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Abstract 
 
A general method of simulation of processes in dusty based on special programs is presented here. It is pos-
sible to prepare the modeling of the dusty in volcano like the dust sound waveguides. Dusty is in state of the 
plasma .Waveguides are formed by the distribution of dusty particles with various masses m = m(x) in trans-
verse coordinate. The dust sound waves propagate along the longitudinal z-direction. In the case of contact of 
dusty plasma with a semi-infinite dielectric, there exists the dust acoustic mode that possesses the negative 
group velocity (backward wave) in the specified interval of wave numbers. For analysis it is necessary to use 
the special numerical methods of calculation of the equations with boundary conditions. Simulation of ion 
sound wave propagation shows a new dispersion between frequency and wave vector. In some region of pa-
rameters of dusty the negative dispersion of wave takes place. This means that the phase and group velocities 
of wave are opposite (negative dispersion). This phenomenon takes place, when the mass of dust particles 
has the maximum in the center of the waveguide. The negative dispersion caused the instability in dusty, 
which open the possibility to create a new phenomenon in dusty including the high temperature and the 
flame. 
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1. Introduction 
 
Nowadays, dusty, both in space and under laboratory 
conditions are the object of numerous investigations 
[1-6]. Besides traditional investigation of dusty plasmas 
in connected with it influence to communication, flights 
of airplanes and people living near volcano and another 
eruptions. There are also the artificial dust clouds in the 
atmosphere caused by industrial pollutions, very danger 
for communication and for flights. An attractive property 
of dusty plasmas is supporting various oscillations and 
waves, both linear and nonlinear [2,3,7-11]. There are a 
lot of papers devoted to the waves in bounded or inho-
mogeneous plasmas, where some types of surface plasma 
waves can exist and the presence of the dust component 
can affect essentially their characteristics [5-12]. A dis-
tinctive property of the dust component is a possibility to 
get plasmas with dust particles of various properties in 
different parts of the system [1-3,5]. For instance, it is 

possible to consider a situation when along a certain di-
rection the mass of the particles varies. The dependence 
of the mass of the particle on the coordinate should in-
fluence on the properties of the waves propagating per-
pendicularly to such an axis.  

This paper is devoted to simulation of wave’s proc-
esses of surface dust acoustic waves in the dusty plasma 
with the dependence of the mass of dust particles on the 
transverse coordinate. It is found that the variable mass 
of the particles affects the properties of the linear surface 
dust acoustic waves. Namely, when the heavier particles 
are near the interface, it is possible to observe the 
anomalous wave dispersion (backward waves). Addi-
tionally, in this case the peculiarities of the dependence 
of transverse electric field on the transverse coordinate x, 
like non-monotonic transverse profile, can occur. Also 
the variable masses lead to a mechanism of nonlinearity 
under propagation of surface waves of finite amplitudes. 
For simulation of wave processes it is created the com-
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puting method which take into account the boundary 
conditions in no homogenous dusty.  
 
2. Model of Dusty Plasma 
 
Consider the dusty plasma that includes positive ions and 
negative dust. The temperature of ions is finite whereas 
the temperature of chaotic motion of the dust is lower. 
Note that the temperature of the dust particles, which are 
much more massive that the ions, is the characteristic of 
their chaotic motion, it is not the temperature within a 
single dust particle.  

The dust acoustic waves in the bounded plasma can be 
described by hydrodynamic equations for ions and dust 
added by boundary conditions. Below, we consider the 
waves that propagate along the interface between the 
dusty plasma (x > 0) and the dielectric with a permittiv-
ity  (x < 0), see Figure 1. 

Generally, the particles of the dust in different parts of 
the plasma are different and may have different masses. 
First of all it is necessary to formulate the basic equa-
tions and boundary conditions for an analysis of the dus-
ty plasma waveguide with the particles of variable 
masses. It is necessary to consider the dusty plasma with 
the following components: negative dust (md, –Q) and 
positive ions (mi, e). The charge of each dust particle is 
–Q = –Ze, Z 1. The temperatures of the components 
are Td Ti  0. The practical interest has the case when 
the particles of the dust have different masses: md = 
md(x). Here x is the initial x-coordinate of the particle. 
Real model of dust is the case no homogeneous plasma 
of the following masses dependence: 
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Figure 1. Geometry of the problem. 

where the constant a0 has the values within the interval 
–1 < a0 < 10. In the homogeneous plasma it is the case 
that the constant a0 = 0. The parameter md is the mass 
of the particle far from the interface x = 0. The parameter 
p is p = 1 or 2 (case 1 is the Gaussian profile; case 2 is 
supergaussian one, or step-like).  

The propagation of dust acoustic surface waves is in-
vestigated, when this propagation is along z-axis takes 
place, whereas in x-direction the localization occurs. 

The hydrodynamic equations for the dust component 
are [2,3]: 
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One can see that in the hydrodynamic equations for 
the dust there is an additional source of nonlinearity, due 
to the dependence of the mass of the particle on the dis-
placed transverse coordinate x.  

