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Abstract 
Due to their advantageous of high stiffness, high speed, large load carrying capacity and compli-
cated surface processing ability, PKMs (Parallel Kinematic Manipulators) have been applied to 
machine tools. This paper mainly addresses the issue of stiffness formulation of a three-prismatic- 
revolute-spherical PKM (3-PRS PKM). The manipulators consist of three kinematic limbs of iden-
tical topology structure, and each limb is composed of an actuated prismatic-revolute-spherical. In 
order to build up the stiffness model, kinematics, Jacobian and finite element analysis are also 
performed as the basis. Main works in this paper can be outlined as follows. By use of approaches 
of vector, inverse position analysis of 3-PRS PKM is conducted. When the independent position 
and orientation parameters of the end-effectors are provided, the translational distances of active 
prismatic joints can be determined. Then with the aid of the wrench and reciprocal screw theory, 
the overall Jacobian of this manipulator is formulated quickly, and which is a six by six dimen-
sional matrix and can reflect all information about actuation and constraint singularity. After for- 
mulating the position analysis and Jacobian matrix, the next step is stiffness analysis. Analytical 
stiffness model, a function of Jacobian matrix and components stiffness matrix, is obtained first 
using the principle of virtual work. Stiffness model is also a six by six dimensional matrix and can 
provide the information of actuation and constraint stiffness simultaneously. For the complex 
geometry shape of some components, it is impossible to know their stiffness distributions with the 
varying configuration. Therefore, ANSYS technology has to be applied to compute the stiffness 
coefficients of these components at different configurations. Then, the computed data are used to 
obtain the stiffness distribution by use of the numerical fitting method. Up to now, the semi-ana- 
lytical stiffness model of the manipulator is completely formulated and can be applied to estimate 
the system stiffness of 3-PRS PKM. The model enables the stiffness of a 3-PRS PKM to be quickly 
estimated. Provided with the geometry parameters and load situation on tool tip, the stiffness of 
3-PRS PKM system is estimated based on the stiffness matrix about tool tip which is obtained by 
transforming the point from the center of circle composed of three S joints to the tool tip. Then, the 
stiffness of system along x, y and z directions can be solved. In order to testify the correctness, the 
corresponding stiffness is also obtained by use of FEA software. The stress distribution and fre- 
quency of system are also gained by solving the FEA model. 
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1. Introduction 
Stiffness is one of the most important performance indices of the PKMs, particularly for the use of high speed 
machining or heavy load assembling where high rigidity and dynamics are required. However, the complex 
geometry together with the changing rigidity of moving components throughout the whole workspace implies 
that to achieve a lightweight yet stiff design of PKMs is by no means an easy task. In the previous work dealing 
with stiffness analysis of PKMs, a great deal has been focused upon the formulation of the stiffness maps in the 
entire workspace by taking into account the limb rigidity [1]-[5]. By modeling a beam-like frame using FEA, a 
substructure-based modeling technique was proposed [6] [7] for quick stiffness estimation of a tripod PKM mil-
ling machine considering the rigidity of the machine frame. 

The kinematic and static performances of the Tricept robot have been intensively investigated by Joshi and 
Tsai [8] by merely considering limb rigidity, in order to compare them with those of the 3-UPU parallel robot. 
Then a kinetostatic model for the Tricept is established by Zhang [9] based on lumped flexibilities theory, in or-
der to account for joint and limb compliances.  

2. Position Analysis 
The schematic diagram of 3-PRS PKMs is showing in the Figure 1 below which is composed of moving plat-
form, a fixed base and the three supporting limbs with identical configuration. Each limb connects the fixed base 
to the moving platform by prismatic, revolute and spherical joints in sequence and the prismatic joints are ac-
tuated by the linear actuator. The considered machine is a 3-DOF PKM a reference frame R is attached to the 
base and a body fixed frame R0 to the plate form with O and Oo located at the center of the equilateral triangle 

1 2 3A A A∆  and 1 2 3B B B∆  as shown. 
The Z and Z0 axes are normal to the planes of those triangles. The x axis is parallel to 1 2A A  and the ox  axis 

is parallel to 1 2B B . Also an instantaneous reference frame Ro is set which its origin at point Oo and its three or-
thogonal axes remaining always parallel to those of R. Consequently the orientation matrix of R0 with respect to 
R can be obtained using three Euler angles , ,ψ θ φ  in terms of precession nutation and body rotation according 
to the Z-X-Z convention. 

