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Abstract 
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher 
speed of hard c-means clustering algorithm and the better classification performance of fuzzy 
c-means clustering algorithm had been studied by many researchers and applied in many fields. In 
the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to 
select the fixed suppressed rate by the structure of the data itself. The experimental results show 
that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy 
c-means clustering algorithm. 
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1. Introduction 
With the development of computer and network technology, the world has entered the age of big data. As the 
basic data analysis method, cluster analysis method groups the data unsupervised with the similar characteristics. 
Since fuzzy set theory was successfully introduced to clustering analysis, it took several important steps until 
Bezdek reached the alternating optimization (AO) solution of fuzzy clustering, named fuzzy c-means (FCM) 
clustering algorithm [1]-[3], which improved the partition performance of the previously existing hard c-means 
clustering (HCM) algorithm, by extending the membership degree from { }0,1  to [ ]0,1 . FCM outperformed 
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HCM in the terms of partition quality, at the cost of a slower convergence. In spite of this drawback, FCM is one 
of the most popular clustering algorithms. Many researchers have studied the convergence speed and parameter 
selection of FCM and elaborated various solutions to reduce the execution time [4]-[8].  

As another way to speed up the FCM calculations, we proposed an algorithm, named as suppressed fuzzy 
c-means clustering (S-FCM) algorithm [9], to reduce the execution time of FCM by improving the convergence 
speed, while preserving its good classification accuracy. S-FCM established a relationship between the HCM 
and FCM with the suppressed rate ( )0 1α α≤ ≤ : S-FCM becomes HCM when 0α =  and FCM when 1α = . 
The S-FCM algorithm is not optimal from a rigorous mathematical point of view, as it does not minimize the 
objective function. In order to study this problem, Szilágyi et al. defined a new objective function with parameter 
α  and named it optimally suppressed fuzzy c-means (Os-FCM) clustering algorithm [10]-[12]. Os-FCM cluster- 
ing algorithm is converged. By numerical tests, they claimed: we cannot take for granted the optimality or non-
optimality of S-FCM, but we can assert that it behaves very similar to an optimal clustering model (Os-FCM).  

The problem of selecting a suitable parameter α  in S-FCM constitutes an important part of implementing the 
S-FCM algorithm for real applications. The implementation performance of S-FCM may be significantly de-
graded if the parameter α  is not properly selected. It is therefore important to select a suitable parameter α  
such that the S-FCM algorithm can take on the advantages of the fast convergence speed of the HCM as well as 
the superior partition performance of the FCM. Huang et al. proposed a modified S-FCM, named as MS-FCM, 
to determine the parameter α  with type-driven learning. α  is updated each iteration and successful used in 
MRI segmentation [13]. And then there are many researchers pay close attention to parameter selection, just like 
Huang et al. gave Cauchy formula [14], Nyma et al. gave exponent formula [15], Li et al. gave fuzzy deviation 
exponent formula [16], and Saad et al. gave the clarity formula [17]. However, these selection strategy made the 
parameter α  is changed in each iteration. For the fixed selection case, we simple set 0.5α =  in the original 
paper. In this paper, we are further interesting on the fixed selection of α  based on the data structure.  

The remainder of the paper is organized as follows: Section 2 and Section 3 introduce FCM clustering algo-
rithm and S-FCM clustering algorithm respectively. In Section 4, a method to select the parameter α  based on 
the data structure is stated. Section 5 reports experimental analysis on the performances of the new selection 
method with some related algorithms and the conclusions are presented in Section 6. 

2. Fuzzy C-Means Clustering Algorithm 
FCM is one of the most widely used fuzzy clustering algorithms. It can be presented by the following mathe-
matics programming. 

