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Abstract 
This study proposes a new range-based Markov-switching dynamic conditional correlation (MS- 
DCC) model for estimating the minimum-variance hedging ratio and comparing its hedging per- 
formance with that of alternative conventional hedging models, including the naïve, OLS regres- 
sion, return-based DCC, range-based DCC and return-based MS-DCC models. The empirical results 
show that the embedded Markov-switching adjustment in the range-based DCC model can clearly 
delineate uncertain exogenous shocks and make the estimated correlation process more in line 
with reality. Overall, in-sample and out-of sample tests indicate that the range-based MS-DCC 
model outperforms other static and dynamic hedging models. 
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1. Introduction 
The dynamic conditional correlation (DCC) model, the celebrated multivariate correlation estimation model 
proposed by Engle [1], solves the requirement of a positive definite constraint in parameter estimation, the abil- 
ity to estimate many parameters and time-varying correlation1. The DCC model also provides some advantages 

 

 

*Corresponding author. 
1The generalization of the univariate volatility models to the multivariate case is the VECH model, introduced by Bollerslev et al. [2]. How- 
ever, the VECH model has some disadvantages, including problems determining a positive definite and the possibility of including too many 
parameters. In response, Engle and Kroner [3] propose the BEKK model to guarantee a positive definite constraint. However, the BEKK 
model still has the problem of facing too many parameter estimations for higher dimensional systems. Although the VECH and BEKK mod- 
el have some drawbacks, they are more flexible than the constant correlation model in allowing time-varying covariance (Bollerslev, [4]). 
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through its operating procedure, which enables more parsimonious parameter estimation and easy estimation. 
Drawing on related literatures, the current models of correlation estimation were developed to extract return data 
to estimate covariance processes. A few recent studies have attempted to introduce a range variable to replace the 
return variable for more information content and to account for efficient market theory. More information can be 
gathered with a range structure than with a return variable when estimating a volatility model for many separate 
empirical results2. For example, Chou et al. [12] construct a range-based DCC model and propose that their model 
setting outperforms the original return-based DCC model in estimating and forecasting covariance matrices. Al- 
though the return- and range-based DCC models feature many advantages in correlation process fitting, they still 
place several constraints on linear parameters for covariance and correlation equations3. It is natural to introduce a 
nonlinear mechanism into the return- and range-based DCC models to enhance feasibility. In this study, we pro- 
pose a new range-based regime-switching DCC model that is able to enhance the hedge effect in futures markets. 

Conventional approaches to nonlinear adjustment among financial time-series models include threshold auto- 
regressive techniques, smooth transition and Markov-switching. We introduce the Markov-switching method 
proposed by Hamilton [15] [16] to extend the original DCC structure. One advantage of the Markov-switching 
method is that it treats the regime shift as an exogenous variable. Simplifying the formidable task of statistical 
estimation, the Markov-switching structure can be applied from the mean to variance and covariance equations. 
The combination Markov-switching and volatility model is able to address volatility processes with greater 
flexibility through regime-switching. Meanwhile, such a volatility model with Markov-switching can enable the 
estimated coefficients to change in different states. Drawing on the DCC model of Engle [1], the extension of a 
return-based DCC model with regime-switching has been introduced in some studies. For instance, Pelletier [17] 
and Billio and Caporin [18] propose a variant multivariate GARCH model composed of a Markov chain and the 
DCC model. These studies consider a solution that a discrete level shift may exist in the dynamic conditional 
correlation process. Moreover, they verify that the return-based Markov-switching DCC model outperforms En- 
gle’s [1] single-regime DCC model structure. Because the range-based DCC model is superior to the conven- 
tional return-based method in depicting the pattern of correlation shown by Chou et al. [12], it is necessary to 
explore whether the range correlation model with data structure change remains useful for futures hedging. Ac- 
cordingly, we construct a Markov chain structure into the range-based DCC model, and compute the mini- 
mum-variance hedge ratio for comparison with other hedging approaches. 

The literature has historically used the utility function and ordinary least squares model to discuss mini- 
mum-variance hedging. According to Chen et al. [19] and Lien and Tse’s [20] research, advanced econometric 
models have recently been used to measure the minimum-variance hedge ratio. In other words, the manner of 
hedging is shifting from static hedging to time-varying hedging. There is a large body of evidence showing that 
time-varying hedging approaches perform better than the static case4. In contrast, some empirical studies argue 
that there are no significant improvements from employing advanced econometric techniques5. According to 
Lien [29]-[31], the inconsistent performance of such hedging is caused by the abuse of hedging effectiveness 
measures. This proposal is supported by Ederington [32]. From previous discussions, there remains a difficulty 
in using advanced econometric tools to measure the hedge ratio. Therefore, this study employs a range-based 
Markov-switching dynamic conditional correlation (MS-DCC) model to estimate the dynamic hedge ratio and 
discusses the hedging effectiveness of other approaches. 