 

 
Figure 1. Schematic diagram of 3-PRS PKM.   
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( ) ( ) ( ), , ,R Rot z Rot x Rot zψ θ φ′ ′= , 
c c s c s c s s s c s s

R s c c c s s s c c c c s
s s s c c

ψ φ ψ θ φ ψ φ ψ θ φ ψ θ
ψ φ ψ θ ψ ψ φ ψ θ φ ψ θ

θ φ θ φ θ

− − − 
 = + − + − 
  

 

where s ans c represents “sin” and “cos” respectively. The position vector ( )Tp xyz= , of p can be expressed as 

1 3i i i ia d s l s p+ + =                                       (1) 

[ ]T1 000s = , ( ) ( )T Tcos sini ix iy iz i ia a a a a oβ β= =  

( ) ( )T T
0 0 cos sini i ix iy iz i i ib Rb b b b b b oβ β= = = =  

( )11π 2π1 , 1,2,3
6 3i i iβ = − − =  

The constraint imposed by the revolute joint restricts the translational motion of revolute joint in the limb 

φ ψ= − , ( )1 cos sin 2
2
bx θ ψ= − − , ( )1 cos cos 2

2
by θ ψ= − − , 

( )2 2T 2 T
1, 1,i i i i i i id p s l p s p b= ± + − −                              (2) 

3. Jacobian Analysis 
The theory of reciprocal screw in an effective way to drive the Jacobian matrix of parallel manipulator; with ν  
and ω  respectively denoting the vectors for the linear and angular velocities, the twist of the Mobil plat form 
can be defined as, T T,ps ν ω =/   . 

A linear actuator drives each of prismatic joint. The connectivity of each limb is equals to five. Therefore the 
instantaneous twist ( )ps/  of the moving platform can be expressed as a linear combination of five instantane-
ous twist as follows. 

1, 1, 2, 2, 3, 3, 4, 4, 5, 5,ˆ ˆ ˆ ˆ ˆp i i i i i i i i i is d s s s s sθ θ θ θ= + + + +/ / / / / /                                (3) 

1
1,ˆ

0i

s
s  

=/  
 

, 
( ) 2

2,
2

ˆ i i
i

b l s
s

s
 − ×

=/  
 

, 3
3,

3

ˆ i
i

b s
s

s
× 

=/  
 

, 4
4,

4

ˆ i
i

b s
s

s
× 

=/  
 

, 5
5,

5

ˆ i
i

b s
s

s
× 

=/  
 

 

where ,ˆ j is/  
a unit vector along the jth joint axes of the ith limb. Those screw that are reciprocal to all the joint 

screws of the ith limb of the 3-PRS parallel kinematic manipulator form a 1-system. Hence one screw is reci-
procal to all the joint screw of the limb can be identified. This reciprocal screw denoted as 1,ˆr is/  is zero pitch 
screw passing through the center of spherical joint and parallel to 2,is . 

( )2,
1,

2,

ˆ i i
r i

i

b s
s

s

 ×
=  /
  

                                       (4) 

By taking the inner product (orthogonal product) of both sides of the instantaneous twist Equation (3). 

1,ˆ 0p r is s⊗ =/ /  

Writing the equation once for each limb produce 3 equations which can be written in matrix form.  

0c pJ s =/  

Since this constraint wrench is reciprocal to all screw the right side equation of twist screw will be zero. 
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( )
( )
( )

TT
2,1 1 2,1

TT
2,2 2 2,2

TT
2,3 3 2,3

c

s b s

J s b s

s b s

 ×
 
 = × 
 

×  

                                  (5) 

Next we look the prismatic joint in each limb with actuator locked, the reciprocal screw for each limb form a 
two system. An additional basis screw which is reciprocal to the passive joints of the ith limb can be identified as 
zero pitch screw passing through the center of spherical joint. This reciprocal screw represent wrench of actua-
tion and it’s normal to the pervious one system. That is 

3,
2,

3,

ˆ i i
r i

i

b s
s

s
× 

=/  
 

 

