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Abstract 
Finding the optimal number of clusters has remained to be a challenging problem in data mining 
research community. Several approaches have been suggested which include evolutionary com- 
putation techniques like genetic algorithm, particle swarm optimization, differential evolution etc. 
for addressing this issue. Many variants of the hybridization of these approaches also have been 
tried by researchers. However, the number of optimal clusters and the computational efficiency 
has still remained open for further research. In this paper, a new optimization technique known as 
“Teaching-Learning-Based Optimization” (TLBO) is implemented for automatic clustering of large 
unlabeled data sets. In contrast to most of the existing clustering techniques, the proposed algo- 
rithm requires no prior knowledge of the data to be classified rather it determines the optimal 
number of partitions of the data “on the run”. The new AUTO-TLBO algorithms are evaluated on 
benchmark datasets (collected from UCI machine repository) and performance comparisons are 
made with some well-known clustering algorithms. Results show that AUTO-TLBO clustering 
techniques have much potential in terms of comparative results and time of computations. 
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1. Introduction 
Clustering technique enables one to partition unlabeled data set into groups of similar objects known as clusters. 
However, each cluster is clearly different from other clusters. Evolutionary computation techniques are widely 
used by researchers to evolve clusters in the complex data sets. However, there is no adequate research progress 
to determine the optimal number of clusters [1]. Clustering techniques based on evolutionary computations, 
mainly take the number of classes K as input instead of determining the same during the execution process. In 
most of the cases, determining the appropriate number of clusters in real time situation is difficult. 

Clustering validity index is popularly used, in traditional methods, to determine the optimal number of clus- 
ters. An efficient clustering validity index provides global minima/maxima at the exact number of classes in the 
data set. However, this method is very expensive since it requires formation of clustering for a variety of possi- 
ble cluster number. In order to overcome the above-said issue, this paper proposes a clustering algorithm, where 
a number of trial solutions are provided with different cluster numbers along with cluster center coordinates for 
the same data set. Correction of each possible grouping is quantitatively evaluated with a global validity index, 
the CS measure [2]. Then, through the evolution mechanism, eventually, the best solutions start dominating the 
population, whereas the bad ones are eliminated. Ultimately, the evolution of solutions comes to a halt (i.e., 
converges) when the fittest solution represents a near-optimal partitioning of the data set with respect to the em- 
ployed validity index. In this way, the optimal number of classes along with the accurate cluster center coordi- 
nates can be located in one run of the evolutionary optimization algorithm. But one major issue with this method 
is that its performance depends heavily on the choice of a suitable clustering validity index. 

In this paper, a new optimization technique TLBO is implemented for auto clustering and the performance of 
this is compared with other techniques like classical DE [3] improved differential evolution (ACDE) [4]. One 
standard hierarchical agglomerative clustering based on the linkage metric of average link [5], the genetic clus- 
tering with an unknown number of clusters K (GCUK) [6], the dynamic clustering PSO (DCPSO) [7]. The fol- 
lowing performance metrics have been used in the comparative analysis: 1) the accuracy of final clustering re- 
sults; 2) the speed of convergence; and 3) the robustness (i.e., ability to produce nearly same results over re- 
peated runs). Some real life data sets have been taken for testing. The rest of this paper is organized as follows. 
Section 2 describes the PSO, DE and TLBO. Section 3 outlines the representation of Automatic clustering algo- 
rithm. Section 4 describes experimental results on some data sets. Conclusions are provided in Section 5. 

2. Basics of PSO, DE and TLBO 
There have been many variants of PSO and DE available. However, in this section we emphasize only the basic 
techniques to give reader a feel of these techniques. 

