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Abstract

In the present study, a hybrid finite element method is applied to investigate the dynamic beha-
vior of a spherical shell partially filled with fluid and subjected to external supersonic airflow. The
structural formulation is a combination of linear spherical shell theory and the classic finite ele-
ment method. In this hybrid method, the nodal displacements are derived from exact solution of
spherical shell theory rather than approximated by polynomial functions. Therefore, the number
of elements is a function of the complexity of the structure and it is not necessary to take a large
number of elements to get rapid convergence. Linearized first-order potential (piston) theory with
the curvature correction term is coupled with the structural model to account for aerodynamic
loading. It is assumed that the fluid is incompressible and has no free surface effect. Fluid is con-
sidered as a velocity potential at each node of the shell element where its motion is expressed in
terms of nodal elastic displacements at the fluid-structure interface. Numerical simulation is done
and vibration frequencies are obtained. The results are validated using numerical and theoretical
data available in literature. The investigation is carried out for spherical shells with different
boundary conditions, geometries, filling ratios, flow parameters, and radius to thickness ratios.
Results show that the spherical shell loses its stability through coupled-mode flutter. This pro-
posed hybrid finite element method can be used efficiently for analyzing the flutter of spherical
shells employed in aerospace structures at less computational cost than other commercial FEM
software.
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1. Introduction

Shells of revolution, particularly spherical shells are one of the primary structural elements in high speed aircraft.
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Their applications include the propellant tank or gas-deployed skirt of spacecraft. Due to the aerodynamic shape
combined with thin wall thicknesses, spherical shells are more disposed to dynamic instability or flutter induced
by high Mach number gas flow. It is therefore important to understand the effect of different flow parameters
and loadings on their aeroelastic response.

Aeroelastic analysis of shells and plates has been studied by numerous researchers experimentally and analyt-
ically [1]. Dowell gives an exhaustive study of the aeroelasticity of shells and plates in his book [2]. After in-
troducing the application of piston theory in the aeroelastic modeling presented by Ashley and Zatarian [3], a
number of interesting experimental and theoretical studies were carried out to investigate supersonic flutter of
cylindrical shells. In general, all of this research was concerned with the development of an analytical relation to
describe the effect of shell and flow parameters on the critical flutter dynamic pressure. Aeroelastic models in
combination with linear or nonlinear piston theory were coupled to the theory of shells to account for fluid-
structure interaction. The resulting governing equations were treated numerically using the Galerkin method. A
comprehensive experimental test was done by Fung and Olson [4]. They studied the effects of shell boundary
conditions and initial stress state due to internal pressure and axial load. It was observed that pressurized cylin-
drical shell fluttered at a lower level of freestream static pressure than predicted by theory [5]. Later, Evensen
and Olson [6] [7] presented a nonlinear analysis to take account of this observed effect. Dowell [8] also analyzed
the behavior of a cylindrical shell in supersonic flow for different flow and shell parameters. A complete de-
scription of panel flutter modeling is given in his book [2]. A study by Carter and Strearman [9] showed that
agreement between the theory and experiments reported in the literature exists in cases that involve a small
amount of static preload acting on the shell. Amabili and Pellicano [10] included geometric nonlinearities in
their study of supersonic flutter of a circular cylindrical shell. By selecting expansion modes to discretize the
aeroelastic equations, they were able to facilitate their solution, and therefore succeeded in capturing the nonli-
near behavior of the shell correctly.

There are also some researchers who focused their efforts on the numerical study of this problem. The equa-
tions of virtual displacements were solved using the finite elements method. Aeroelastic governing equations
were formulated by applying classical shell theory coupled with the piston theory for evaluation of aerodynamic
forces. For example, Bismarck-Nasr [11] developed a FEM applied to supersonic flutter of circular shell sub-
jected to internal pressure and axial loading. Ganapathi et al. [12] modeled an orthotropic and laminated aniso-
tropic cylindrical shell in supersonic flow using FEM and analyzed the effect of different shell geometries on the
flutter boundaries.

Aeroelasticity of conical shells has also been investigated by few researchers. The leading work in this field
was conducted by Shulman [13]. Ueda et al. [14] investigated theoretically and experimentally the supersonic
flutter of a conical shell. Dixon and Hudson [15] studied the flutter and vibration of an orthotropic conical shell
theoretically. Miserentino and Dixon [16] investigated experimentally the vibration and flutter of a pressurized
truncated conical shell. Bismarck-Nasr and Costa-Savio [18] studied the supersonic flutter of conical shells us-
ing finite element method. Sunder et al. [18] successfully applied the finite element analysis to calculate the
flutter of a laminated conical shell. In another study they found the optimum cone angle in aeroelastic flutter
[19]. Mason and Blotter [20] used a finite element technique to find the flutter boundary for a conical shell (a
typical rocket nozzle element) subjected to an internal supersonic gas flow. Pidaparti and Yang Henry [21]
completed a theoretical study to predict the onset of flutter instability for composites conical shells.