Take the orthogonal product of this reciprocal wrench for both side of the twist screw ( )2, 1, 2,ˆ ˆ ˆp r i i i r is s d s s⊗ = ⊗/ / / /  
this can be re write again 

( )T
2, 1, 2,ˆ ˆ ˆr i p i i r is s d s s= ⊗/ / / /  

x p i qJ s d J=/   

( )
( )
( )

TT
3,1 1 3,1

TT
3,2 2 3,2

TT
3,3 3 3,3

x

s b s

J s b s

s b s

 ×
 
 = × 
 

×  

                                    (6) 

And we can find qJ  by orthogonal product of the right side of the above equation 

31

30
ib ss
s
×  

⊗   
     
T
3,1 1,1

T
3,2 1,2

T
3,3 1,3

0 0
0 0
0 0

q

s s
J s s

s s

 
 

=  
 
 

 

Since this machine is not outer driving manipulator qJ  will not be identity matrix. Then to fond the actua-
tion Jacobian 

a x qJ J J =                                           (7) 

     

( )
( )
( )

TT T T
3,1 3,1 1,1 1 3,1 3,1 1,1

TT T T
3,1 1,2 3,2 1,2 2 3,2 3,2 1,2

TT T T
3,3 1,3 3,3 1,3 3 3,3 3,3 1,3

a

s s s b s s s

J s s s s b s s s

s s s s b s s s

 ×
 
 = ×
 
 ×
 

 

To find the overall Jacobian matrix by composing the actuation matrix in and constrained matrix on a

c

J
J

J
 

=  
 

 

  

( )
( )
( )

( )
( )
( )

TT T T
3,1 3,1 1,1 1 3,1 3,1 1,1

TT T T
3,1 1,2 3,2 1,1 2 3,2 3,2 1,2

TT T T
3,3 1,3 3,3 1,3 3 3,3 3,3 1,3

TT
2,1 1 2,1

TT
2,2 2 2,2

TT
2,3 3 2,3

s s s b s s s

s s s s b s s s

s s s s b s s s
J

s b s

s b s

s b s

 ×
 
 ×
 
 ×
 =
 ×
 
 ×
 
 × 
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4. Stiffness Modeling 
4.1. Stiffness Equations 
Under the assumption that the platform and the machine frame are rigid, when the platform is subjected to the  
external wrench T T,F Mτ  =    on the reference point p, where F  and M  are the external force and torque  

applied to the platform, the deformation of the limbs will causes the platform to experience a twist T T,x r α ∆ = ∆ ∆   
in terms of the translational and rotational deformations along/about the axes of frame. 

Then, applying the virtual work principle to the platform gives 
T Tx fτ ρ∆ = ∆                                          (8) 

where ρ∆  and f  represents the set of deflections and reaction force magnitude 
J xρ∆ = ∆  

This equation T Tx fτ ρ∆ = ∆  can be re write T T 0x fτ ρ∆ − ∆ =  Substitute ρ∆  from the above equation  

( )T T 0Jf xτ − ∆ =  

T T 0Jfτ − =  

Taking the transpose yields:  
TJ fτ =  

where T T,a cf f f =    is the internal wrench vector of limbs, where af  and cf  are the generalized force of 

the PRS limbs and the PR limb related to the twist T T, ,a cρ ρ ρ ∆ = ∆ ∆   af  is a force which is parallel to the  

screw axis while the cf  is parallel to the revolute axis. 
Therefore the virtual work principle can be written  

T T T T T T
a a c cX f r F f fτ ρ α ρ ρ∆ = ∆ ⇔ ∆ + ∆ = ∆ + ∆  

[ ]
[ ]

T
1 2 3

T
1 1 3

, , ,

, ,

ai a a a

a

f f f f

q q qρ

=

∆ = ∆ ∆ ∆
 

[ ]
[ ]

T
1 2 3

T
1 2 3

, , ,

, ,

ci c c c

c

f f f f

c c cρ

=

∆ = ∆ ∆ ∆
                                     (9) 

a a af k ρ= ∆ , c c cf k ρ= ∆  and acf k ρ= ∆  

where 
0

0
a

ac
c

k
k

k
 

=  
 

. 

Here ak  and ck  are known as the component stiffness matrix of actuation and constraints
 
respectively the 

formulation of their element 
T, ack x k J k Jτ = ∆ =                                  (10) 

And the compliance model can be evaluated as 1c k −= . 

