483 0.8651 0.8528 

GARCH(1,2) 0.6034 0.9812 0.7768 0.9821 

 
Table 8. Inflation forecast by GARCH(1,1) model for period of January 2010 to December 2010.                       

Month Forecast (%) Observed value (%) Forecast error 
January 11.32 10.9 0.42 

February 10.43 9.6 0.83 
March 9.66 9.0 0.66 
April 10.08 9.4 0.66 

May 7.90 7.2 0.70 

June 8.74 7.9 0.84 

July 7.29 6.3 0.99 

August 7.48 6.6 0.88 

September 5.03 4.5 0.53 

October 4.81 3.9 0.91 

November 5.14 4.3 0.84 

December 6.30 5.6 0.70 
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casting ability of that model. The remaining two statistics are scale invariant. The Theil inequality coefficient 
always lies between zero and one, where zero indicates a perfect fit. 

From Table 7, it can be seen that the accuracy test favour GARCH ( )1,1  model. Also the Thiele’s statistics is 
less than one ( 0.8528 ) which indicates that, the forecasts are fairly accurate. Table 8 below shows the forecast 
of Inflation by GARCH(1,1) for a period of one year from January 2010 to December 2010. 

The Figure 9 displays the actual inflation rate and the predicted inflation rate by the GARCH ( )1,1  model. 
The figure also displays how the forecasted values behave. 

It can be observed from the Figure 9 that the forecasted inflation is closer to the actual inflation. 

5. Discussion and Conclusion 
In this paper, time series modelling was examined with a special application to modelling inflation data in Tan- 
zania. In particular, the theory of univariate nonlinear time series analysis was explored and applied to the infla- 
tion data spanning from January 1997 to December 2010. The best fitting model was selected based on how well 
the model captures the stochastic variation in the data. Based on minimum Akaike Information Criteria (AIC) 
and Bayesian Information Criteria (BIC) values, it was observed that the best fit GARCH models were 
GARCH(1,1) and GARCH(1,2). However, after estimation of the parameters of selected models, a series of di-
agnostic and forecast accuracy test were performed and GARCH(1,1) model was found to be the best. Based on 
the selected model, twelve months inflation rates of Tanzania were forecasted in sample period (from January 
2010 to December 2010). From the results, it is observed that the forecasted series are close to the actual data 
series. 
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