An analytical approach to the supersonic flutter of spherical shell becomes very complicated if one wishes to
include different parameters. Therefore, the efficiency of numerical methods such as the finite element method
(FEM) is an advantage for cases involving changes to all factors affecting flutter boundaries. The aim of the
present study is to develop a hybrid finite element method in order to predict the aeroelastic behavior of isotrop-
ic spherical shells with different parameters as boundary conditions, geometries, flow parameters, filling ratios
and radius to thickness ratios. The finite element is a spherical frustum instead of the usual rectangular shell
element. Linear thin shell theory is coupled with linear piston theory. In the case of a fluid filled shell the effect
of dynamic pressure acting on the wall is modeled based on a velocity potential formulation and Bernoulli’s eg-
uation. It is assumed that the fluid is incompressible and has no free surface effect. The linear mass, damping
and stiffness matrices are obtained. The aeroelastic equation of motion is reduced to a standard eigenvalue
problem. The flutter boundary is found by analyzing the real and imaginary parts of the eigenvalues as frees-

tream pressure is varied.
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2. Formulation
2.1. Structural Modeling

2.1.1. Equilibrium Equations

In this study the structure is modeled using hybrid finite element method which is a combination of spherical
shell theory and classical finite element method. In this hybrid finite element method, the displacement functions
are found from exact solution of spherical shell theory rather than approximated by polynomial functions as
done in classical finite element method. In the spherical coordinate system (R, 8, ¢) shown in Figure 1, five out
of the six equations of equilibrium derived in reference [22] for spherical shells are written as follows:

ON 1 ON
4 $0
—_—t— +(N,—N,|cotgp+Q, =0
o¢ sing 06 (Ng =N, Jeotg+Q,
oN
¢6+_La'\'—9+2N¢5cot¢+Q€:0
o¢p sing 06
Q, 1 &,
—4+———2+Q,cotg—(N,+N,)=0 1
o¢ sing 00 Q cotg—(N, +N, ) M)
oM oM
- 2 +(M,-M,)cots—RQ, =0
o¢p sing 060
oM
w, 1 8M9+2M¢0cot¢—RQ0:0
o¢ sing 06

where N,, N,, N, are membrane stress resultants; M,, My, My, the bending stress resultants and Qg, Q, the
shear forces (Figure 2). The sixth equation, which is an identity equation for spherical shells, is not presented
here.

2.1.2. Constitutive Relations
Strains and displacements in axial, U, radial, W , and circumferential, U, directions are related as follows:

X, A‘/

Figure 1. Geometry of the spherical shell.
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Figure 2. Stress resultants and stress couple.
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Displacements U , W and V in the global Cartesian coordinate system are related to displacements U¢i,
W, And U, indicated in Figure 3 by:

u sing, —cosg 0| [Uy
Wi=|cosg sing OfW, (3)
\Y 0 0 1]|U,

The stress vector {o} is expressed as a function of strain {¢} by:

(o} =[P](e} @

where [P] is the elasticity matrix for an anisotropic shell given by:
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Figure 3. Spheical frustum element.
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Upon substitution of Equations (2), (4) and (5) into Equation (1), a system of equilibrium equations can
beobtained as a function of displacements:

L(U,.W.U,,Py) =0
L, (U,W.U,,P)=0 (6)
LS(U¢,W,U6,|31])=O

These three linear partial differential operators L, L, and L, are given in Appendix A, and Pij are ele-
ments of the elasticity matrix, which for an isotropic thin shell with thickness h is given by:

D vD 0 0 0 0
vD D 0 0 0 0
0 0 (1_;)[) 0 0 0
Pl= 7
Pl=| 5 o 0 K vK 0 Q)
0 0 0 vK K 0
0 0 0 0 0 (1_;)K
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is the membrane stiffnessand K = _E is the bending stiffness.

Eh
1-v? 12(1—1/2)

2.1.3. Kinematic Relations
The element is a circumferential spherical frustum shown in Figure 3. It has two nodal circles with four degrees
of freedom; axial, radial, circumferential and rotation at each node. This element type makes it possible to use
thin shell equations easily to find the exact solution of displacement functions rather than an approximation with
polynomial functions as done in classical finite element method.

For motions associated with the circumferential wave number n, we may write:

where D=

U,(4.0)] [cosng 0 0 fu,(4) U, (¢)
W(g60)r=| 0 cosnd 0 |iw,(¢)=[T]3w,(¢) (8)

U, (¢.0) 0 0 sinnd ||u, (¢) Ugn ()

The transversal displacement W, (¢) can be expressed as [22]:
3
%0&=§Wﬁ ©)
where

w' = AP, (cosg)+ BQ, (cosg) (10)

and where P} (cosg) Q. (cos¢) are the associated Legendre functions of the first and second kinds respec-

tively of order n and degree 4 .
The expression of the axial displacement u,(¢) is:
S, _dw' n?