The traditional FCM partitions a set of object data into a number of c clusters based on the minimization of a 
quadratic objective function. The objective function to be minimized is: 

2 2

1 1 1 1

c n c n
m m

FCM ij j i ij ij
i j i j

J u x v u d
= = = =

= − =∑∑ ∑∑                             (1) 

where jx  represents the input data ( )1, ,j n=  , iv  represents the prototype of center value or representa-
tive element of cluster ( )1, ,i c=  , [ ]0,1iju ∈  is the fuzzy membership function showing the degree to which 
vector jx  belongs to cluster i, 1m >  is the fuzzy factor parameter, and ijd  represents the distance between 
vector jx  and cluster prototype iv . According to the definition of fuzzy sets, the fuzzy memberships of any 
input vector jx  satisfy the probability constraint  

1
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The minimization of the objective function FCMJ  is achieved by alternately applying the optimization of 
FCMJ  over { }iju  with iv  fixed ( )1, ,i c=   and the optimization of FCMJ  over { }iv  with iju  fixed 

( )1, , , 1, ,i c j n= =  . During each cycle, the optimal values are deduced from the zero gradient conditions, 
and obtained as follows: 
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According to the AO scheme of the FCM clustering algorithm, Equations (3) and (4) are alternately applied, 
until cluster prototypes stabilize. This stopping criterion compares the sum of norms of the variations of the 
prototype vectors iv  within the latest iteration T, with a predefined small threshold value ε . 

FCM clustering algorithm:  
Sept 1. Fix 1m > , 1 1c n< < −  and initialize the c cluster centers iv  randomly. 
REPEAT. 
Sept 2. Update { }ijU u=  by Equation (3). 

Sept 3. Update { }iV v=  by Equation (4). 
UNTIL (cluster centers stablized). 

3. Suppressed Fuzzy C-Means Clustering Algorithm 
The suppressed fuzzy c-means algorithm was introduced in [9], having the declared goal of improving the con- 
vergence speed of FCM, while keeping its good classification accuracy. The algorithm modified the AO scheme 
of FCM, by inserting an extra computational step between the application of formulae (3) and (4). Considering 

jx , if the degree of membership of jx  belongs to pth cluster is the biggest of all the clusters, the value is noted 
as pju . After modified, the memberships are: 

1 1 ,
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The fuzzy memberships are then modified such a way that all nonwinner values are decreased via multiplying 
by a so-called suppression rate ( )0 1α α≤ ≤ ; and the winner membership is increased accordingly, so that the 
probability constraint given in Equation (5) is fulfilled by the modified memberships.  

S-FCM clustering algorithm: 
Sept 1. Fix 0 1α≤ ≤ , 1m > , 1 1c n< < −  and initialize the c cluster centers iv  randomly. 
REPEAT. 
Sept 2. Update { }ijU u=  by Equation (3). 

Sept 3. Modify { }ijU u=  by Equation (5). 

Sept 4. Update { }iV v=  by Equation (4). 
UNTIL (cluster centers stablized). 

4. The Fixed Selection of Suppression Rate α 
In the original S-FCM, the suppression rate α  is set the middle of interval, i.e., 0.5α = , it can be consider a 
compromise with FCM and HCM. So we think that the better method to select α  is based on the data distribu-
tion structure. 

For the data set { }1 2, , , nX x x x=  , think of 
1
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proof is written in Appendix.  

5. Experimental Studies 
We make experimental studies in this section to show the performances of the new fixed selection method for  

α . The S-FCM with 
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 is noted as S-FCM*. We make a comparison of the new ap-  

proach with some algorithms: FCM, S-FCM. We work with Matlab version 8.0, a computer with 2 processors 
Genuine Intel of 3.0 GHz frequency, memory 1.0 G and hard disk of 500 G capacity. The parameters we used 
for these algorithms are: maximal number of iterations T = 200, 1e 5ε = − .  

5.1. Synthetic Datasets 
In this section, we perform some experiments to compare the performances of these algorithms with synthetic 
datasets. In order to examine and compare the performance of FCM, S-FCM, S-FCM*, the following criterias 
are used. These are the number of iterations, iteration time until convergence and classification rate. These algo-
rithms are started with the same initial values and stopped under the same condition.  