2.1. Particle Swarm Optimization 
PSO can be considered as a swarm-based learning scheme [8]. In PSO learning process, each single solution is a 
bird referred to as a particle. The individual particles fly gradually towards the positions of their own and their 
neighbors’ best previous experiences in a huge searching space. It shows that the PSO gives more opportunity to 
fly into desired areas to get better solutions. Therefore, PSO can discover reasonable solutions much faster [9]. 
PSO define a proper fitness function that evaluates the quality of every particle’s position. The position, called 
the global best (gbest), is the one which has the highest value among the entire swarm. The location, called it as 
personal best (pbest), is the one which has each particle’s best experience. Based on every particle’s momentum 
and the influence of both personal best (pbest) and global best (gbest) solutions, every particle adjusts its veloc- 
ity vector at each iteration. The PSO learning formula is described as follows. 

( ) ( ) ( ) ( )( ) ( ) ( )( ), , 1 , , 2 ,1 rand pbest rand gbesti m i m i m i m m i mV t V t c t X t c t X tτ+ = ⋅ + ∗ ∗ − + ∗ ∗ −        (1) 

( ) ( ) ( ), , ,1 1i m i m i mX t X t V t+ = + +                              (2) 

where m is the dimensional number, i denote the ith particle in the population, V is the velocity vector, X is the 
position vector and τ  is the inertia factor, 1c  and 2c  are the cognitive and social learning rates respectively. 
These two rates control the relative influence of the memory of particle and neighborhood. More details of PSO 
can be found in wide variety of PSO literatures including [8]. 
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2.2. Classical DE and Its Modification 
The classical DE [10] is a population-based global optimization algorithm that uses a floating-point (real-coded) 
representation. The ith individual vector (chromosome) of the population at time-step (generation) t has d com- 
ponents (dimensions), i.e. 

( ) ( ) ( ) ( ),1 ,2 ,, , ,i i i i dt X t X t X t =  X                             (3) 

For each individual vector ( )k tX  that belongs to the current population, DE randomly samples three other 
individuals, i.e., ( )i tX , ( )j tX  and ( )m tX , from the same generation (for distinct k, i, j, and m). It then cal- 
culates the (component wise) difference of ( )i tX  and ( )j tX , scales it by a scalar F (usually ∈ [0, 1]), and 
creates a trial offspring ( )1i t +U  by adding the result to ( )m tX . Thus, for the nth component of each vector. 

( )
( ) ( ) ( )( ) ( )
( )

, , ,
,

,

, if rand 0,1
1

, otherwise
m n i n j n n r

k n
k n

X t F X t X t C
U t

X t

+ − <
+ =





                (4) 

[ ]0,1rC ∈  is a scalar parameter of the algorithm, called the crossover rate. If the new offspring yields a better 
value of the objective function, it replaces its parent in the next generation; otherwise the parent is retained in 
the population, i.e., 

( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1 , if 1
1

, if 1
i i i

i
i i i

t f t f t
t

t f t f t

 + + >+ = 
+ ≤

U U X
X

X U X
                     (5) 

where f() is the objective function to be maximized. 
To improve the convergence properties of DE, it has been tuned its parameters in two different ways here [11]. 

In the original DE, the difference vector ( ) ( )( )i jt t−X X  is scaled by a constant factor F. The usual choice for 
this control parameter is a number between 0.4 and 1. For modified DE, this scale factor in a random manner in 
the range (0.5, 1) by using the relation 

( )( )0.5 1 rand 0,1F = × +                                 (6) 

where rand (0, 1) is a uniformly distributed random number within the range [0, 1]. 
In random scale factor (DERANDSF) can meet or beat the classical DE. Here the time variation of Cr may be 

expressed in the form of the following equation: 

( ) ( )max minCr Cr Cr MAXIT iter MAXIT= − × −                       (7) 

where maxCr  and minCr  are the maximum and minimum values of crossover rate Cr, respectively; iter is the 
current iteration number; and MAXIT is the maximum number of allowable iterations. 

2.3. Teaching Learning Based Optimization 
This optimization method is based on the effect of the influence of a teacher on the output of learners in a class 
[12]. Like other nature-inspired algorithms, TLBO is also a population based method that uses a population of 
solutions to proceed to the global solution. TLBO has been already applied to clustering [13]. For TLBO, the 
population is considered as a group of learners. In optimization algorithms, the population consists of different 
design variables [14]. In TLBO, different design variables will be analogous to different subjects offered to learn- 
ers and the learners’ result is analogous to the “fitness”, as in other population-based optimization techniques. The 
teacher is considered as the best solution obtained so far. 