Uy (#) =2 B —

2574 2sing

(4) 11

where the coefficient E; is given by:
_A+k(1+v)=(1-v)

' (k) (4 14y -

The auxiliary function v is given by the expression:
'/’(¢): AR’ (COS¢)+ B,Q/ (COS¢) (13)

Finally the circumferential displacement u,,(¢) can be expressed as:

Uy, (4) = —niﬁ E W, +gi—g (14)
The degree g is obtained from the expression
1V 1
u=(5ea) -3 (15)
where 1 is one the roots of the cubic equation:
22 -hA*+hA-h =0 (16)
and where
h =4
h, =4+(1+k)(1-v*) (17)

hy =2(1+k)(1-v*)
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2
with k=127
h

The above equation has three roots with one real root and two others complex conjugates.

- n n-1 n n-1 - n n-1 n n-1
The Legendre functions P, , P, ,QH1 and Qﬂ1 are real functions whereas P, , P, ,Q#i and Qyi
(i = 2, 3) are complex functions. So we can put:

P? =Re(P )+ilm(P])
(

H

P, =Re(P) )-ilm(P] )
Q). =Re(Q;, )+iim(Qy,)
Q;3 = Re(Q/rlz )_I |m(Q22 ) (18)
P =Re(P)+ilm(P?)
Pt =Re(Pyt)-ilm(P)?)
Q)" =Re(Q};")+im(Q}?)
Q)" =Re(Ry*)-iIm(Q;})
Setting
(n-s-D)(n+ 1) =
(n—p, ~1)(n+1,) =, +ic, (19)
(n—p; —1)(n+ p) =c, —ic,
E =¢
E, =e, i€, (20)
E, =e, +ie;

Substituting Equations (18), (19) and (20) in Equations (9), (11) and (14) we have:
Uy (#) = (—nel cotgP, +elc,lP”‘1)Al
+| —ne, cotgRe(P}. ) —ney cotg Im( P )+ (e,c, +e,c, )Re(P1 ) +(esc, —e,¢;) Im(Pﬂ”z’l)J(Az +A)

+| ne cot¢Re nezcotqﬁlm(P:z)—(escz—ezcg)Re(R?2’1)+(e2c2+e3c3)lm(P#”2’1)}i(A2—A3)

25|n¢ i|A4+( ne, cot ¢Q’ +&,c,QL )

-
[

+[ —ne, cot pRe(Q ) ne, cot g Im(Qf, ) +(e,C, +es¢; ) Re(Q )+ (e, —e,C5) Im(QZz‘l)](B2 +B,)
[ne

+| ne; cot pRe(Qp, ) —ne, cot g Im(Qp, ) - (esc, —e,¢5 )Re(Q)* ) +(e,¢, +e,cy) Im(sz‘l)}i(B2 ~B,)
23|n¢ }
W, (4)=PiA+Re(P (A +A)
+Im(P )i(A, —A)+Q; B, (21)

+Re(Qy, )(B, +B,)+Im(Q}, )i(B, - B,)
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Uy (4)=—ne, M—Al—{n _—Re<p"2)+ne3$|m(Pﬂ”z)}(Az+A3)

sing *sing
o " 1
+_n33mRe(Pﬂz)_nez wlm( H ):| (Az AB)
B n n-1 1
+__?cot¢P 2(” 2)(n+1)R }A“ ne,Q,, sm¢B1

__ne LRe(Qﬂz)Jrne3 snigzﬁlm(Q"z )}(BZ+BS)
+ ne3_LRe(QM) ne

Zsing
sing |m(Qﬂz)}i(Bz_Bs)

+ ——cot¢Ql (n 2)(n+1)Ql‘1}

2sing

In deriving the above relation we used the recursive relations:
n

=
ag ~ MeotRL(n—p =) () R

n

“=—ncotgQ, +(n—-x —1)(n+yi)Q;i’l

(22)

Using matrix formulation, the displacement functions can be expressed as follows:
U¢ (¢’ 9) u¢n (¢)
W (g.0) =[T]yw. (¢)  =[T][RKC} (23)
U, (¢.0) Ugy (4)

The vector {C} is given by the expression:

(C'={A A+A i(A-A) A B B,+B, i(B,-B) B 24)

The elements of matrix [R] are given in Appendix B.

In the finite element method, the vector C is eliminated in favor of displacements at elements nodes. At each
finite element node, the three displacements (axial, transversal and circumferential) and the rotation are applied.
The displacement of node i are defined by the vector:

i i d n i i '
{§I} = {uqﬁn Wn [ dv; J u&n} (25)

The finite element shown in Figure 3 with two nodal lines (i and j) and eight degrees of freedom will have the
following nodal displacement vector:

S i i de i i j j de j j T_
{51_}:{% W, [d¢j Upy Ujy W, (d¢j u;n} =[A]{C} (26)

with

n

d¢

=(- nCO'[¢P:1+Can 1)A1+|: ncotgRe (P, )+c, Re(Prt)-c, Im(P;‘l)](AZ+A3)

[ ncot¢|m +c3 Re(P“)+cZIm(P”‘1)} (A - A3)+(—nCOt¢Q21+ClQ;1_l)Bl @7
+[ ncot g Re( f +¢, Re(Q)")-¢, Im(Qy, )}( B, +B,)

[ ncotgIm(Qy, )+c;Re(Qy*)+c, Im(Q), )}l(B2 B,)

+

+
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The terms of matrix, obtained from the values of matrix [R]

pre-multiplying Equation (26) by [A]_l one obtains the matrix of the constant C; as a function of the degree of
freedom:
e
{Cy=[A] 1{5} (28)
i

Finally, one substitutes the vector {C} into Equation (26) and obtains the displacement functions as fol-
lows:

EV(EHZ SUC ORI @)

The strain vector {&} can be determined from the displacement functions U,.U,,W and the deformation
—displacement equation (2) as:

o B [ Moo i)-off)
where matrix [Q] is given in Appendix C.