The rest of this article is organized as follows. In the next section, the range-based regime-switching DCC 
model is introduced, and minimum-variance hedging is described in the following section. In the fourth section, 
this study presents a hedging effectiveness measurement. The empirical results and the economic intuition of 
these results are reported in the fifth section. The final section provides the conclusion. 

2. Range-Based Regime-Switching Dynamic Conditional Correlation Model 
To introduce the regime-switching structure to the range-based dynamic conditional correlation process, the 
range-based MS-DCC model with a general S-regime can be expressed as: 

 

 

2Also see Parkinson [5], Rogers and Satchell [6], Yang and Zhang [7], Alizadeh, et al. [8], Brandt and Jones [9], Chou [10] [11], Chou, et al. 
[12] and Cai, et al. [13]. 
3Also see Danielsson [14]. 
4See also Baillie and Myers [21], Kroner and Sultan [22], Tong [23], Choudhry [24] and Alizadeh and Nomikos [25]. 
5See also Lien, et al. [26], Copeland and Zhu [27] and Alexander and Barbosa [28]. 
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( )1
, , , , | ~ exp 1, , 1, 2.t

k t k t k t k tR u u kλ −= ⋅ =I                         (1a) 

, , 1 , 1k t k k k t k k tRλ ω α β λ− −= + + ,                              (1b) 

*
, , , ,k t k t k trη λ=  where *

, ,
ˆ,k t k k t k k kadj adjλ λ σ λ= × = ,                (1c) 

( )1Pr , , 1, , .ij t tp s j s i i j S−= = = =                           (1d) 

( ) 1 1 11ij i
t j j j j t t j tA B A B− − −′= − − + +Q Q Qη η ,                         (1e) 

{ } { }1 2 1 2
diag diagij ij ij ij

t t t t

− −
= Q Q QΓ ,                             (1f) 

where Equations (1a)-(1c) represent the range-based volatility specification, ,k tR  denotes the observed high-low 
range in the logarithm of the kth asset during the time interval t, ,k tλ  denotes the conditional mean of the range, 

,k tu  denotes the disturbance term, which follows the exponential distribution with unit mean, *
, , ,k t k t k trη λ=  is 

the standardized residual, and the scaled expected range ( )*
,k tλ  is substituted for the conditional standard devi- 

ation. The unconditional standard deviation of the return series k and the sampling mean of the estimated condi- 
tional range of the series k are represented as kσ  and k̂λ  , respectively. The Markov chain transition proba- 

bility, which has the constraints 
1

1
S

ij
j

p
=

=∑  for 1, 2, ,i S=  , and 0 1ijp≤ ≤  for , 1, 2, ,i j S=  , is shown in 

Equation (1d). It is intuitive to define the stationary distribution of the Markov chain as tsπ∞  by the time-vary- 
ing transition probabilities. The dynamic conditional covariance and correlation process with the Markov- 
switching property are reported in Equations (1e) and (1f). The unconditional correlations can be  

represented as 
1

1 T

j t t
iT =

′= ∑Q ηη , a time-varying correlation matrix is denoted by ij
tΓ , and ij

tQ  denotes a 

time-varying covariance matrix. In Equations (1e) and (1f), the superscript symbol represents the regime shift 
from i to j. In short, the range-based MS-DCC model is composed of the conditional autoregressive range 
(CARR) model for the conditional variance process and the Markov-switching approach for the conditional co- 
variance and correlation case. 

The log likelihood function of the MS-DCC model is presented in this section. According to Engle [1] and 
Chou et al. [12], the two-step quasi-maximum likelihood approach is suitable for estimating the models in the 
DCC family. It is natural to execute the first step quasi-maximum likelihood estimation (QMLE) using Equation 
(2), as our specification allows only the conditional correlation to change in different regimes. The likelihood 
function of the volatility component, ( )VL κ , can be shown as: 

( ) ( ) ( )
22
,*

, *2
1 ,

1 log 2π log
2

k t
V k t

t k k t

r
L κ λ

λ=

 
= − + +  

 
∑∑                        (2) 

By maximizing the QMLE of Equation (2), the parameters { }, ,k k kκ ω α β=  can be estimated and obtained. 
Using the above-estimated results to the second step of the estimation, the estimation procedure can be finished 
as shown below: 

1) given the filtered probabilities as inputs, determine the joint probabilities as: 

( ) ( ) ( )1 1
1 1 1Pr , | Pr , Pr | , 1, ,t t

t t t t ts j s i s j s i s i i j S− −
− − −= = = = = × = =I I          (3) 

2) evaluate the regime-dependent log likelihood as: 

( ) ( ) ( )( )11
1

1

1| , , , log
2

T
t ij ij

t t t t t t t t
t

L R s j s i
−−

−
=

′= = = − +∑Iλ η ηΓ Γ                (4) 

3) evaluate the log likelihood of observation t as: 