The process of TLBO is divided into two parts. The first part consists of the “Teacher Phase” and the second 
part consists of the “Learner Phase”. The “Teacher Phase” means learning from the teacher and the “Learner Phase” 
means learning through the interaction between learners. 

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text 
fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this 
template measures proportionately more than is customary. This measurement and others are deliberate, using 
specifications that anticipate your paper as one part of the entire journals, and not as an independent document. 
Please do not revise any of the current designations. 
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2.3.1. Teacher Phase 
As teacher is considered most knowledgeable person in the society, the best learner is mimicked as a teacher. The 
teacher tries to disseminate knowledge among learners, which will in turn increase the knowledge level of the 
whole class and help learners to get good marks or grades. So a teacher increases the mean of the class according 
to his or her capability i.e. the teacher T1 will try to move mean M1 towards their own level according to his or her 
capability, thereby increasing the learners’ level to a new mean M2. Teacher T1 will put maximum effort into 
teaching his or her students, but students will gain knowledge according to the quality of teaching delivered by a 
teacher and the quality of students present in the class. The quality of the students is judged from the mean value 
of the population. Teacher T1 puts effort in so as to increase the quality of the students from M1 to M2, at which 
stage the students require a new teacher, of superior quality than themselves, i.e. in this case the new teacher is T2. 

Let Mi be the mean and Ti be the teacher at any iteration i. Ti will try to move mean Mi towards its own level, so 
now the new mean will be Ti designated as newM . The solution is updated according to the difference between 
the existing and the new mean given by 

( )newDifference_meani i F ir M T M−=                             (8) 

where FT  is a teaching factor that decides the value of mean to be changed, and ir  is a random number in the 
range [0, 1]. The value of FT  can be either 1 or 2, which is again a heuristic step and decided randomly with 
equal probability as 

( ) ( )round 1 rand 0,1 2 1 .FT + × −  =                             (9) 

This difference modifies the existing solution according to the following expression 

new, old, Difference_meani i iX X= +                            (10) 

2.3.2. Learner Phase 
Learners increase their knowledge by two different means: one through input from the teacher and the other 
through interaction between themselves. A learner interacts randomly with other learners with the help of group 
discussions, presentations, formal communications, etc. A learner learns something new if the other learner has 
more knowledge than him or her. Learner modification is expressed as 

For 1: ni P=  
Randomly select two learners iX  and jX , where i j≠  

( ) ( )If i jf X f X<  

( )new, old,i i i i jX X r X X= + −  

Else 
( )new, old,i i i j iX X r X X= + −  

End If 
End For 

Accept newX  if it gives a better function value. 

3. Representation of Automatic Clustering 
In this section we will discuss about Automatic clustering representation for all optimization algorithm. 

Suppose that we are given a data set of N data points { }1 2, , , Nx x x , where { }1 2, , ,i i i inx x x x=   is the ith 
data point in n-dimensional space. The detailed process of the automatic clustering is described below. 

The initial population 1 2 _, , , pop sizeP X X X =    is the made up of pop_size possible particles (i.e. solutions), 
and each string is a sequence of real numbers representing T cluster centers of the candidates cluster centers. In an 
n-dimensional space, the length of a particle is determined as ( ) .T n T∗ +  The formula of particle Xp is: 

{ }1, 2, , 1 2, , , , , , , , 1, 2, , , 1, 2, , _p p p p p p
p p p i i T i TX z z z z i n p pop sizeγ γ γ γ  = = = ∈               (11) 

where T is the user-defined positive number, which denotes the maximum cluster number in the cluster set gener- 
ated by the individual pth particle, and pop_size denotes the population size. It is noted that the selected cluster 
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number will be located between 2 and T. [ ]0,1p
jγ ∈  indicate the selected threshold value for the associated jth 

candidate cluster centers, i.e., 1, 2, ,, , ,p p p
p i i T iz z z z =   . In this case, the proposed cluster centers selected rules 

with its related threshold values are used to determine the active cluster center in initial populations, which is 
defined by 