2.1.4. Mass and Stiffness Matrices
This relation can be used to find the stress vector, Equation (4), in terms of the nodal degrees of freedom vector:

S,
()=l | @
j
Based on the finite element formulation, the local stiffness and mass matrices are:
T
[k].,. = J[B] [P][B]dA
’ , (32)
[m],, = Ph[[[N] [N]dA
A

where p is the density and h is the thickness of shell.
The surface element of the shell wall is dA=R*singdgd@ (Figure 2). After integrating over @, the pre-
ceding equations become

[k, =[A"] { Rz?[Q]T[P][Q]SiWMJ[Al]
=[A*] [e][A7]
[m],.. ph A‘ [nsz R] R]sun¢d¢J[A-]

S

@ (33)
~on[w T[] A]
In the global system, the element stiffness and mass matrices are
kK]=[Le] [A] [6][At][LG
[K]=[te] [A*] [6][A™][Le] (34)

[m]=ph[LG]"[A*] [s][A*][LG]
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where
[sing -cosg 0 O O 0 0 0]
cosg sing 0 0 O 0 00
0 0 10 O 0 00
0 0 01 O 0 00
[LG]= . (35)
0 0 0 0 sing;, —cosg; 0 O
0 0 0 0 cosg; sing; 0 O
0 0 00 O 0 10
0 0 00 O 0 0 1]

From these equations, one can assemble the mass and stiffness matrices for each element to obtain the mass
and stiffness matrices for the whole shell: [M] and [K]. Each elementary matrix is 8 x 8, therefore the final

dimensions of [M] and [K] will be 4*(N + 1) where N is the number of elements of the shell.

2.2. Aerodynamic Modeling

Piston theory, introduced by Ashley and Zartarian [3], is a powerful tool for aeroelasticity modeling. In this
study the fluid-structure effect due to external pressure loading can be taken into account using linearized first-
order potential theory. This pressure is expressed as:

_ yP.M? | oW +|v|2—2 1 0w w
12 2 _a11 A 12
(Mz_l) Rog M 1U_ ot 2Rm(M2_l)

(36)

where P,,U_, M and y are the freestream static pressure, freestream velocity, Mach number and adiabatic
exponent of air respectively. If the Mach number is sufficiently high (M > 2) , and curvature term,

W/ZRrn (M 2 —1)”2 is neglected, the result is the so-called piston theory:
b yp MW 10w 1)
R o a, ot
where a_ isthe free stream speed of sound.
Finally, the aerodynamic pressure in terms of radial displacement is written:

2 3 2_p . 1dw,
pa:_me A M2y 1O ! W, (38)
(M2-1)" 5|V, M7-1 0 Rodg a(m?-1)" R

m

and the pressure loading in terms of nodal degrees of freedom is written as:
pUE 1 MP-20 om0
Pl=<P t=— TR || A i
{ a} Ol' (M2_1)1/2 Uw MZ_l[ ]|: l:“: }{6

_ﬁémmm{?}

J

T TauLa TSN

(M?-2)"* 2(M?-1)”R, j

where p_ the freestream air density and R is the median radius for each element. Based on thermodynamic
relations the freestream pressure and velocity can be linked together using the following relations:
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U, =Ma,

P,

a, = |yr—

P

The matrix [Rf] is given by:

0 0 0 0 0 0 0 0
[Ri]=|Pi Re(R,) m(RL) 0 Q, Re(Q)) Im(Q}) o
0 0 0 0 O 0 0 0

a

The matrix [Rz } is given by:

0 0 0 0 0 0 0 0
[R;]_ncot{ﬂz Re(P;Z) |m(P;2) 0 Q) Re(QEZ) |m(Q;2) 0]
0

0 0 0 0 O 0 0
0 0 0 0 O 0 0 0
{Pﬂjl Re(Pr*) m(P2') 0 Q' Re(Qy') m(QL?) o][c]
0 0 0 0 O 0 0 0
where matrix [C] is given by:
_Cl 0 0 00 O 0 O]
0O c, ¢, 00 0 0O
0 ¢, ¢, 00 0 00
0O 0 0 00O O OO
[C]=
0 0 0 0¢c¢ O OO
0 0 000 ¢ ¢ O
0 0 000 —¢, ¢ O
0 0 000 O 0 O