The three artificial datas involves three clusters each with 100 points under multivariate normal distribution 
are named as data 1, data 2 and data 3 respectively. The parameters used for generating data 1 is: [ ]1 10, 10µ = − − ,  

1

2,0.2
0.2,2
 

=∑  
 

; [ ]2 0, 1µ = − , 2

2,0
0,1
 

=∑  
 

 and [ ]3 10, 10µ = − , 3

3,0
0,1
 

=∑  
 

, and is showed in Figure 1. And  

then, we move the three cluster’s center closer by [ ]1 5, 5µ = − − , [ ]2 0, 1µ = −  and [ ]3 4, 4µ = −  to obtain the 
data 2 and is showed in Figure 2. Further, we set the three cluster’s center more closer to each others by 

[ ]1 10, 7µ = − − , [ ]2 6, 5µ = − −  and [ ]3 10, 3µ = − −  to obtain the data 3 and is showed in Figure 3. 
We get the value of 0.27α =  for data 1, the value of 0.33α =  for data 2 and the value of 0.38α =  for 

data 3 used for S-FCM*. 
In cluster analysis, three important criterions to test the performances of clustering algorithm are iteration 

number, iteration times (s) and classification rate. For the data 1, three clusters are well-separated, thus a small 
value of α  is hoped, we get the value of 0.27α =  for S-FCM*. It had shown in Table 1 that S-FCM* has 
minimum iteration number and iteration times (s), and the classification rate of FCM, S-FCM and S-FCM* are 
all 100%. For data 2, we move the clusters closer slightly, thus a slightly larger value of α  is hoped, we get 
the value of 0.33α =  for S-FCM*. It had shown in Table 1 that S-FCM* has minimum iteration number and 
iteration times (s), and the classification rate of FCM, S-FCM and S-FCM* are all 97.67%. For data 3, we move the  
 

 
Figure 1. The plot of data 1. 
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Figure 2. The plot of data 2. 

 

 
Figure 3. The plot of data 3. 

 
clusters more closer each other, thus a larger value of α  is hoped, we get the value of 0.38α =  for S-FCM*. 
It had shown in Table 1 that S-FCM* has minimum iteration number and iteration times (s), and the classifica-
tion rate of S-FCM and S-FCM* are all 89%, which is better than the classification rate of FCM with 88.33%. 
The fuzzy factor m = 2 and m = 10 are used to compare the results.  

As supported by the experiments, it indicates that S-FCM* improves the convergence speed while preserving 
its good classification accuracy compared with S-FCM. 

5.2. UCI Machine Learning Datasets 
In this section, we perform experiments on a number of UCI Machine Learning data sets [18], which is Iris, 
Wine, Ionosphere, Sonar, GCM_efg and Leukemia. Iris plants data is the best-known data sets to be found in 
pattern recognition literature. The iris consists of 150 label vectors of four dimensions. Wine data consists of 
178 label vectors of 13 dimensions. Ionosphere data consists of 351 vectors of 34 dimensions. Sonar data con-
sists of 208 vectors of 60 dimensions. GCM_efg and the Leukemia are high-dimensional data sets. GCM_efg 
data consists of 43 vectors of 16,063 dimensiona and Leukemia data consists of 72 vectors of 7129 dimensions. 
We test the performances hundred times, average result (iteration number, iteration times and classification rate) 
are given in Table 2.  

To compute the suppressed rate of S-FCM*, we get the value of 0.30α =  for the Iris data; 0.41α =  for the  
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Table 1. Computational performances of FCM, S-FCM and S-FCM*. 

Criterion Dataset FCM S-FCM (α = 0.5) S-FCM* 

m = 2  

Iteration number 

Data 1 12 9 8 

Data 2 14 11 9 

Data 3 22 16 12 

Iteration times (s) 

Data 1 0.3 0.1 0.09 

Data 2 0.23 0.17 0.10 

Data 3 0.23 0.18 0.16 

Classification rate (100%) 

Data 1 100 100 100 

Data 2 97.67 97.67 97.67 

Data 3 88.33 89 89 

m = 10     

Iteration number 

Data 1 19 12 9 

Data 2 18 12 10 

Data 3 23 14 12 

Iteration times (s) 

Data 1 0.3 0.18 0.15 

Data 2 0.2 0.23 0.14 

Data 3 0.43 0.22 0.20 

Classification rate (100%) 

Data 1 100 100 100 

Data 2 97.67 97.67 97.67 

Data 3 88.33 89 89 

 
Wine data; 0.43α =  for the Ionosphere data; 0.43α =  for the Sonar data; 0.42α =  for the GCM_efg data 
and 0.36α =  for the Leukemia data.  