4.2. Formulation of ack  
As shown in the Figure 2 above the limb model has to formulate ack . I group all the parts of a PRS limp in to 
four components: 1) the spherical joint; 2) the limp body which is the fixed lengths link; 3) R joint assembly; 4) 
the lead screw assembly. As well as analytically convenient, they are sub systems that must realistically be sub-
jected independently to design improvements.  

ak  is given in a diagonal matrix i.e. [ ]diaga aik k=  where ( )1,2,3i =  with aik  being the axial stiffness  
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Figure 2. A limb model for stiffness evaluation.                          

 
coefficient at iB  along the 1is  axis of the ith limb referring to the Figure 3. aik  can be modeled by four se-
rially connected springs each representing the stiffness of one of the four components such  

1 1 1 1 1

ai lsa l s rk k k k k
= + + +                                 (11) 

where lsak , lk , sk  and rk  are the axial stiff nesses coefficients of the lead screw assembly, the fixed length 
limb, S joint and R joint assembly respectively. 

Note that lk , and rk  are constant and can be evaluated using finite element analysis. (FEA) by the ANSYS 
workbench which is very convenient to analysis a solid model like PKM. 

The sk  varies with the configuration and should be evaluated as in the local frame since the spherical actua-
tion is parallel to w, the coefficient stuffiness is calculated as follows  

1 2 3

1 1 1 1

s w w wk k k k
= + +                                    (12) 

The values of Equation (12) can be substituted from Table 1 below. 
lsak  is the lead screw assembly the combination of serially connected springs such as 

1 1 1 1

lsa ls n sbk k k k
= + +                                      (13) 

where lsk , nk  and sbk  are the stiffness coefficients of lead screw nut and support bearings respectively. lsk  
is the lead screw which is the linear function of the limb length and can be defined as 

( )1 2

1 2

i i
ls

i i

AE L L
k

L L
+

=                                      (14) 

where AE  stands for cross sectional area of the lead screw and Yang’s modular respectively 1iL  and 2iL  are 
the distance b/n the nut and the supporting bearing located at both ends. 

To find the constrained coefficient of stiffness matrix we can find as the same fashion of finding the actuation 
coefficient matrix. Similarly  

[ ]diagc cik k=  ( )1,2,3i =  

where cik  is the bending stiffness coefficient at the platform along the 2is  axis of the thi  limb. Then cik  can 
be evaluated by taking reciprocal sum of the bending stiffness coefficient of the fixed length limb, S joint and R 
joint assembly respectively.  

1 1 1 1

ci cl cs crk k k k
= + +                                     (15) 

Again the csk  can be evaluated by the configuration and should be evaluated as in the local frame since the 
spherical parallel to the constraint is to u the coefficient stuffiness is calculated as follows  



H. Nigus 
 

 
114 

Table 1. The stiffness coefficient of the S joint.                                       

1uk  1vk  1wk  2uk  2vk  2wk  3uk  3vk  3wk  

31.4 33.3 436 4000 1810 2174 2119 270 588 

 

 
Figure 3. Deformation with 1 KN force imposed at the spindle along y-axis.                            

 

1 2 3

1 1 1 1

cs u u uk k k k
= + +                                      (16) 

The value of the stiffness will be substitute from Table 1 and easy to compute the value of csk . The clk  and 
clk  can be computed easy by FEA. Using the software ANSYS workbench by applying a 1 KN force on the 

spherical joint which is parallel to the 2is . 

4.3. Formulation of Overall Stiffness Matrix on Tool Tip 
Formulation of overall stiffness matrix applied on the center of end-effectors is calculated on Equation (15) 
which is 

T, ack x k J k Jτ = ∆ =  

To find the overall coefficient of stuffiness matrix on tool tip it needs to transform the Equation (10) in to tool 
tip by the transformation matrix  

[ ]3 1

3 3 30
i

C
x

E C s x
T

E
 

=  
 

                                    (17) 

If let τ  be imposed at the tool tip C  and x∆  be the corresponding small deflection twist the overall 
stiffness matrix about point C  can easily be developed by replacing J  in Equation (10) with CJT  that is  

T T
C CK T J kJT′ =  
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where C  is the distance from p to C , [ ]1is  denotes the screw matrix of 1is , and 3E  denotes a unit matrix 
of order 3. 