The general force vector due to a pressure field is written as:
{Fo}=[[IN] {P.}dA
A

The local damping matrix is given by:

o opU2 1 MP-2p e .
[Cf]loc——(Mz_l)uz@Mz_l[A } R ;[[R] [Rl}sm¢d¢J[A J

mUi 1 M?-2r _ _
:_(Mpz _1)1/2 I M2 _1[A 1:|T|:Df :H:A l:'

Finally the local stiffness matrix is given by:

___p. 1 x HRT [Re singdg———~ ¢ HRT [Re sin
[ML—(MHWJA]{RyN[&J¢M 4W_ﬁmmRﬂ”[&]¢M
Ll

M7y’

(39)

(40)

(41)

(42)

(43)

(44)

(45)

]M
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In the global system, the element damping and stiffness matrices are:

[e,]= -2 L M-2p 6y [T [, [ 4 ][LG]

(M?-2)* U, M*-1
m:-ﬁ[m[ Tlo,JIa e

From these equations, one can assemble the damping and stiffness matrices for each element to obtain the
damping and stiffness matrices for the whole shell: Cj and [Kf ]

(46)

2.3. Fluid Modeling

The Laplace equation satisfied by velocity potential for inviscid, incompressible and irrotational fluid in the
spherical system is written as:

2
Vg = 1 a(r26—¢j+ 21_ 9 sin¢a—¢ +— _12 afzo (47)
r or or resing o¢ O¢ ) r°sin” ¢ o6

where the velocity components are:

v, = 109 8_¢J’V9: 1 99
rog’ or rsing 06

(48)

Using the Bernouilli equation, hydrodynamic pressure in terms of velocity potential ¢ and fluid density o

is found as:
Jp
P, = 49
~Ps ( ot j (49)
The impermeability condition, which ensures contact between the shell surface and the peripheral fluid, is
written as:
L (50)
R ar r=R 6’t r=R
with
3
W = Z(Aj Py (cos¢)+ B,Qy, (cos¢))cos noe'* (51)
j=1
Method of separation of variables for the velocity potential solution can be done as follows:
3
o(4:1.0)=2R;(r)s;(4.6.t) (52)
j=1

Placing this relation into the impermeability condition (50), we can find the function S; (¢, €,t) in term of
radial displacement:

1 OW.
S (¢,60,t)=——L 53
AEROEI 9
Hence the equation becomes
3 R, (r) ow,
r,.0)= 1 - ) (54)
PO LR @,

With substitution of the above equation into Laplace Equation (47), the following second order equation in
terms of R, (r) is obtained
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) 2., i\ +l
Rj (")J’?Rj (0‘%&' (r)=0

Solution of the above differential equation yields the following:

- B;
Ry(r)=Ar" +—

] u
r ]

For internal flow B; =0
Finally, the hydrodynamic pressure in terms of radial displacement is written:

3R ..
Pr =—p; Z_VVj
i=1 M
We put:
R_¢
Hy
ﬁ: f, —if,
My
32 f, +if,

And the pressure loading in terms of nodal degrees of freedom is written as:
0

= e = A 1
0 i
where matrix [le ] is given by:
0 0 0 0 O 0 0 0
[R']=|P} Re(R) Im(R}) 0 Q) Re(Q,) Im(Q) 0|[F]
0 0 0 0 O 0 0 0
where [F] is expressed as:
f, 0 00 0 0 0]
0 f, -f, 00 0 0 0
o f f, 00 0 0 0
0O 0 0 00 O o0 O
Fl=lo o 0 o f. 0 0 0
00 0 00 f, -f 0
00 0 00 f f 0
00 0 00 0 0 0

The general force vector due the fluid pressure loading is given by:

{Fp}szj[N]T{P}dA

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

After substituting for pressure field vector and matrix [N] in the above equation, the local matrix [mf]

can be found from the following:

m L, <o [T s ] [ T[] - [T 514 0
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In the global system the element stiffness and mass matrices are

[m, ]=-p; [LG] [A*] [s, ][A*][LG] (64)

From these equations, one can assemble the mass for each element to obtain the mass matrix for the whole
shell: [M ] ]
The governing equation which accounts for fluid-shell interaction in the presence external supersonic airflow

DI e I T -0 -

where subscripts s and f refer to shells in vacuo and fluid respectively.

3. Eigenvalue Problem

The global fluid matrices mentioned in Equation (65) may be obtained, respectively, by superimposing the mass,
damping and stiffness matrices for each individual fluid finite element. After applying the boundary conditions
the global matrices are reduced to square matrices of order 4*(N + 1) — J, where N is the number of finite ele-
ments in the shell and J is the number of constraints applied. Finally, the eigenvalue problem is solved by means
of the equation reduction technique. Equation (65) may be rewritten as follows:

W} [[“2] ﬂ ii Hgﬂl ! [[Eﬂﬁii}={0} (66)

where

[K]=[K.]-[K ]
[M]:[MS]_[Mf]

{5} is the global displacement vector. [Cf] and [Kf] represent damping and elastic forces induced by
the flowing fluid. [M ¢ | isadded fluid mass. The eigenvalue problem is given by:

[[DD]-A[1]]=[0] (67)
where
[©] [1]

[DD]:[[KHM] [K'[e)]

1 . o .
A:; and [I] is the identity matrix.

