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Abstract 
The Einstein-Podolsky-Rosen paradox is resolved dynamically by using spin-dependent quantum 
trajectories inferred from Dirac’s equation for a relativistic electron. The theory provides a prac-
tical computational methodology for studying entanglement versus disentanglement for realistic 
Hamiltonians. 
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1. Introduction 
The Einstein-Podolsky-Rosen paradox [1] stating that quantum mechanics is incomplete because it violates local 
realism is resolved by Bell’s theorem [2], in which Bell’s inequality is violated by quantum mechanics as dem-
onstrated experimentally by Freedman and Clauser [3]. A less abstract way of saying this is the following: al-
though the deterministic description of causality as stated in Einstein’s special theory of relativity is violated, 
nevertheless causality cannot be violated by a physically correct quantum theory of electrons in which local 
realism is not observed due to the quantum nature of the motion. Such a physically correct theory is the quantum 
theory of a relativistic electron by Dirac [4] in which the principles of special relativity are incorporated in an 
equation of motion for a spin-1/2 particle. This statement must be true but yet there is a vagueness or highly ab-
stract character to our understanding of quantum entanglement even after it has been sorted out by the 
Bell-Freedman-Clauser work. This abstract character, which likely underlies the early perplexity of Einstein, 
Schroedinger, and others concerning entangled states, exists for two reasons. First electron-electron correlation 
is not understood in a dynamical sense. We know that two electrons must correlate in space and time, but corre-
lation is understood using time-independent or stationary-state quantum theory both nonrelativistically and rela-
tivistically. Second electron spin plays a fundamental role in quantum entanglement, but yet quantum entangle-
ment is understood using Schroedinger theory, in which the electron’s spin degree of freedom is absent. In prac-
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tical calculations the omission of spin in the equation describing electrons and their mutual interaction means 
that the quantum states for two or more electrons must be constructed empirically from experimental observa-
tion of how an aggregate of electrons behaves. In other words, there is no mathematical prescription in the 
many-electron Schroedinger equation itself for Fermi-Dirac statistics, and in fact in many-fermion numerical 
simulations, ad hoc procedures must be used to avert what is called bosonic collapse of the solution. Thus, a 
physically correct many-electron wave function must be constructed to obey the Pauli Exclusion Principle and 
Fermi-Dirac statistics. It is well known that a physically correct many-electron wave function in orbital and spin 
space must be antisymmetric with respect to electron exchange, which is a mathematical recipe to guarantee the 
Pauli Exclusion Principle and to reconstruct the dynamical information which is otherwise lost in statio-
nary-state theory. The Pauli Exclusion Principle and Fermi-Dirac statistics have only recently been demonstrat-
ed on an ab initio basis using a dynamical quantum theory of electron exchange-correlation in space and time [5] 
[6]. In this paper, I show that the previous work [5] [6] also provides an understanding in a dynamical sense of 
quantum entanglement and disentanglement.  

2. Dynamical Theory of Quantum Entanglement  
The Pauli exclusion principle, which is fundamental for fermion structure and collision problems, states that 
each fermion in an ensemble must have a unique set of four quantum numbers three for space and one for spin. 
For example a pair of electrons can occupy the same spatial orbital only if they have opposite spin states. The 
canonical examples are the singlet and triplet states (for upper and lower signs respectively) of the helium atom 
or of the hydrogen molecule, 

 ( ) ( ) ( ) ( ) [ ]1 2 1 2a b b aψ ψ ψ ψ αβ βαΨ = ±    ,                    (1) 

where the arguments refer to the 3-space position vectors of electrons 1 and 2. The second term in square brack-
ets comprises up (alpha) and down (beta) spin states such that the 2-electron spin state is 0 (singlet state) or 1 
(triplet state) for upper and lower signs respectively. This point is obvious if the orbitals labeled a and b are 
identical such that fermions 1 and 2 occupy the same spatial orbital for the singlet state (upper sign) while the 
first term in square bracket vanishes for the triplet state (lower sign) since the Pauli exclusion principle is vi-
olated for this case. 

The singlet state is a canonical example of an entangled state since the two electrons cannot be separated spa-
tially and appear therefore to transfer information between themselves instantaneously. In a way the mysterious 
nature of the entangled state is illusory due to the incompleteness of the physical theory itself. Firstly the theory 
is for stationary states with no dynamical information whatsoever between the two correlated electrons. Second 
Schroedinger theory is spinless such that the 2-electron state written in Equation (1) is an ad hoc construction 
based on experimental observation. It is true that the symmetry of the Schroedinger Hamiltonian with respect to 
the permutation of electron coordinates allows for pairs of spatial states in the first square bracket to have either 
even (upper sign) or odd permutation symmetry on the exchange of electrons. Nevertheless the spin dependence 
of the 2-electron wave function has a totally phenomenological origin such that no a priori physical theory ex-
ists to explain why the state with total spin angular momentum of 0 is an entangled state while the state with to-
tal spin angular momentum of 1 is an unentangled state. 