( ) ( ) ( )1 1 1
1 1

1 1
| , | , , , Pr , |

S S
t t t

t t t t t t t t
j i

L R L R s j s i s j s i− − −
− −

= =

= = = × = =∑∑I I Iλ λ           (5) 
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( ) ( ) ( )1
1 1 1, , , , | , t

t t t tL R R L R R L R −
−= + I  λ                         (6) 

4) renew the joint probabilities as: 

( ) ( ) ( )
( )

1 1
1 11

1 1

| , , , Pr , |
Pr , |

| ,

t t
t t t t t tt

t t t
t t
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− −−

− −

= = × = =
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λ I I
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5) calculate the filtered probabilities as: 

( ) ( )1
1

Pr | Pr , | 1, ,
S

t t
t t t

i
s j s j s i j S−

=

= = = = =∑I I                      (8) 

6) renew the dynamic conditional correlation matrix through the following approximation: 

( )
( )

1
1

Pr , |

Pr |

S
t ij

t t t
j i

t t
t

s j s i

s j

−
=

= = ×
=

=

∑ I Q
Q

I
                            (9) 

7) iterate 1 to 6 until the end of the sample. The unknown parameters of MS-DCC model can be obtained with 
these estimation procedures. 

3. Minimum-Variance Hedging 
Minimum-variance hedging is the determination of the number of futures contracts against one spot asset that 
will ensure the minimum variance of the hedging portfolio. Furthermore, minimum-variance hedging can be 
calculated as a ratio of the covariance of spot-futures returns over the variance of futures returns, namely, 

( )
( )

* cov ,
var

t t

t

c f
f

δ =                                    (10) 

where tc  and tf  are the spot and futures returns at time t. As the covariance and variance estimates are time 
varying, Equation (10) can be extended to be the time-varying hedge ratio as: 

( )
( )

* cov ,
var

t t t
t

t t

c f
f

δ = .                                  (11) 

This study selects six various minimum-variance hedge ratios for the time being: 
1) Naïve: A simple hedging strategy assigning the hedge ratio equal to −1 at all times. 
2) OLS: A conventional method for analyzing the minimum-variance hedge ratio, used by Ederington [32] 

through the simple OLS regression, 
*

t t tc fγ δ ε= + + .                                   (12) 

The estimated slope, *δ̂ , is a constant hedging ratio. 
3) Return-based DCC: A classical time-varying correlation model proposed by Engle [1], which can be shown 

as: 
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=
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=

I

Q Q Q
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                    (13)
 

4) Range-based DCC: A range-based dynamic conditional correlation model developed by Chou et al. [12], 
which can be expressed as: 
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5) Return-based MS-DCC: A more flexible return-based dynamic conditional correlation model proposed by 
Pelletier [17] and Billio and Caporin [18], which can be expressed as: 

( )

( )
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                 (15)
 

6) Range-based MS-DCC: A range-based dynamic conditional correlation model with a regime-switching 
structure, which can be expressed as Equations (1a)-(1f). 

4. Hedging Effectiveness Measure 
With regard to the hedging effectiveness measure, this study employs the variance reduction and further calcu- 
lates the percentage variance reduction. In addition, this study calculates the economic benefits including the 
expected daily utility and the value-at-risk (VaR) estimate. The investor faces the mean-variance expected daily 
utility function proposed by Kroner and Sultan [22], which can be represented as: 

( ) ( ) ( )1 1 1Vart t t t t tE U x E x k x+ + += − , where *
1 1 1 1t t t tx c fδ+ + + += − .               (16) 

( )1t tE x +  and ( )1Vart tx +  represent the expected returns and variance, respectively, from the hedged portfo- 
lio. The degree of risk aversion is k. The higher expected daily utility shows that the corresponding hedge port- 
folio provides more economic benefit. With regard to the VaR estimate, it can be computed as: 

( ) ( )0 1 1VaR Vart tw E x z xα+ +
 = +  ,                       (17) 

where 0w  denotes the initial value of the hedged portfolio, and zα  is the α  quantile of normal distribution. 
A higher VaR indicates that the corresponding hedge portfolio leads to a greater reduction in VaR exposure and 
to more economic benefit. So far, the reference to variance, ( )1Vart tx + , is calculated by equal weight to posi- 
tive and negative returns. Usually, the investor is more concerned about negative losses than about positive 
gains. It is logical to discuss the hedging effectiveness of downside risk. This study chooses the semi-variance as 
the measurement of downside risk because it is a measure of the dispersion of the realized portfolio returns that 
fall below the target return. The semi-variance can be defined as: 

[ ]( ){ }2
1Semi-variance min ,0tE xτ += − ,                      (18) 

where τ  is the target return, and 1tx +  is the realized portfolio return.  

5. Empirical Analysis 
This study selects two stock indices with different weighting schemes for model testing at this stage, namely, the 
value-weighted S&P 500 index, the equal-weighted NIKKEI 225 index, and their corresponding futures con- 
tracts. The sample period is from January 3, 2000 to June 29, 2011 for the empirical study. One goal of this 
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study is to detect using these two different weighted indices whether the range-based MS-DCC model outper- 
forms competing models. The daily high, low, and close price for the S&P 500 and NIKKEI 225 are obtained 
from Datastream. 