An in house computer code based on the finite element method was developed as part of this work to establish
the structural and fluid matrices of each element based on equations developed using the theoretical approach.
The calculations for each finite element are performed in two stages: the first dealing with solid shell and the
second with the effect of the flowing fluid. Aeroelastic stability will be examined by studying the eigenvalues in
the complex plane. When the imaginary part of » becomes negative the amplitude of the shell motion grows
exponentially with time, thus indicating dynamic instability. The flutter boundary is obtained numerically by
tracing the eigenvalues to see when the sign of imaginary part just changes from positive to negative. For the
fixed value of circumferential wave number n, the onset of instability is determined by varying the value of
freestream static pressure. This procedure is repeated for different values of n until the minimum critical pres-
sure is obtained.

4. Results and Discussion

In this section numerical results are presented and compared with existing experimental, analytical and numeri-

cal data.
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4.1. Validation and Comparison

For the cases investigated in the present paper, the predicted dimensionless frequencies are expressed by the
following relation:

N

—orl 2
Q—a)R[Ej (68)

where:

o is the natural angular frequency,

R is the radius of the reference surface,

p is the density, and

E is the modulus of elasticity.

Results for different boundary conditions, geometries, flow parameters and radius to thickness ratios com-
pared to experimental, theoretical and numerical analyses are presented (see Figure 4).

4.1.1. Spherical Shells in Vacuo

Case 1: clamped spherical shell with ¢, =10°

Narassihan and Alwar [23] investigated the case of an axisymmetric clamped spherical shell. The analysis is
based on the application of the Chebyshev-Galerkin spectral method for the evaluation of free vibration fre-
quencies and mode shapes. Sai Ram and Sreedhar Babu [24] analyzed the same case with the classical finite
element method using 80 elements. Each element is an eight nodded degenerated is oparametric shell element
with nine degrees of freedom at each node. With our model and using 6 finite elements, the natural frequencies
were computed; the results are shown in Table 1.

Case 2: clamped spherical shell with ¢, =30°

This case was investigated analytically by Kalnins [25] using classical theory and transverse vibration theory.
With our theory, we used 8 finite elements to study the spherical shell with the results shown in Table 2. The
frequencies we obtained with our model are very comparable to Kalinin’s values.

Case 3: spherical shell with ¢, = 60° under two boundary conditions: clamped, simply supported

Figure 4. Definition of angle ¢,

Table 1. Normalized natural frequencies for 10° clamped spherical shell with R/h = 200.

Mode Present theory Sai Ram and Sreedhar babu [23] Narassihan and Alwar [24]
1 1.4861 1.4577 1.4588
2 2.2498 2.2931 2.2999
3 4.4779 45773 4.5461
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Table 2. Normalized natural frequencies for 30° clamped spherical shell with R/h = 20.

Mode Presenttheory Kalnins [25]
1 1.169 1.168
2 2.224 2.589
3 3.303 3.230
4 4.200 4.288
5 4.923 4.683

Free axisymmetric vibration of the spherical shell in this case was studied by Kalnins [26], Cohen [27], Na-
varatna [28], Webster [29], Greene et al. [30], Tessler and Spiridigliozzi [31], Gautham and Ganesan [32] and
Buchanan and Rich [33]. In the present investigation, the shell was investigated with 10 elements; the results are
given respectively for clamped, simply supported hemispherical shells in Table 3 and Table 4.

Case 4: spherical shell with ¢, =90°

Kraus [22] investigated the case of simply supported spherical shell using a general theory, which included
the effects of transverse shear stress and rotational inertia. For cases both with and without these effects, he de-
termined the natural frequencies for the shell motion that was independent of 6 for circumferential mode
number n=0. Tessler and Spiridigliozzi [31], Gautham and Ganesan [34] analyzed the case of clamped he-
mispherical shell. Ventsel et al. [35] studied the case of simply supported spherical shell using the boundary
elements method for various circumferential mode numbers (n=0,n=1n=2). With our model and using 12
finite elements, the natural frequencies were computed for clamped and simply supported shells. The results are
shown respectively in Table 5 and Table 6.

4.1.2. Flutter of Spherical Shells

The problem treated for validation is the flutter boundary of a simply—supported spherical shell subjected to ex-
ternal supersonic airflow. As there is no information available for flutter of spherical shells, this case has been
compared with simply-supported cone studied by various authors. The conical shell has the following data:
Young’s Modulus, E = 6.5 106 Ib-in-2, Poisson’s ratio, v = 0.29, material mass density, p = 8.33 10-4 Ib-s2-in-4,
shell thickness, h = 0.051 in, cone semi-vertex angle a = 5°. The supersonic airflow has freestream Mach num-
ber, Moo = 3, stagnation temperature, Too = 288.15 K. The results are shown in Table 7 where A is the dy-
namic pressure parameter defined as:

p,UZR?
Ky(MZ2-1)

A= (69)

3
where K = _EY is the bending stiffness.
12(1-v?)