IF 0.5p
jγ ≥  THEN the jth candidate cluster center ,

p
j iz  is ACTIVE 

ELSE IF 0.5p
jγ <  THEN the jth candidate cluster center ,

p
j iz  is INACTIVE.         (12) 

When a new offspring chromosome is created, the γ  values are used to select the active cluster centroids. If 
due to mutation some threshold p

jγ  in an offspring exceeds 1 or becomes negative, it is forcefully fixed to 1 or 0, 
respectively. However, if it is found that no flag could be set to 1 in a chromosome (all activation thresholds are 
smaller than 0.5), we randomly select two thresholds and reinitialize them to a random value between 0.5 and 1.0. 
Thus, the minimum number of possible clusters is 2. 

The fitness of a particle is computed with the CS measure. The CS measure is defined as 

( )
( ){ }

( ){ }

( ){ }

( ){ }

1

1

1

1

max1 1 ,

min1 ,
,

max1 ,

min
,

,

j i

j i

T
j ki x C

k ii

T
i ji

T
j ki x C

k ii

T
i ji

d x x
x CT N

CS K
d z z

T j T j i

d x x
x CN

d z z
j T j i

= ∈

=

= ∈

=

 
 ∈ =

 
 ∈ ≠ 

 
 ∈ =

 
 ∈ ≠ 

∑ ∑

∑

∑ ∑

∑

                     (13) 

1 , 1, 2, ,
j ii jx C

i

z x i T
N ∈

= =∑                               (14) 

( ) ( )2

1, dN
j k jp kppd x x x x

=
= −∑                              (15) 

where iz  is the cluster center of iC , and iC  is the set whose elements are the data points assigned to the ith 
cluster, and iN  is the number of elements in jC , d denotes a distance function. This measure is a function of 
the ratio of the sum of within-cluster scatter to between-cluster separation. 

The objective of the PSO is to minimize the CS measure for achieving proper clustering results. The fitness 
function for each individual particle is computed by 

1

i

F
CS eps

=
+

                                    (16) 

where CSi is the CS measure computed for the ith particle, and eps is a very small-valued constant. 
As the number of clusters is fewer than two, the cluster center positions of this special chromosome are reini- 

tialized by an average computation. We put n/T data points for every individual cluster center, such that a data 
point goes with a center that is nearest to it. 

Implementation of Automatic Clustering Algorithm 
Step 1: Initialize each chromosome to contain T number of randomly selected cluster centers and T (randomly 
chosen) activation thresholds in [0, 1]. 

Step 2: Find out the active cluster centers in each chromosome. 
Step 3: For t = 1 to maxt  do 
1) For each data vector kx , calculate its distance metric ( ),, p

k j id x z  from all active cluster centers of the pth 
chromosome pX . 

2) Assign kx , to that particular cluster center ,
p
j iz , where 

( ) { } ( ){ }, ,1,2, ,min ,, p p
k j i k b ib Td x z d x z∀ ∈=



 

3) Check if the number of data points that belong to any cluster center ,
p
j iz  is less than 2. If so, update the 
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cluster centers of the chromosome using the concept of average. 
4) Change the population members. Use the fitness of the chromosomes to guide the evolution of the population. 
Step 4: Report as the final solution the cluster centers and the partition obtained by the globally best chromo- 

some (one yielding the highest value of the fitness function) at 
1) Time maxt t=  change the population members. Use the fitness of the chromosomes to guide the evolution 

of the population. 

4. Experiment and Results 
In this section, we compare performance of the AUTO-TLBO algorithm with Automatic clustering using im- 
proved differential evolution (ACDE) [4], standard hierarchical agglomerative clustering based on the linkage 
metric of average link [15], the genetic algorithm clustering with an unknown number of clusters K (GCUK) 
[16], dynamic clustering PSO (DCPSO) [17] and an ordinary classical DE-based clustering method. The clas- 
sical DE scheme that has been used is referred in the literature as the DE/rand/1/bin [10] where “bin” stands for 
the binomial crossover method. 