Descriptive statistics for daily returns and ranges data are reported in Table 1. The spot and futures index vo- 
latilities (standard deviation) for the NIKKEI 225 are larger than those for the S&P 500. This finding is in line 
with equal-weighted stock indices’ property of having higher volatility than value-weighted indices, as equal- 
weighted schemes allocate the same weight to each stock, and small-cap stocks are generally more volatile than 
their large-cap counterparts. Both markets’ return and range data are found to reject the null hypothesis of nor- 
mal distribution by the Bera-Jarque criterion. Here, the Bera-Jarque statistics are greater than the chi-squared 
value with a degree of freedom of 2. Furthermore, the kurtosis test for both markets’ returns reveals fat tails. 
Therefore, the GARCH and CARR model are, at first glance, capable of fitting the S&P 500 and NIKKEI 225 
market trading data. 

Table 2 expresses the parameter estimation results for the DCC-GARCH (1,1) and DCC-CARR (1,1) models 
with the futures and spot indices, respectively. According to Engle [34], this study uses the quasi-maximum li- 
kelihood estimation to reduce the problem faced in volatility estimation of over heteroskedasticity. The charac- 
teristic of return-based and range-based volatility is shown in Panel A of Table 2. Here, the range-based volatil- 
ity model is more sensitivity than return-based case in capturing volatility transitory shocks. In addition, this 
study uses the standardized residuals generated from different market data to estimate the parameters of the dy- 
namic conditional correlation structure. Panel B of Table 2 presents clearly dissimilar dynamic correlation processes. 

Billio and Caporin [18] believe that using two regimes to configure the model will limit any problems of 
convergence. For this reason, this study focuses on the estimation of the range-based MS-DCC model with two 
different regimes. The estimated results for the two-state range- and return-based MS-DCC model are reported  
in Table 3. According to the model specification, the larger coefficient of ( )1 j jA B− −  is defined as the  

high-correlation regime, and the smaller coefficient of ( )1 j jA B− −  is defined as the low-correlation regime.  

The estimated transition probability of remaining in the low-correlation state ( )11p̂  is 0.999 for both stock in-  
dices; however, the estimated transition probability of remaining in the high-correlation state ( )22p̂  is 0.997 
for the S&P 500 and 0.860 for the NIKKEI 225. This finding indicates the probability of transitioning from low 
to high correlation is lower than that of the reverse. The expected transition period calculated by the estimated 
transition probability may provide insight into frequency of regime-switching. The expected transition period 
from low to high correlation ( )( )11ˆ1 1 p−  is approximately 3.97 years for both the S&P 500 and the NIKKEI 

225, but the expected transition period from high to low correlation ( )( )22ˆ1 1 p−  is approximately 1.32 years 

for the S&P 500 and 0.03 years for the NIKKEI 2256. This finding indicates that the expected transition period 
from high to low correlation is shorter than that of the reverse and that the correlation is relatively stable in the 
long term, although shocks may cause the correlation to oscillate violently and move from a low to high state. 
This study also calculates the steady-state probabilities of the Markov process as a benchmark. The estimated 
result of the range-based MS-DCC model indicates that the steady-state probability that the correlation of the 
S&P 500 will move to a low (high) state in the next period is 0.810 (0.190) and that the probability that the cor- 
relation of the NIKKEI 225 will move to a low (high) state in the next period is 0.998 (0.002). In brief, the 
probability of the expected correlation for either stock index moving to a low state is over 80%. With regard to 
the dynamic correlation process, the high-correlation state has a larger value of Â  than the low-correlation 
state. That is, the high-correlation state features a stronger instant influence term of shocks for the dynamic cor- 
relation process. 

Figure 1 further shows the smoothed probability of the low-correlation state estimated by the range-based 
Markov-switching DCC model for the S&P 500 and NIKKEI 225 indices. The patterns differ substantially be- 
tween the two stock indices. This difference may be attributed to the corresponding estimated transition proba- 
bility figures. In addition, this finding is also in line with the inference of the expected transition period, which is 
shown in Table 3. Figure 1 shows that the estimated time-varying correlation has higher probability of remain- 
ing in the low-correlation regime for the NIKKEI 225 spot and futures indices than for the S&P 500. The find- 

 

 

6The calculated transition period is deliberately displayed as an annualized figure for ease of comparison. 
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Table 1. Descriptive statistics for the daily returns and ranges of spot and futures of S&P 500 and of NIKKEI 225 
(2000.1.3-2011.6.29).                                                                                     

 
S&P 500 NIKKEI 225 

Spot Futures Spot Futures 
 Return Range Return Range Return Range Return Range 

Mean −0.004 1.528 −0.004 1.533 −0.023 1.541 −0.023 1.738 
Median 0.054 1.235 0.064 1.248 0.004 1.324 0.062 1.432 

Maximum 10.957 10.904 13.197 11.639 13.235 13.763 18.812 24.144 
Minimum −9.470 0.239 −10.400 0.000 −12.111 0.236 −14.003 0.256 
Std. Dev. 1.361 1.117 1.371 1.124 1.616 0.992 1.677 1.375 
Skewness −0.113 3.049 0.039 3.089 −0.401 3.643 −0.257 5.616 
Kurtosis 10.670 18.278 12.837 18.905 9.606 29.130 14.897 58.917 

Bera-Jarque 7072.398 32505.10 11624.49 34974.54 5198.131 86370.71 16645.12 381803.60 
observation 2882 2883 2882 2883 2816 2817 2816 2817 

Notes: The Bera-Jarque is the statistic for normality testing. 
 