When results are summarized and compared with other finite element and analytical solutions, this method
shows good convergence using only 15 elements with small disagreements. It should be noted that the previous
analytical methods [13] [15] use Donnel-Mushtari simplified shell theory while [14] uses Novozhilov’s thin
shell with the different method of application of finite element solution. On the other hand, a complete form of
the linear piston theory is used by [21] as in the present study and the results are very close; but the expression
used by Dixon and Hudson [15], Ueda et al. [14] for the piston theory does not have a curvature term which has
caused greater differences in the results.

4.2. Flutter Boundary

Flutter which is observed in all the papers using piston theory is a coupled-mode flutter. Indeed, let us consider
motion of the shell eigenvalues in the complex o plane. If the freestream pressure is not very high, and the shell
is stable, all complex frequencies are located in the top  half-plane. Let us now increase freestream pressure.
The first and the second complex frequencies move toward each other, almost merge, and then go away from
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Table 3. Normalized natural frequencies for 60° clamped spherical shell with R/h = 20.

Mode Kalnins [26]  Navaratna [28] Webster [29] Spi:i-giss:?cgzi?d[ﬂ] gzlﬁgﬂ[&gﬁ Bul;:?;ne[lgsz}nd Present theory
1 1.006 1.008 1.007 1.000 1.001 1.001 1.031
2 1.391 1.395 1.391 1.368 1.373 1.370 1.496
3 - 1.702 1.700 1.673 1.678 1.675 1.760
4 - 2.126 2.095 - - 2.094 2.089
5 2.375 2.387 2.386 2.260 - 2.256 2.276
6 3.486 3.506 3.851 3.213 - 3.209 3.311
7 3.991 3.996 4.062 3.965 - 3.964 3.775
8 - 4.159 4151 - - 4.060 4.073
9 4,947 5.001 5.962 4.442 - 4.427 4.826
10 - 6.037 6.208 5.773 - 5.740 5.777

Table 4. Normalized natural frequencies for 60° simply supported spherical shell with R/h = 20.

Mode Kalnins [26]  Navaratna [28] Greene et al. [30] C[c;r;(;n ggﬁgi?[agnz? Bu;?:ﬁ ?g;ind T;Zii;t
1 0.962 0.963 0.974 0.959 - 0.956 0.981
2 1.334 1.338 1.338 1.325 1.315 1.308 1.412
3 - 1.653 1.652 1.646 1.639 1.612 1.646
4 2.128 2131 2.162 - - 2.044 2.038
5 - 2.141 - - - 2.059 2.115
6 3.176 3.185 - - - 2.965 2.934
7 3.988 3.933 - - - 3.837 3.871
8 - 4.159 - - - 4.000 4.017
9 4.575 4.601 - - - 4.148 4.138
10 - 6.031 - - - 5.608 5.773

Table 5. Normalized natural frequencies for 90° clamped spherical shell with R/h = 10.

Mode Tessler and Spiridigliozzi [31] Gautham and Ganesan [34] Present theory
1 0.8481 0.8439 0.8327
2 1.2328 1.2317 1.1919
3 1.5902 1.5808 1.5041
4 1.9435 1.9267 1.9161

each other in vertical directions (Figure 5). Thus, interaction of two modes occurs. Physically this interaction of
the shell modes happens through the effect of the air flow.

A simply supported spherical shell with ¢, = 30° is treated here. The complex frequencies only for the first
and second modes versus freestream dynamic pressure are plotted in Figure 6. Aerodynamic pressure is eva-
luated using Equation (36). In Figure 6(a) the real part of the complex frequency increases for the first mode
while for the second mode it decreases as the freestream dynamic pressure parameter A increases. For higher
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Table 6. Normalized natural frequencies for 90° simply supported spherical shell.

Mode Kraus [22] R/h = 10 KFEZ?S:[;S] Ve”gler: ité"(')'o[as] Pre;‘jrr]‘t:tg%"ry
1 0.8060 0.7548 0.7441 0.7579
2 1.2054 0.9432 0.9281 0.9034
3 16179 1.0152 0.9693 0.9499
4 1.9051 1.1082 - 1.1089
5 2.7205 1.2523 - 1.2759
6 2.9301 1.4576 - 14723
7 4.0274 1.6558 - 1.6237
8 5.5142 1.7636 - 1.7634

Table 7. Comparison of critical dynamical pressure parameter (simply supported case).

Dixon and Hudson Udea et al. Pidaparti and Yang Shulman . )
Present [15] [14] Henri [21] [13] Bismark-Nasr [17]
520(5) 590(5) 609(5) 576(5) 669(6) 702(6)
Im(w)
Mode 2
N
7
Mode 1
l Re (w)

Figure 5. Trajectories of the complex frequencies loci in the
complex o plane during the changing of the dynamic pressure.

values of dynamic pressure these real parts, representing the oscillation frequency, eventually coalesce into a
single mode. Further increasing the dynamic pressure of the flow causes the shell to lose its stability at A =
410. This instability is due to coupled-mode flutter where the imaginary part of complex frequency (representing
the damping term of the aeroelastic system) becomes zero for certain critical pressure (Figure 6(b)).