1c K −′ ′=  
x c τ′ ′ ′∆ =  

where 
T

x y z
C

MF F F
r

τ
 

′ =  
 

. 

( )T
C wx u v wr α′∆ = ∆ ∆ ∆ ∆  

Cr  is the maximum radius of the cutting tool specified by the spindle head. 
1C K −′ ′=  

11 12 13 16

22 23 26

33 36

66

c

C

C

C

k k k k r
k k k r

K
k k r

sym k r

 
 
 ′ =
 
 
 

                               (18) 

In order to evaluate the rigidity of a system we define the rigidity along/about three orthogonal axis of the 
frame C uvw−  by the diagonal corresponding element of C. 

( )1 1,1xK C′= , ( )1 2,2yK C′= , ( )1 3,3zK C′= , ( )2 6,6rw CK r C′= , 

1 / (1,1)xK C′= , 1 / (2, 2)yK C′= , 1 / (3,3)zK C′= , 2 / (6,6)rw CK r C′= . 

5. Stiffness Analysis  
The stiffness of the 3-PRS PKM is evaluated in the decomposing the machine in to limbs and apply a force on 
the spherical joint to find the actuated and constraint coefficient of stuffiness. With the aid of finite element 
analysis and numerical evaluated both actuated and constraint stiffness of the limb assembly is evaluated. The 
overall stiffness of the manipulator on the center of the plate form will be calculated as in Equation (10) indi-
cated. Since in real sense the force/moment is applied on the too tip of the machine, it needs transform the stiff-
ness matrix gained in Equation (10) to the tool tip by the transform matrix Equation (16) it gives a stiffness 
coefficient matrix on tool tip as shown in the Equation (18). Then diagonal values in the stiffness matrix indi-
cates the overall stiffness of the machine when force applied along x, y and z which explain in detail. In order to 
evaluate the rigidity of a system we define the rigidity along/about three orthogonal axis of the frame C uvw−  
by the diagonal corresponding element of C. 

( )1 1,1xK C′= , ( )1 2,2yK C′= , ( )1 3,3zK C′= , ( )2 6,6rw CK r C′= . 

Comparison with FEA Results 
According to the above analysis, the detailed design was carried out and the stiffness of the virtual prototype 
was evaluated by ANSYS at four typical positions as shown from Figures 3-6 with 1 KN force is applied at the 
tool tip along x, y and z and moment about z axis respectively. I can get the deformation easily from the FEA  

and the stiffness can get by 1000
x∆

. It can been seen from Table 2 that the estimated results of the mathematical  

models developed have a good match with those obtained by the FEA in terms of magnitude and distribution as 
well. 

The estimated linear stiffness along three orthogonal axis and the torsion stiffness about the w-axis of the 
C uvw−  frame, it can be seen that the stiffness distribution are tri-symmetrical in nature and the xK  and yK  
are similar in magnitude. 

6. Conclusions 
The modeling methodology for the semi-analytical stiffness estimation of a 3-PRS parallel kinematic manipulator  
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Table 2. Results obtained by the semi-analytical method and by FEA.        

 ( )N mxK µ  ( )N myK µ  ( )N mzK µ  ( )610 Nm radrwK ×  

Analytic 25.4 25.4 447.2 5.3 

FEA 25.87 25.87 437.7 5.4 

 

 
Figure 4. Deformation with 1 KN force imposed at the spindle along x-axis.                      

 

 
Figure 5. Deformation with 1 KN force imposed at the spindle along z-axis.                      
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Figure 6. Deformation with 1 KN force imposed at the spindle moment about z.                         

 
has been systematically investigated by considering rigidity of the machine frame. The conclusions are drawn as 
follows: 

1) The 6 × 6 Jacobian matrix consists of two sub matrices: one associated with the constraints imposed by the 
joints and the other associated with the actuation effects. 

2) The stiffness model of machine as a whole can be generated mathematical model formulated in the con-
ceptual design. 

3) By the use of FEA with the tool of ANSYS work bench, I analyzed the machine stiffness and compared the 
FEA result with the semi-analytical analysis and the estimated stiffness results have a good match with those 
obtained by the FEA, thereby supporting the validity of this approach. 
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