Table 2. The estimation of range- and return-based dynamic conditional correlation model of daily spot and futures of S&P 
500 and of NIKKEI 225 (2000.1.3-2011.6.29).                                                                

Univariate: range-based 
( )1

, , , ,

, , 1 , 1

| ~ exp 1, , ,
,

t
k t k t k t k t

k t k k k t k k t

R u u k c f
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= ⋅ =

= + +

I
 

  *
, , , ,k t k t k trη λ= *

, ,where ,k t k k tadjλ λ= ×
 

ˆ ,k k kadj σ λ=
 

 return-based 

( )1
, , , , ,

2
, , 1 , 1

, , ,

| ~ 0, , ,t
k t k t k t k t k t

k t k k k t k k t

k t k t k t

r h N h k c f

h h

r h

ε ε

ω α ε β

η

−

− −

= =

= + +

=

I

 

DCC:  
( )

{ } { }
1 1 1

1 2 1 2

1 ,

diag diag
t t t t

t t t t

A B A B− − −

− −

′= − − + +

=

Q Q Q

Q Q Q

η η

Γ
 

 

Panel A: 
S&P 500 NIKKEI 225 

Spot Futures Spot Futures 

univariate CARR GARCH CARR GARCH CARR GARCH CARR GARCH 

ω̂  0.022 0.013 0.021 0.016 0.031 0.041 0.038 0.046 

 (0.006) (0.006) (0.005) (0.007) (0.008) (0.011) (0.009) (0.012) 

α̂  0.169 0.079 0.178 0.083 0.168 0.109 0.175 0.105 

 (0.013) (0.012) (0.013) (0.012) (0.020) (0.020) (0.020) (0.018) 

β̂  0.816 0.912 0.808 0.907 0.812 0.877 0.803 0.880 

 (0.014) (0.011) (0.014) (0.011) (0.022) (0.019) (0.023) (0.017) 

Panel B: S&P 500 NIKKEI 225 

DCC Range-based Return-based Range-based Return-based 

Â  0.136 (0.010) 0.015 (0.001) 0.046 (0.002) 0.039 (0.001) 

B̂  0.229 (0.031) 0.980 (0.002) 0.945 (0.002) 0.955 (0.002) 

Notes: The number in parentheses is robust standard error proposed by Bollerslev and Wooldridge [33]. 
 
ing that the high-correlation regime follows major financial events, especially in the case of the S&P 500, makes 
intuitive sense7. 

 

 

7These financial events include the 2000 technology bubble, the September 11 terrorist attacks, the 2002 stock market crash, the 2007 sub- 
prime housing crisis and the 2009 credit crisis. 
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Table 3. The estimation of range- and return-based markov switching dynamic conditional correlation model for daily spot 
and futures of S&P 500 and NIKKEI 225 (2000.1.3-2011.6.29).                                                   
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A B A B
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− −

= = =

′= − − + +

= =

Q Q Q

Γ Q Q Q

η η  

 
 S&P 500 NIKKEI 225 

Regime Low Correlation High Correlation Low Correlation High Correlation 

Panel A: Range-based 

Â  0.052 (0.004) 0.075 (0.001) 0.074 (0.002) 0.335 (0.095) 

B̂  0.931 (0.007) 0.268 (0.006) 0.906 (0.003) 0.377 (0.131) 

ˆ iip  0.999 (0.194) 0.997 (0.077) 0.999 (0.424) 0.860 (0.117) 

ˆ iπ∞  0.810 0.190 0.998 0.002 

Panel B: Return-based 

Â  0.030 (0.001) 0.147 (0.042) 0.043 (0.002) 0.158 (0.012) 

B̂  0.957 (0.003) −0.023 (0.083) 0.955 (0.002) 0.373 (0.042) 

ˆ iip  0.994 (0.160) 0.879 (0.170) 0.999 (0.085) 0.968 (0.105) 

ˆ iπ∞  0.954 0.046 0.990 0.010 

Notes: The number in parentheses is robust standard error proposed by Bollerslev and Wooldridge [33]. The probability of staying in the low correla-
tion state is 11p , and of staying in the high correlation state is 22p . The stationary regime probabilities, 1π∞  and 2π∞ , are computed by the expres-

sion: ( ) ( )1
22 11 221 2p p pπ∞ = − − −  and ( ) ( )2

11 11 221 2p p pπ∞ = − − − , respectively. 