 Ironically the paradox is resolved by Einstein’s own theory of special relativity. Dirac discovered the correct 
quantum theory of special relativity for a fermion, which makes it possible to explain both the explicit dynami-
cal nature of entanglement and its dependence on the spin state of a fermion. Figure 1 and Figure 2 show 
2-electron entanglement and nonentanglement for singlet and triplet states respectively. 

The form of Dirac theory which makes this detailed understanding possible is outlined below. First I postulate 
that a correct dynamical theory for a relativistic electron interacting with other relativistic electrons can be had 
by replacing the classical relativistic equation of motion for each electron by Dirac’s equation as follows [5] [6]. 
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σ  and the 2 × 2 identity matrix I. The generalization to many electrons is obvious. For example for any two 
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Figure 1. Quantum eigentrajectories in the z direction. Inner curves: 
R = 1.4 au (R is the internuclear distance). Outer curves: R = 3.0 au. 
The inner curves show how two electrons with opposite spin states 
correlate and entangle with increasing time and eventually find the 
region of covalent bonding located between the two protons fixed at 

0.7z = ±  au, while the outer curves show that the electrons remain in 
the vicinity of the separated atoms for all times. The eigentrajectories 
are calculated from Equation (5) in the nonrelativistic limit using ei-
genfunctions for the up and down spin states for the 1

gΣ  state of H2.  

 
electrons equations of motion analogous to Equation (2) would be written for the primed-variable electron 
whose interaction with the other electron would now be expressed using the unprimed variable. Notice the pas-  

sage from classical to quantum dynamics of Coulomb’s Law 
( ) ( ) ( )

2 2e e
t n t n t

→
− −r r r s

 for the interaction of  

any two electrons whose trajectories are at ( )tr  and ( )n tr  classically and at r  and ( )n ts  quantum me-
chanically.  

The quantum trajectory is calculated for the unprimed-variable electron as follows. First this electron’s veloc-
ity field ( ), tυ r  is inferred from its current, 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,t c t t t t t tψ χ χ ψ ρ+ + = + = j r r σ r r σ r υ r r ,             (3) 

where ( ) ( ) ( ) ( ) ( ), , , , ,t t t t tρ ψ ψ χ χ+ += +r r r r r  and from which a trajectory, ( )ts , can be calculated from 
the time integration of the velocity field to find a position field,  

( ) ( )
0

, d ,
t

t tn tn= ∫q r υ r ,                              (4) 

and finally by finding the quantum expectation value of the position field,  

( ) ( ) ( ) ( ) ( ) ( ) ( )d , , , , , ,t t t t t t tψ ψ χ χ+ + = + ∫s r r q r r r q r r                  (5) 

and similarly for the primed electron. 
In the nonrelativistic regime of electron velocity the current is evaluated in the nonrelativistic limit using
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Figure 2. Quantum eigentrajectories showing how the two electrons 
of H2 correlate but remain unentangled with increasing time in the 
formation of an antibonding state. Solid: spin-up electron. Dotted: 
spin- up electron. The eigentrajectories are calculated from Equation 
(5) in the nonrelativistic limit using eigenfunctions for two parallel 
spin states of the 3

uΣ  state of H2.                             
 

2 22E V mc mc− + ≅  and ( ),S tψ r  obeys the time-dependent Schroedinger equation, 
( ) ( ) ( )
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smχ  has up (plus sign) or down (minus sign) spin states denoted by 1
2sm = ±  (i.e. α  or β  spin states) re- 

spectively. Written out explicitly in terms of the large component the current given by Eq. (3) becomes 

( ) ( ) ( ) ( )* * * *, i
2 s s s sS S S S S m S m S m S mt

m
ψ ψ ψ ψ ψ χ ψ χ ψ χ ψ χ+ + ≅ − − + × − × 

j r σ σ∇ ∇ ∇ ∇ ,  (7) 

where we have used + =σ σ  and the identity, ( )( ) ( )i⋅ ⋅ = ⋅ + ⋅ ×σ A σ B A B σ A B  
from which the identities useful in evaluating the current can be inferred,  

( ) ( )i⋅ = + ×σ σ σ∇ ∇ ∇                                (8a) 

( ) ( )i⋅ = + ×σ σ σ∇ ∇ ∇ .                           (8b) 

Written out explicitly for up (upper sign) or down (lower sign) spin states  
The current in the nonrelativistic regime is  
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m y x

ψ ψ ψ ψ ψ ψ
 ∂ ∂

= ± ∂ ∂ 



j r r r r r r r∇  (9) 