For the electric field, the Poisson equation takes the 
form: 

 4π ;i den Qn       E .        (3) 

The condition of quasi-neutrality of the charge is 

0 0 0i den Qn   . 
For ions, also we use the hydrodynamic equations: 
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But, because of the inequality mimd, it is possible to 
consider the validity of the Boltzmann distribution for 
ions: 
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Therefore, the Poisson equation can be simplified: 

04π expi d
Ti

e n Qn



  
          

      (6) 

The waves of small amplitudes are considered; there-
fore, the linearized equations are utilized below. Note 
that in the linealized equations it is necessary to use the 
dependence of md on x only.  
 
3. Basic Equations 
 
The derivatives in Equations (3) and in the boundary 
conditions (1)-(6) have been approximated by the undi-
mensional linearized equations (the index d near V, m, 
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and n is omitted) can be represented as: 
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The following nondimensional variables have been 
applied: x  x/rDi, z  z/rDi, V  V/Vn, t  t/tn,   
/Ti, m  m/m, ñ  ñ/nd0, T = Tde/TiQ   1. Here 
the scale of the distance rDi = (kBTi/4e2ni0)

1/2 is the De-
bye radius for ions, the characteristic velocity is Vn = 
(QkBTi/em)1/2, the time scale is tn = rDi/Vn. Therefore, 
the undimensional mass of the dust particle is m(x) =   
1 + a0exp(–(x/x0)

2p). Note that the undimensional dust 
temperature is a product of two small magnitudes Td/Ti < 
1 and e/Q ~ 10–310–6, therefore, T < 10–3. 

It is necessary to use the following algorithm of solu-
tion. First of all the traveling wave has view , ñ  
exp(i(t – kz)).In this case, the set of equations (7) can 
be reduced to the equations for the potential and for va-
riable part of the dust concentration: 
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It is necessary to add Equations (8) by the boundary 
conditions. The continuity of the electric potential, the 
x-component of the electric field (absence of the surface 
charge at T  0), and zeroing vx-component of dust ve-
locity result in the boundary conditions at x = +0: 
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Another boundary conditions are at x = Lx x0. In the 
region x x0 the value of the nondimensional dust mass 
is m = 1. In this region it is possible to reduce Equa-
tions (8):  
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4. Simulation Method 
 
The solution of (10) has the character to decreases at 
x x0 like, ñ ~ exp(-x),  > 0. It takes the form: 
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In case of 1,2 > 0 the solutions have following view: 
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Excluding the constants A1,2 from (11), one can get the 
following boundary conditions at x = Lx x0: 
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It is necessary begin with simplified model where pa-
rameter T = 0. It is possible to obtain the single equation 
for the potential only there: 
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1 0.
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A notation is used for the effective permittivity of the 
plasma due to the dust component: d(x) = 1 – 1/(m(x)2). 
To get the waves localized in x-direction, it is necessary 
to satisfy the condition ( ) 0d x  . 

The boundary condition at x = +0 is: 
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0 0
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x

     ,          (14) 

because the potential and x-component of the electric 
induction are continuous there.  

At x = Lx x0, it is possible to get the boundary con-
dition as: 
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For the numerical solution of Equation (8) added by 
boundary conditions (9) and (12), we have used the finite 
differences [13]: 
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Here h is the step along OX axis; Lx = Nh.  
As a result, a set of uniform linear equations has been 

formed. They possess a matrix structure:  
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Here the coeficients 1, j


 etc. are matrices 2  2. 
This set of equations has been solved by the factorization 
method. Namely, it is possible to represent:  

1
ˆ , , ,1;j j j j N   A A            (18) 

and to calculate the matrices ˆ
j  consecutively, step by 

step. As a result, at j = 0 it is possible to get a single ma-
trix equation for 0A  as: 

 0,0 1,0 1 0
ˆ 0    

A            (19) 

It is necessary to search for nontrivial solutions: 

0 0A . Therefore, the following determinant is equal to 
zero:  

  0,0 1,0 1̂det 0    
         (20) 

This is the dispersion equation for the set of dispersion 
curves  = m(k), m = 1, 2,  The interst of our mod-
eling is to obtain the lowest (fundamental) mode, which 
can be observed in experiments. 

For the simplified version, Equations (13), (14), (15), 
the method is the same, but the matrices are reduced to 
scalars. 
 
5. Results of Simulation and Discussing 
 
Using Equation (8) and boundary conditions (9), (12), it 
is possible to simulate the dispersion curves and the 
transverse profiles of the surface dust acoustic waves. 
The shooting method has been applied to solve the ordi-
nary differential equations jointly with boundary condi-
tions. The main attention has been paid to the qualitative 
effects of the variable masses of dust particles on the 
propagation of the surface dust waves. Below, the results 
of simulations are presented for different parameters of 
the dust. The results are given for the undimensional 
magnitudes in Figures 2-5. The simulations have been  

 

    
(a)                                                         (b) 

    
(c)                                                         (d) 