We run each algorithm separately and the accuracy of the clustering results and the runtime of the algorithms 
are compared 

4.1. Experimental Setup 
The parameters in cases of all the algorithms are given in Table 1. Where Pop_size indicates the size of the 
population, dim implies the dimension of each chromosome, and iniP  is a user-specified probability used for 
initializing the position of a particle in the DCPSO algorithm. 

4.2. Datasets Used 
The following real-life data sets are used in this paper which are taken from [2] [12]. Here, n is the number of 
data points, d is the number of features, and K is the number of clusters. 

1) Iris plants database (n = 150, d = 4, K = 3): This is a well-known database with 4 inputs, 3 classes, and 150 
data vectors. The data set consists of three different species of iris flower: Iris setosa, Iris virginica, and Iris ver- 
sicolour. For each species, 50 samples with four features each (sepal length, sepal width, petal length, and petal 
width) were collected. The number of objects that belong to each cluster is 50. 

2) Glass (n = 214, d = 9, K = 6): The data were sampled from six different types of glass: 1) building win- 
dows float processed (70 objects); 2) building windows non-float processed (76 objects); 3) vehicle windows 
float processed (17 objects); 4) containers (13 objects); 5) tableware (9 objects); and 6) headlamps (29 objects). 
Each type has nine features: 1) refractive index; 2) sodium; 3) magnesium; 4) aluminum; 5) silicon; 6) potas- 
sium; 7) calcium; 8) barium; and 9) iron. 

3) Wisconsin breast cancer data set (n = 683, d = 9, K = 2): The Wisconsin breast cancer database contains 
nine relevant features: 1) clump thickness; 2) cell size uniformity; 3) cell shape uniformity; 4) marginal adhesion; 
5) single epithelial cell size; 6) bare nuclei; 7) bland chromatin; 8) normal nucleoli; and 9) mitoses. The data set 
 
Table 1. Parameters for the clustering algorithms. 

GCUK DCPSO Classical DE ACDE AUTO-TLBO 

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value 

Pop-size 50 Pop-size 100 Pop-size 10*dim Pop-size 10*dim Pop-size 10*dim 

Cross-over 
probability 0.8 Inertia  

weight 0.71 CR 0.9 CRmax 1.0 - - 

Mutation 
probability 0.001 C1, c2 

Pini 
1.494 
0.75 F 0.8 CRmin 0.5 - - 

Kmax 20 Kmax 20 Kmax 20 Kmax 20 Kmax 20 

Kmin 2 Kmin 2 Kmin 2 Kmin 2 Kmin 2 
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has two classes. The objective is to classify each data vector into benign (239 objects) or malignant tumors (444 
objects). 

4) Wine (n = 178, d = 13, K = 3): This is a classification problem with “well-behaved” class structures. There 
are 13 features, three classes, and 178 data vectors. 

5) Vowel data set (n = 871, d = 3, K = 6): This data set consists of 871 Indian Telugu vowel sounds. The data 
set has three features, namely F1, F2, and F3, corresponding to the first, second and, third vowel frequencies, 
and six overlapping classes {d (72 objects), a (89 objects), i (172 objects), u (151 objects), e (207 objects), o 
(180 objects)}. 

4.3. Population Initialization 
For all the algorithms, we randomly initialize the activation thresholds (control genes) within [0 and 1]. The 
cluster centroids are also randomly fixed between maxX  and minX , which denote the maximum and minimum 
numerical values of any feature of the data set under test, respectively. 