 

 
Figure 1. The smoothed probability of low correlation regime for S&P 500 and NIKKEI 225 (2000.1.3 - 
2011.6.29). This figure plots the smoothed probability estimated by range-based Markov-switching dynamic 
conditional correlation model.                                                                   
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Figure 2 displays the estimated time-varying correlations of the return-based MS-DCC, range-based DCC 
and MS-DCC models for the S&P 500 and NIKKEI 225. For both stock indices, the fluctuating range of 
time-varying correlation estimated from the range data is wider than that estimated from return data. The largest 
range of fluctuation is estimated by the range-based DCC model for the S&P 500, but the range-based MS-DCC 
model estimates the largest range for the NIKKEI 2258. The correlations estimated by the range-based MS-DCC 
are less volatile than those estimated by the range-based DCC for the S&P 500, but the estimated results are the 
opposite for the NIKKEI 225. This finding indicates that the use of range data could lead to correlation estimates 
with a wider range compared to those produced using return data. Furthermore, considering a regime-switching 
method for the range-based DCC model could make the correlation estimates more flexible, as the regime- 
switching method can capture reactions to variation with greater precision. 

Table 4 reports the in-sample and out-of-sample forecasting performance summary for various measurements 
of hedging ratios. The degree of risk aversion is assumed to be k = 4 for the expected daily utility function in 
Equation (18)9. In the case of given parameters for the VaR estimate, the initial value and the quantile of normal 
distribution are assumed to be 0 $1mw =  and 0.05 1.645z = − , respectively. The in-sample hedging effective- 
ness illustrates that the range-based MS-DCC model outperforms competing models for both the S&P 500 and 
NIKKEI 225 indices in terms of the measure of variance improvement, the daily utility function and VaR esti- 
mation. In terms of variance improvement, the percentage of variance reduction from using the range-based 
MS-DCC model is 95.9588% for the S&P 500 index and 90.4778% for the NIKKEI 225 index. With regard to 
one of the economic benefits measures, the daily utility of the range-based MS-DCC model is −0.2989 for the 
S&P 500 and −0.9945 for the NIKKEI 225 index. Furthermore, another measure of economic benefit, VaR, 
shows that employing a hedging strategy based on the range-based MS-DCC model could reduce losses by ap-
proximately 1.789 million dollar for the S&P 500 and by approximately 1.838 million dollar for the NIKKEI 
225. Although all of the measurements of in-sample hedging effectiveness demonstrate that the range-based 
MS-DCC model outperforms the alternative models, it is essential to assess the more realistic performance of 
out-of-sample hedging effectiveness. A total of 500 observations are used for the out-of-sample forecast. In 
Panel B of Table 4, all performance criteria indicate that the range-based MS-DCC model tends to outperform 
competing models for the S&P 500, but that the naïve hedging strategy could show superior hedging effective-
ness for the NIKKEI 225. The inconsistent performance between the in-sample and out-of-sample tests is not an 
anomaly to us, as previous studies have provided explanations for this finding10. However, it is not appropriate 
to make a conclusion with regard to out-of-sample performance with these empirical results. So far, the use of 
variance as the proxy for risk has two flaws: trading position and the proxy chosen. It is necessary to discuss the 
hedging performance of different trading positions to compare hedging methods, as the short and long positions 
present different hedging performance (see for instance, Cotter and Hanly [38] and Alizadeh, et al. [35])11. 
Hedgers are concerned with negative losses; therefore, this study uses semi-variance as an alternative risk proxy 
to replace the variance variable. 

Figure 3 shows the optimal hedge ratios estimated by the constant OLS, return-based MS-DCC, range-based 
DCC and MS-DCC models for the S&P 500 and NIKKEI 225. The hedge ratios of the range-based MS-DCC 
model are more volatile than those of competing models in the case of the NIKKEI 225; however, different out-
comes are found in the case of the S&P 500. This finding is consistent with the results shown in Figure 2.  

Table 5 presents the out-of-sample performance of various hedging ratios in terms of downside risk for the 
short and long hedgers. In Panel A, all of the effectiveness criteria for the short hedger indicate that the range- 
based MS-DCC model is the most effective hedging strategy for the S&P 500. However, the naïve hedging 
strategy shows the best performance for the NIKKEI 225. This result from Panel A of Table 5 is almost identic- 
al to that from Panel B of Table 4, as both of these calculations are based on short hedgers. Comparing Panel A 
of Table 5 with Panel B of Table 4, the VaR figures calculated from the semi-standard deviation for each hedg- 
ing strategy are larger than the corresponding half-VaR figures estimated using the standard deviation. 