The same behaviour is observed by real and imaginary parts of complex frequencies as the static pressure in-
creases (Figure 7) but the onset of flutter is at A ¢ = 410 if the freestream static pressure is evaluated using Eg-
uation (37). Prediction of the critical freestream static pressure using Equation (36) provides approximately the
same results when evaluating the pressure field using Equation (37). As expected, using the piston theory with
the correction term to account for shell curvature produces a better approximation for the pressure loading acting
on a curved shell exposed to supersonic flow.

In Figure 8 the onset of flutter for different angles is plotted. By increasing the angle ¢,, flutter instability
occurs at lower pressure. This decrease in A with ¢, is attributed to the fact that the natural frequencies al-
ways decrease as the angle ¢, is increased.

The effect of radius to thickness ratio R/h is presented in Figure 9. This figure shows an increase of A ¢ with
an increase of radius to thickness ratio. This increase in A is attributed to the fact that the mass of shell is
greater when the shell is thick, and the effect of pressure is less important for a thick shell than for a thin shell.
On the other hand, when the shell is thin it becomes unstable at higher dynamical pressure levels due to an in-
crease in stiffness because of a decrease in thickness. The same conclusion is reported in [12] for the flutter of
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Figure 6. (@) Real part and (b) imaginary part of the complex frequencies
versus the freestream static pressure parameter; static pressure evaluated by
Equation (36).

cylindrical shells.

In order to study the effect of filling ratio, Figure 10 shows the critical value of freestream static pressure for
different filling ratios, H/R. Shell geometry and flow parameters are the same as the previous case study with
liquid filled density pf =9.355 x 10-5Ib s2 in-4. It is seen that the value of critical dynamic pressure parameter
decreases as the filling ratio increases from a low value. This rapid change in critical dynamic pressure at low
filling ratios and its almost steady behaviour at large filling ratios indicates that the fluid near the bottom of the
shell is largely influenced by elastic deformation when a shell is subjected to external supersonic flow.

The effect of boundary conditions on the flutter onset is presented in Table 8. It is seen that for freely simply
supported ends, v = w = 0, flutter onset occurs at A =510.5 which indicates more flutter resistance compared
to simply supported or clamped ends. It is indicated that there is no difference for flutter onset when the shell is
either clamped or simply supported. We obtained the same results in the conical shells subjected to supersonic
flow.

5. Conclusion

An efficient hybrid finite element method is presented to investigate the aeroelastic stability of an empty or par-
tially liquid filled spherical shell subjected to external supersonic flow. Linear shell theory is coupled with first
order piston theory to account for aerodynamic pressure. The effect of curvature correction in piston theory was

()
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Figure 7. (a) Real part and (b) imaginary part of the complex frequencies versus
the freestream static pressure parameter; static pressure evaluated by Equation

37).

Damping

Figure 8. Variation of the critical freestream static pressure parameter with an-
gle ¢, for simply supported shell.
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Table 8. Critical freestream pressure parameter for different boundary conditions.

Boundary conditions ] Mode no.

Freely simply supported (v =w = 0) 510.5 Coupled 1% and 2™
Simply supported (u=v =w =0) 410 Coupled 1% and 2™
Clamped 410 Coupled 1% and 2™

540

520 -

500

480

ACF

460

440 -

420

400

0 50 100 150 200 250
R/h

Figure 9. Variation of the critical freestream static pressure parameter with R/h for
simply supported shell.

600

500 <
400 -
<° 300 -+
200 -+

100 -

0

0 0.2 0.4 0.6 0.8 1 1.2
H/R

Figure 10. Variation of the critical freestream static pressure parameter with R/H
for simply supported shell.

analyzed. Fluid structure interaction due to hydrodynamic pressure of internal fluid is also taken into account.
The study has been done for shells with various geometries, radius to thickness ratios, filling ratios and boun-
dary conditions. In all study cases one type of instability is found; coupled-mode flutter in the first and second
mode. Increasing the radius to thickness ratio leads the onset of flutter to occur at higher dynamic pressure. De-
creasing the angle ¢, of the spherical shell causes the flutter boundary to occur at lower dynamic pressure. A
lower filling ratio has more flutter resistance than a higher filling ratio. The proposed hybrid finite element for-
mulation can give reliable results at less computational cost compared to commercial software since the latter
imposes some restrictions when such analysis is done.
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Appendix A: Expressions for Equation (6)
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Appendix B: Elements of Matrices R and A
R(L1)= (—eln cot ¢P, +elclP;1’1)

R(L2)=-ne, cot¢Re(P ) ne, cot ¢ Im(P#”2 ) (e,c, +e3c3)Re(Pﬂ"2’1)+(e3c2 -e,C;) Im(Pﬂ”z’l)
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Zsr:n¢ i
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