4.4. Simulation Strategy 
In this paper, while comparing the performance of AUTO-TLBO algorithm with other clustering techniques, we 
focus on two major issues: as 1) ability to find the optimal number of clusters; and 2) computational time re- 
quired to find the solution. For comparing the speed of the algorithms, the first thing we require is a fair time 
measurement. The number of iterations or generations cannot be accepted as a time measure since the algo- 
rithms perform different amount of works in their inner loops, and they have different population sizes. Hence, 
we choose the number of fitness function evaluations (FEs) as a measure of computation time instead of genera- 
tions or iterations. Since the algorithms are stochastic in nature, the results of two successive runs usually do not 
match. Hence, we have taken 40 independent runs (with different seeds of the random number generator) of 
TLBO algorithm and for others we have directly taken from paper [13]. The results have been stated in terms of 
the mean values and standard deviations over the 40 runs in each case. As the hierarchical agglomerative algo- 
rithm “average-link” used here does not use any evolutionary technique, the number of FEs is not relevant to 
this method. This algorithm is supplied with the correct number of clusters for each problem, and we used the 
Ward updating formula [18] to efficiently re-compute the cluster distances. We used unpaired t-tests to compare 
the means of the results produced by the best and the second best algorithms. The unpaired t-test assumes that 
the data have been sampled from a normally distributed population. From the concepts of the central limit theo- 
rem, one may note that as sample sizes increase, the sampling distribution of the mean approaches a normal dis- 
tribution regardless of the shape of the original population. A sample size around 40 allows the normality as- 
sumptions conducive for performing the unpaired t-tests [16]. 

Finally, we would like to point out that all the experiment codes are implemented in MATLAB. The experi- 
ments are conducted on a Pentium 4, 1 GB memory desktop in Windows 7 environment. 

4.5. Experimental Results 
To judge the accuracy of the clustering algorithms, we let each of them run for a very long time over every 
benchmark data set, until the number of FEs exceeded 106. Then, we note the number of clusters found and their 
corresponding CS measure value which is given in terms of means and standard deviation in Table 2. 

To compare the speeds of different algorithms, we selected a threshold value of CS measure for each of the 
data sets. This cutoff CS value is somewhat larger than the minimum CS value found by each algorithm in Ta- 
ble 3. Now, we run a clustering algorithm on each data set and stop as soon as the algorithm achieves the proper 
number of clusters, as well as the CS cutoff value. We then note down the number of fitness FEs that the algo- 
rithm takes to yield the cutoff CS value. A lower number of FEs corresponds to a faster algorithm. Table 4 
shows results of unpaired t-tests taken on the basis of the CS measure between the best two algorithms (standard 
error of difference of the two means, 95% confidence interval of this difference, the t value, and the two tailed P 
value). For all the cases in Table 4, sample size = 40. 

4.6. Discussion on Results 
Table 3 reveals the fact that the AUTO-TLBO algorithm is not only gives optimal number of cluster values 
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Table 2. Final solution (mean and standard deviation over 40 independent runs) after each algorithm was terminated after 
running for 106 FEs, with CS-measure-based fitness function. 