 

 

8The range of fluctuation in the time-varying correlation for S&P 500 is (0.8581, 0.9957) for the range-based DCC, (0.8964, 0.9909) for the 
return-based MS-DCC, and (0.8947, 0.9932) for the range-based MS-DCC. However, the range of fluctuation in the time-varying correlation 
for NIKKEI 225 is (0.3597, 0.9915) for the range-based DCC, (0.5083, 0.9910) for the return-based MS-DCC, and (0.2413, 0.9932) for the 
range-based MS-DCC. 
9This setting of the degree of risk aversion is in line with Alizadeh and Nomikos [25] and Alizadeh et al. [35]. 
10Engel [36] and Marsh [37] clarify that parameter instability may lead to differences between in-sample and out-of-sample performance. 
11The hedge portfolio is calculated as ( )*

t t tc fδ+ −  for short hedger, and as ( )*
t t tc fδ− +  for long hedger. 



Y.-K. Su, C.-C. Wu 
 

 
216 

 
Figure 2. The estimated time varying correlations for S&P 500 and NIKKEI 225 (2000.1.3-2011.6.29). This 
figure plots three estimated time varying correlations including range-based DCC (Corr_DCCC), MS-DCC 
(Corr_MSDCCC) and return-based MS-DCC (Corr_MSDCCG) models.                                 

 

 
Figure 3. The constant OLS, return-based MS-DCC, range-based DCC and MS-DCC hedge ratios for S&P 
500 and NIKKEI 225 (2000.1.3-2011.6.29). This figure plots four hedge ratios estimated from constant OLS 
(HR_OLS), return-based MS-DCC (HR_MSDCCG), range-based DCC (HR_DCCC) and MS-DCC (HR_ 
MSDCCC) models.                                                                           

 
This finding indicates that using semi-variance to substitute for the variance is meaningful, as the hedge portfo- 
lio has a significantly asymmetric return distribution. In terms of long hedgers, the empirical results mostly in- 
dicate the outperformance of the range-based MS-DCC model over competing models for both stock indices, as 
shown in Panel B of Table 5. Considering the trading position and downside risk, the hedging effectiveness of 
the range-based MS-DCC model remains superior to competing models for the S&P 500. Although the results of 
the short hedger indicate the outperformance of the naïve hedging strategy for NIKKEI 225, the range-based 
MS-DCC model is found show superior hedging performance for the long hedger. In addition, the estimated 
VaR figures indicate that the use of the range-based MS-DCC model in a hedging strategy can reduce the losses 
by between 0.979 million to 1.474 million for either stock index. We can infer that the in-sample and out- 
of-sample performance verifies that the range-based MS-DCC model can increase not only the variance (semi- 
variance) improvement term but also the economic benefit measures. 
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Table 4. Hedging effectiveness of range-based Markov switching dynamic conditional correlation model against the alter- 
native hedge ratio models for daily spot and futures of S&P 500 and NIKKEI 225 (2000.1.3-2011.6.29).                   

 
S&P 500 NIKKEI 225  

Mean 
return Variance VI(%) Daily 

utility VaR(5%) Mean return Variance VI(%) Daily 
utility VaR(5%)  

Panel A: In-sample hedging effectiveness 
Unhedged −0.0037 1.8534 N/A −7.4173 −2,239,521 −0.0235 2.6139 N/A −10.4791 −2,659,567 

Naïve 0.0004 0.0781 95.7861 −0.3120 −459,764 <0.0001 0.2826 89.1886 −1.1304 −874,446 

OLS 0.0002 0.0766 95.8670 −0.3062 −455,371 −0.0020 0.2619 89.9805 −1.0496 −841,916 

DCC-G −0.0010 0.0795 95.7106 −0.3190 −463,773 −0.0048 0.2629 89.9422 −1.0564 −843,400 

DCC-C 0.0003 0.0752 95.9426 −0.3005 −451,182 0.0006 0.2549 90.2483 −1.0190 −830,552 

MS-DCC-G −0.0010 0.0794 95.7160 −0.3186 −463,670 −0.0028 0.2490 90.4740 −0.9988 −820,873 

MS-DCC-C 0.0007 0.0749 95.9588 −0.2989 −450,144 0.0011 0.2489 90.4778 −0.9945 −820,776 
Panel B: Out-of-sample hedging effectiveness 

Unhedge 0.0731 1.1003 N/A −4.3281 −1,725,564 −0.0068 2.0418 N/A −8.1740 −2,350,555 

Naïve 0.0001 0.0353 96.7918 −0.1411 −308,877 0.0002 0.0749 96.3317 −0.2994 −450,337 
OLS 0.0020 0.0350 96.8190 −0.1380 −307,844 −0.0004 0.0971 95.2444 −0.3888 −512,638 

DCC-G 0.0017 0.0344 96.8736 −0.1359 −305,100 −0.0002 0.0821 95.9790 −0.3286 −471,281 

DCC-C 0.0009 0.0346 96.8554 −0.1375 −305,866 0.0023 0.0835 95.9105 −0.3317 −475,393 
MS-DCC-G −0.0034 0.0392 96.4373 −0.1602 −325,763 −0.0003 0.0790 96.1309 −0.3163 −462,437 

MS-DCC-C 0.0002 0.0334 96.9645 −0.1334 −300,678 0.0003 0.0787 96.1456 −0.3145 −461,597 

Notes: VI is the variance improvement of unhedged model against the other competing models, and it is calculated as: [Var(unhedged)- 
Var(modeli)]/Var(unhedged). Daily utility is calculated by the mean-variance utility function and the coefficient of risk aversion is 4. VaR(5%) is the 
value at risk. 
 