For Iris data, we can seen that that S-FCM* has minimum iteration number and iteration times (s) on average 
means, and the classification rate of S-FCM and S-FCM* are all 88.67%, which is better than the classification 
rate of FCM with 88%. For Wine data, we can seen that that S-FCM* has minimum iteration number and itera-
tion times (s) on average means, and the classification rate of S-FCM and S-FCM* are all 69.54%, which is bet-
ter than the classification rate of FCM with 68.54%. For Ionosphere data, we can seen that that S-FCM* has 
minimum iteration number and iteration times (s) on average means, and the classification rate of S-FCM and 
S-FCM* are all 70.66%, which is better than the classification rate of FCM with 69.8%. For GCM_efg data, we 
can seen that that S-FCM* has minimum iteration number and iteration times (s) on average means, and the 
classification rate of S-FCM and S-FCM* are all 74.42%, which is better than the classification rate of FCM 
with 69.77%. For Leukemia data, we can seen that that S-FCM* has minimum iteration number and iteration 
times (s) on average means, and the classification rate of S-FCM and S-FCM* are all 87.5%, which is better 
than the classification rate of FCM with 69.44%. For Sonar data, we can seen that that S-FCM* has minimum 
iteration number and iteration times (s) on average means, and the classification rate of FCM and S-FCM* are 
all 55.77%, which is better than the classification rate of S-FCM with 55.29%, this means that set 0.5α =  
don’t always a good selection. The fuzzy factor m = 2 and m = 10 are used to compare the results. 

6. Conclusion 
In this paper we propose a fixed suppressed rate selection method for suppressed fuzzy c-means clustering  
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Table 2. The average number of computational performances of FCM, S-FCM, S-FCM* with 100 runs. 

Criterion Data FCM S-FCM (α = 0.5) S-FCM* 

m = 2  

Iteration number 

Iris 34 22 16 

Wine 45 28 22 

Ionosphere 15 14 11 

Sonar 42 19 16 

GCM_efg 171 28 19 

Leukemia 65 25 20 

Iteration times (s) 

Iris 0.21 0.08 0.07 

Wine 0.23 0.09 0.08 

Ionosphere 0.36 0.31 0.30 

Sonar 0.25 0.21 0.19 

GCM_efg 13.6 2.78 2.28 

Leukemia 2.95 0.77 0.65 

Classification rate (100%) 

Iris 88 88.67 88.67 

Wine 68.54 69.66 69.66 

Ionosphere 69.8 70.66 70.66 

Sonar 55.77 55.29 55.77 

GCM_efg 69.77 74.42 74.42 

Leukemia 69.44 87.5 87.5 

m = 10  

Iteration number 

Iris 25 17 15 

Wine 49 20 18 

Ionosphere 16 14 13 

Sonar 42 19 16 

GCM_efg 141 31 29 

Leukemia 37 17 15 

Iteration times (s) 

Iris 0.13 0.04 0.04 

Wine 0.28 0.18 0.10 

Ionosphere 0.41 0.38 0.23 

Sonar 0.29 0.22 0.19 

GCM_efg 12.5 2.94 1.56 

Leukemia 2.94 1.35 1.24 

Classification rate (100%) 

Iris 88 88.67 88.67 

Wine 68.54 69.66 69.66 

Ionosphere 69.8 70.66 70.66 

Sonar 55.77 55.29 55.77 

GCM_efg 69.77 74.42 74.42 

Leukemia 69.44 87.5 87.5 
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algorithm called S-FCM*, the method to select the fixed suppressed rate by the structure of the data itself. The 
experimental results show that the proposed method is a better way to select the suppressed rate in suppressed 
fuzzy c-means clustering algorithm. The S-FCM* improves the convergence speed, while preserving its good 
classification accuracy on average sense.  
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Appendix 
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