Data Sets Name Algorithm Used Mean and Standard Deviation  
of Number of Cluster 

Mean and Standard Deviation  
of CS Measure 

Exact Cluster Number  
for Dataset 

Iris Data 

ACDE 3.25 ± 0.0382 0.6643 ± 0.097 

3 

DCPSO 2.23 ± 0.443 0.7361 ± 0.671 

GCUK 2.35 ± 0.0958 0.7282 ± 2.003 

Classical DE 2.50 ± 0.0473 0.7633 ± 0.039 

TLBO 3.033 ± 0.3198 0.5014 ± 0.143 

Average-Link 3.00 0.7863 ± 0.00 

Wine Data 

ACDE 3.25 ± 0.0391 0.9249 ± 0.032 

3 

DCPSO 3.05 ± 0.0352 1.8721 ± 0.037 

GCUK 2.95 ± 0.0112 1.5842 ± 0.328 

Classical DE 3.50 ± 0.0143 1.7964 ± 0.802 

TLBO 3.200 ± 0.0665 0.8848 ± 95 

Average-link 3.00 1.8921 ± 0.00 

Breast Cancer Data 

ACDE 2.00 ± 0.00 0.4532 ± 0.034 

2 

DCPSO 2.25 ± 0.0632 0.4854 ± 0.009 

GCUK 2.00 ± 0.0083 0.6089 ± 0.016 

Classical DE 2.25 ± 0.0261 0.8984 ± 0.381 

TLBO 2.000 ± 0.00 0.3982 ± 0.098 

Average-Link 2.00 0.9007 ± 0.00 

Glass Data 

ACDE 6.05 ± 0.0148 0.3324 ± 0.487 

6 

DCPSO 5.95 ± 0.0093 0.7642 ± 0.073 

GCUK 5.85 ± 0.0346 1.4743 ± 0.236 

Classical DE 5.60 ± 0.0754 0.7782 ± 0.643 

TLBO 6.00 ± 0.5872 0.2999 ± 0.511 

Average-Link 6.00 1.0221 ± 0.00 

Vowel Data 

ACDE 5.75 ± 0.0751 0.9089 ± 0.051 

6 

DCPSO 7.25 ± 0.0183 1.1827 ± 0.431 

GCUK 5.05 ± 0.0075 1.9978 ± 0.966 

Classical DE 7.50 ± 0.0569 1.0844 ± 0.067 

TLBO 5.998 ± 0.7226 0.8595 ± 0.112 

Average-Link 6.00 1.7221 ± 0.00 
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Table 3. Mean and standard deviations of the number of fitness FEs (over 40 independent runs) required by each algorithm 
to reach a predefined cutoff value of the CS validity index. 

Data Sets Name Algorithm Used Mean Number of Function Evaluation Required CS Cutoff Value 

Iris Data 

ACDE 459888 ± 20.50 

1.90 

DCPSO 679023.85 ± 31.75 

GCUK 7.7723.70 ± 120.21 

Classical DE 698043.80 ± 9336 

TLBO 19280.31 ± 30.45 

Wine Data 

ACDE 67384.25 ± 56.45 

0.95 

DCPSO 700473.35 ± 31.42 

GCUK 785333.05 ± 21.75 

Classical DE 675472.95 ± 14.83 

TLBO 22880 ± 44.78 

Breast Cancer Data 

ACDE 292102.50 ± 29.73 

1.10 

DCPSO 587832.50 ± 7.34 

GCUK 914033.85 ± 24.83 

Classical DE 575484.70 ± 10.26 

TLBO 15760.80 ± 62.89 

Glass Data 

ACDE 443233.30 ± 74.65 

1.80 

DCPSO 566335.80 ± 25.73 

GCUK 574938.65 ± 82.64 

Classical DE 542355.95 ± 32.85 

TLBO 96000 ± 18.58 

Vowel Data 

ACDE 437533.35 ± 51.73 

2.50 

DCPSO 500493.15 ± 35.47 

GCUK 498354.10 ± 74.60 

Classical DE 667342.80 ± 53.54 

TLBO 72000 ± 51.28 

 
Table 4. Results of the unpaired t-test between the best and the 2nd best performing algorithm 

Dataset Standard Error T 95% Confidence Interval Two-Tailed P Significance 

Iris 0.027 5.9624 From −0.217292 to −0.108508 <0.0001 Extremely Significant 

Wine 0.012 3.4157 From −0.063472 to −0.016728 0.0010 Very Significant 

Breast Cancer Data 0.0012 3.3534 From −0.087652 to −0.022348 0.0012 Very Significant 

Glass 0.112 0.2912 From −0.254703 to 0.189703 0.7717 Not Significant 

Vowel 0.019 2.5233 From −0.087838 to −0.010362 0.0137 Significant 
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but also converges faster in comparison to other algorithms. 

5. Conclusion 
An important feature of the AUTO-TLBO is that it is able to automatically find the optimal number of clusters 
(i.e., the number of clusters does not have to be known in advance) like other algorithms and does so in fast 
convergence time. The AUTO-TLBO algorithm is able to outperform then other five clustering algorithms in a 
statistically meaningful way over a majority of the benchmark data sets discussed here. This certainly does not 
lead us to claim that always AUTO-TLBO may outperform other algorithms over every data set since it is im-
possible to model all the possible complexities of real-life data with the limited test suit that we used for testing 
the algorithms. In addition, the performance of other algorithm may also be enhanced with a parameter tuning. 
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