Figure 2. The dispersion curve (k) (a), transverse profiles of the potential  (b), x-component of the electric field Ex (c), va-
riable part of concentration ñ (for T = 10-4) (d). Solid curves are for T = 10–4, dash curves are for T = 10–6, dot curves are for T 
= 0. The parameters are as follows: a0 = 0 (uniform plasma at x > 0), ε = 5. The curves 1, 2, 3 correspond to the values of the 
wave numbers k = 0.4, k = 2, k = 4. 
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(a)                                                        (b) 

 

    
(c)                                                        (d) 

Figure 3. The dispersion curve (k) (a), transverse profiles of the potential  (b), x-component of the electric field Ex (c), va-
riable part of the dust concentration ñ (for T = 10–4) (d). Solid curves are for T = 10–4, dash curves are for T = 10–6, dot curves 
are for T = 0. The parameters are as follows: a0 = 1 (heavier particles in the center of the waveguide), ε = 5, x0 = 0.25, p = 2. The 
curves 1, 2, 3 correspond to the values of the wave numbers k = 0.4, k = 2, k = 4. 
 

    
(a)  (b) 

Figure 4. The dispersion curves (k) for dusty plasma waveguides with the heavier particles in the center of the waveguide. 
Solid curves are for T = 10–4, dash curves are for T = 10–6, dot curves are for T = 0.The parameters are: (a) a0 = 1, ε = 5, x0 = 
0.25, p = 1 (Gaussian profile); (b) a0 = 1, ε = 10, x0 = 0.25, p = 2 (step-like profile).    
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(c) 

 

Figure 5. The dispersion curve (k) (a), transverse profiles 
of the potential  (b), x-component of the electric field Ex 
(c). Solid curves are for T = 10–4, dash curves are for T = 
10–6, dot curves are for T = 0. The parameters are as follows: 
a0 = –0.5 (lighter particles in the center of the waveguide), 
x0 = 0.25, ε = 5, p = 2 (step-like profile of the mass). The 
curves 1, 2, 3 correspond to the values of the wave numbers 
k = 0.4, k = 2, k = 4. 

realized for different dust temperatures T = 10–310–6, 
and also for T = 0. 

For uniform semi-infinite dusty plasma, the results of 
simulations coincide with well-known data on surface 
dust acoustic waves, see Figure 2. It is seen that the sur-
face plasma waves are preferably oscillations of the sur-
face charge. The localization thickness of the charge near 
the surface is of about x ~ 0.010.02. 

But the simulations of the dusty plasmas with variable 
masses of the dust particles yield non-trivial results. One 
can see that when the dust particles are heavier in the 
center of the waveguide, it is possible to observe the 
negative group velocity of surface waves at some inter-
vals of the wave numbers, see Figures 3, 4. 

This result is tolerant to changes of parameters of the 
dusty plasma waveguide, both for Gaussian and step-like 
profiles of the masses of dust particles and also for dif-
ferent values of the dielectric permittivity of contacting 
dielectrics. When the finite temperature of the dust is 
taken into account, the negative dust velocity occurs at T  
10–4, whereas at higher temperatures this phenomenon 
vanishes. 

A possibility of opposite directions of phase and group 
velocities of the surface plasma waves is important for 
realization of wave instabilities, for instance, due to rota-
tion of dust particles [2]. Namely, as known from the 
backward wave tube theory, the negative group velocity 
can lead to positive distributed feedback within the sys-
tem [14,15]. The region of the wave numbers where the 
group velocity of the wave is close to zero and changes 
its sign can be also useful for observing nonlinear wave 
phenomena, especially, envelope solitons or modulation 
instability [14,16].  

In the case of lighter particles in the center of the wa-
veguide, the group velocity is positive. But at some val-
ues of the wave numbers, the distribution of the trans-
verse Ex component of the electric field possesses 
non-monotonic dependence on the transverse coordinate 
x, see Figure 5. 

This can be important for the dynamics of nonlinear 
waves in this waveguide. The results on negative group 
velocity have been confirmed by our more exact nu-
merical simulations of hydrodynamic equations, where 
both the finite temperature of chaotic motion of dust par-
ticles and the finite mass of ions were taken into account. 
 
6. Conclusion 
 
To estimate the typical scales of the distance and time in 
simulation, it is necessary to use the following parame-
ters: the temperature of the ions is Ti = 2000 K, the ion 
concentration is ni0 = 103 cm–3, the radius of the dust 
particle is rd = 10 µm, the mass of the dust particle far 
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from the boundary is m∞ = 2  10–8 g, the relation between 
the charges of the dust particle and the ion is Q/e = 103. 
In this case, the Debye radius for the ions (and the char-
acteristic spatial scale) is rDi = (kBTi/4e2ni0)

1/2 10 cm; 
the characteristic velocity is Vn = (kBTi/m∞ × Q/e)1/2  0.1 
cm/s; the characteristic time is tn = rD/Vn  100 s  1.6 
min.  

When the dust particles are heavier in the center of the 
waveguide, it is possible to observe the negative group 
velocity of surface waves. So, this case is a good condi-
tion for obtain of the absolute instability of dust surface 
plasma waves. This instability should be analyzed addi-
tionally. The estimated temporal and spatial scales have 
demonstrated that it could be possible an appearance of 
investigated phenomena under natural hazards, like vol-
cano eruptions. 
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