Table 5. Effectiveness short/long hedger of range-based Markov switching dynamic conditional correlation model against 
the alternative hedge ratio models for daily spot and futures of S&P 500 and NIKKEI 225 (2000.1.3-2011.6.29).            

 
S&P 500 NIKKEI 225 

Mean 
return 

Semi- 
variance 

Semi-VI 
(%) 

Semi-daily 
utility VaR(5%) Mean 

return 
Semi- 

Variance 
Semi- 
VI(%) 

Semi-daily 
utility VaR(5%) 

Panel A: Short hedger 
Unhedged 0.0731 0.5939 N/A −2.3024 −1,194,596 −0.0068 1.1538 N/A −4.6221 −1,773,792 

Naïve 0.0001 0.0168 97.1712 −0.0670 −213,003 0.0002 0.0416 96.3945 −0.1662 −335,294 
OLS 0.0020 0.0169 97.1544 −0.0657 −212,001 −0.0004 0.0547 95.2591 −0.2194 −385,278 

DCC-G 0.0017 0.0166 97.2049 −0.0647 −210,223 −0.0002 0.0483 95.8138 −0.1933 −361,636 

DCC-C 0.0009 0.0167 97.1881 −0.0660 −211,793 0.0023 0.0474 95.8918 −0.1874 −355,963 

MS-DCC-G −0.0034 0.0212 96.4304 −0.0883 −243,103 −0.0003 0.0456 96.0478 −0.1826 −351,438 
MS-DCC-C 0.0002 0.0162 97.2722 −0.0647 −209,414 0.0003 0.0455 96.0565 −0.1816 −350,515 

Panel B: Long hedger 

Unhedge 0.0731 0.5939 N/A −2.3024 −1,194,596 0.0068 1.1538 N/A −4.6221 −1,773,792 

Naïve −0.0001 0.0184 96.9018 −0.0737 −223,263 −0.0002 0.0332 97.1226 −0.1330 −299,933 

OLS −0.0020 0.0180 96.9692 −0.0741 −222,866 0.0004 0.0422 96.3425 −0.1683 −337,445 

DCC-G −0.0017 0.0177 97.0197 −0.0726 −220,763 0.0002 0.0336 97.0879 −0.1344 −301,501 
DCC-C −0.0009 0.0178 97.0029 −0.0721 −220,285 −0.0023 0.0359 96.8885 −0.1460 −314,057 

MS-DCC-G 0.0034 0.0179 96.9860 −0.0682 −216,717 0.0003 0.0333 97.1139 −0.1329 −299,909 

MS-DCC-C −0.0002 0.0171 97.1207 −0.0686 −215,350 −0.0003 0.0331 97.1312 −0.1327 −299,584 

Notes: Semi-variance denotes the variability of returns below the mean return. Semi-VI is the semi-variance improvement of unhedged model against 
the other competing models, and it is calculated as: [Semi-Var(unhedged)-Semi-Var(modeli)]/Semi-Var(unhedged). Semi-daily utility is calculated by 
the mean-semi-variance utility function and the coefficient of risk aversion is 4. VaR(5%) is the value at risk calculated by the semi-standard devia- 
tion. 
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6. Conclusion 
In this study, a new range-based Markov-switching dynamic conditional correlation model is proposed to ad- 
dress minimum variance hedging for futures. Under this specification, the range-based MS-DCC model ad- 
dresses flaws of the linear functional forms of the conventional conditional covariance estimation method. For 
the empirical study, spot and futures data of the value-weighted S&P 500 index and the equal-weighted NIKKEI 
225 index are collected to estimate the range-based MS-DCC model. The estimated results show that the dy- 
namic correlation process is derived by both the low- and high-correlation states by means of an estimated en- 
dogenous transition probability for both stock indices. This finding indicates that incorporating a regime- 
switching mechanism into the dynamic correlation process can show more realistic variation in correlation pat- 
terns. In addition, the calculated transition period shows that the frequency of switching from high to low corre- 
lation is lower than that of the reverse. The graph of smoothed probability clearly shows that important financial 
events lead correlation to move to a high regime, especially in the case of the S&P 500. We believe that this ad- 
vantage can lead to outperformance in minimum-variance hedging. This study introduces several different cor- 
relation models to calculate the minimum-variance hedging ratio and then compares their hedging effectiveness 
in terms of three criteria. Overall, the in-sample and out-of-sample performance indicates that the use of the 
range-based MS-DCC model for hedging leads to superior variance (semi-variance) improvement and greater 
economic benefits. 
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