The first term on the right side of Equation (9), which is independent of spin, is contributed by Schroedinger 
theory, while the second and third terms are contributed uniquely by Dirac theory. Notice that the current and 
therefore a quantum trajectory scale like all of the other Schroedinger contributions, namely as c0 and not as c-2, 
which have been dropped in the Schroedinger limit of Dirac’s equation. It is found in [1] [2] that Pauli’s exclu-
sion principle is satisfied automatically on using the spin-dependent quantum trajectories given by Equation (9) 
to calculate the electron-electron Coulomb potential. Hence one may conclude that electron exchange-correla- 
tion—it was recognized by the authors of early highly accurate variational calculations [7] that exchange is au-
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tomatically satisfied when correlation is calculated exactly—and Pauli-Dirac statistics are relativistic effects 
which persist into the nonrelativistic regime. This is obvious on recognizing that spin is a property of a relativis-
tic electron such that in Schroedinger theory the Pauli principle must be satisfied on an ad hoc basis from phe-
nomenological observation requiring great mathematical labor to simulate the physical link between electron 
spin and electron correlation which is omitted in Schroedinger’s formulation of quantum theory.  

Notice finally that the first-principles understanding of Fermi-Dirac statistics makes available to us a new 
highly practical computational methodology in which one needs an efficient, accurate solver for the 3D time- 
dependent Schroedinger equation and an efficient, accurate, energy-conserving integrator for the quantum tra-
jectories. Configuration interaction (CI) calculations are obviated since the time-dependent solution is a super-
position of ground and excited states. One should not fuss that the electron-electron Coulomb potential has a 
mixed evaluation using an independent position variable for one electron and a dependent position variable for 
the other electron: quantum mechanics allows us latitude to calculate the inverse distance between two point 
particles as long as it is calculated wave mechanically and not deterministically. The mathematical bête noir of 
conventional time-independent many-electron quantum theory is of course the electron-electron Coulomb po-
tential calculated as an inverse distance using independent position vectors for both electrons. Quantum me-
chanics does not require us to seek a single wave function for N electrons instead of N wave functions for N 
electrons, and the former appears to be an accident of the additivity of the Schroedinger Hamiltonian leading to 
a vast literature on independent-electron approximation methods and on scholastic research on density function-
als in which angels are replaced by orbitals. Except for the Bethe-Salpeter equation for two fermions, relativistic 
invariance is satisfied by a one-body Dirac equation in 4-space: three spatial variables and the scaled time ct. 
Hence in Dirac theory it is natural to write N wave functions for N fermions as in Equation (2) instead of one 
wave function for N fermions. As long as the electron-electron potential is written as an exact instantaneous in-
teraction in 3-space and the time, then both electron exchange-correlation and its corollary Fermi-Dirac statistics 
will be dynamically achieved.  

3. Conclusion 
In this paper, I have demonstrated quantum entanglement and disentanglement (Figure 1 and Figure 2 respec-
tively) in time and space, thereby removing the abstract understanding of these phenomena based on nonrelati-
vistic stationary-state quantum mechanics. This is achieved by inference of a dynamical theory of the electron 
correlation from Dirac’s theory for a relativistic electron such that Fermi-Dirac statistics is obeyed on an ab in-
itio basis, thereby elucidating the physical relationship between electron correlation, electron spin, and entangled 
states.  

Acknowledgements 
The author is grateful to T. Scott Carman for supporting this work. He is grateful to Professor John Knoblock of 
the University of Miami for the seminal discussion. This work was performed under the auspices of the Law-
rence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.  

References 
[1] Einstein, A., Podolsky, B. and Rosen, N.  (1935) Can Quantum-Mechanical Description of Physical Reality Be Con- 

sidered Complete? Physical Review, 47, 777. http://dx.doi.org/10.1103/PhysRev.47.777 
[2] Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200. 
[3] Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 

28, 938. http://dx.doi.org/10.1103/PhysRevLett.28.938 
[4] Dirac, P.A.M. (1928) The Quantum Theory of the Electron. Proceedings of the Royal Society (London), A117, 

610-624. http://dx.doi.org/10.1098/rspa.1928.0023 
[5] Ritchie, B. (2011) Quantum molecular dynamics. International Journal of Quantum Chemistry, 111, 1-7.  

http://dx.doi.org/10.1002/qua.22371 
[6] Ritchie, B. and Weatherford, C.A. (2013) Quantum-Dynamical Theory of Electron Exchange Correlation. Advances in 

Physical Chemistry, 2013, Article ID: 497267. http://dx.doi.org/10.1155/2013/497267 
[7] James, H.M. and Coolidge, A.S. (1933) The Ground State of the Hydrogen Molecule. The Journal of Chemical Physics, 

1, 825. http://dx.doi.org/10.1063/1.1749252 

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevLett.28.938
http://dx.doi.org/10.1098/rspa.1928.0023
http://dx.doi.org/10.1002/qua.22371
http://dx.doi.org/10.1155/2013/497267
http://dx.doi.org/10.1063/1.1749252

	Compatibility of Quantum Entanglement with the Special Theory of Relativity
	Abstract
	Keywords
	1. Introduction
	2. Dynamical Theory of Quantum Entanglement 
	3. Conclusion
	Acknowledgements
	References

