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Abstract 
This article discusses the question of how elasticity of the system is intertwined with external 
stochastic disturbances. The speed at which a displaced system returns to its equilibrium is a 
measure of density dependence in population dynamics. Population dynamics in random envi-
ronments, linearized around the equilibrium point, can be represented by a Langevin equation, 
where populations fluctuate under locally stable (not periodic or chaotic) dynamics. I consider a 
Langevin model in discrete time, driven by time-correlated random forces, and examine uncer-
tainty in locating the population equilibrium. There exists a time scale such that for times shorter 
than this scale the dynamics can be approximately described by a random walk; it is difficult to 
know whether the system is heading toward the equilibrium point. Density dependence is a con-
cept that emerges from a proper coarse-graining procedure applied for time-series analysis of 
population data. The analysis is illustrated using time-series data from fisheries in the North At-
lantic, where fish populations are buffeted by stochastic harvesting in a random environment. 
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1. Introduction 
The nature of the negative feedback relationship between population growth rate and abundance is at the heart of 
population ecology. That said, statistical detection of density dependence using ecological time-series can be 
problematic. When plotting data on the form of the dependence of population growth rate on abundance, ecolo-
gists have been confounded by considerable noise around each relationship [1]. Hassell et al. [2] first pointed 
out that density-dependent effects are more marked in populations monitored longer. Brook and Bradshaw [3], 
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examining the time-series data of 1198 species, demonstrated a relationship between length of monitoring and 
increasing evidence for density dependence. However, the duration of a time-series necessary to distinguish a 
regulated population trajectory from a random walk is still uncertain [4] [5]. 

A relevant serious concern is the issue of noise color: how does the presence of serial correlation in the exter-
nal stochastic forcing affect the density dependence in a population? Solow [6] demonstrated that, when a statis-
tical test of density dependence being applied to time series generated by a correlated random walk, the propor-
tion of simulations for which the null hypothesis (random walk model) was rejected was far greater than the sig-
nificance level for negatively correlated variations (blue noise), and much smaller for positive autocorrelation 
(red noise). The effects of colored environmental variations on modulating the population elasticity have not 
been analyzed quantitatively. 

This article investigates the analysis of ecological time-series when the aim is to measure density dependence 
in the demographic processes. The equilibration time [7] [8] of the stochastic process is an informative summary 
measure of the dynamics of a system, describing a key property of population dynamics [9] [10]. The reciprocal 
of equilibration time approximates the speed of return to the equilibrium point, i.e. the elasticity (expressing the 
same concept as the term “density dependence” or “negative feedback” in population dynamics). The objective 
of this article is to explore the relation between the length of monitoring and the uncertainty in measuring densi-
ty dependence: how long of a time-series is required to be able to discriminate between density-dependent signal 
and external noise in the ecological systems? I start with a linear approximation of a discrete-time population 
dynamics model [11]-[16], where populations fluctuate slowly under locally stable (not periodic or chaotic) dy-
namics with low to moderate elasticity [17]. The analysis is illustrated using time-series of annual census of ex-
ploited fish populations in the North Atlantic. 

2. Population Dynamics 
2.1. Discrete-Time Langevin Equation 
The population renewal process ( )S t  of marine exploited fishes, responding to stochastic harvesting in a sto-
chastic environment, is described by a discrete-time dynamics 

( ) ( )( ) ( ) ( ) ( )1 1 1S t S t S t t Y t+ = Λ +Ξ + − +                           (1) 

with a growth-survival factor Λ  dependent on spawner abundances S, i.e. the escapement of adults from the 
harvest Y. The population biomass grows as a result of, not only growth of the surviving escapees in body 
weight, but also of recruitment of offspring Ξ . During year t an amount ( )Y t  is harvested with a fraction  

( )1 e F t−−  to the harvestable adult population, where ( ) ( ) ( )ln 1F t Y t S t= +    denotes the fishing mortality.  

All density dependence is assumed to be exerted by the adult population S [16]. It is a common observation that 
recruitment is unrelated to egg numbers over a wide range of spawner abundances [18]-[20]. Stochasticity enters 
the population dynamics in two ways, both as environmental variation mirrored by recruitment variability and as 
variation in the fishing mortality. Recruitment is presumed to track autocorrelated fluctuations in environmental 
variables. Fishers would expect this year to get as much catch as last year; there would also be some kind of in-
ertia of fisheries management. There exist memory effects: adjacent values in the time-series of recruitment and 
catches-to-escapement ratio are correlated [21]. 

In a stationary state (with equilibrium quantities denoted by the “  ” subscript), Equation (1), log-transformed, 
gives ( ) ( )ln 1 lnw F S− + = Λ   with the stationary fishing mortality ( )ln 1F Y S= +   , where ( )w S Y= Ξ +    
is the stationary ratio of each year’s recruitment to the harvestable adult population. The relative deviations from 
equilibrium point are denoted as ( ) ( )( )lnn t S t S=  , ( ) ( )( )1 lnt w tη = Ξ Ξ , and ( ) ( )2 t F F tη = − . Natural 
and human-caused forces ( )1 2η η+  are considered as external disturbances. On the assumption that we are free 
to change Ξ  and F independently of S around the equilibrium point, linearizing (log-transformed) Equation (1) 
yields a difference equation 

( ) ( ) ( ) ( )
2

1
1 1i

i
n t n t n t tγ η

=

+ − = − + +∑                             (2) 

with constant coefficient ( )( )1 1 1 d ln d lnw Sγ = − − + Λ

 evaluated at equilibrium. The coefficient γ  meas-

ures the (linear) elasticity of the system with respect to change in population size at equilibrium. The successive 
difference ( ) ( ) ( )1r t n t n t= + −  approximates the annual rate of increase of a population. For generating tem-
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porally structured noise, iη ’s are both assumed to be described as a first-order autoregressive, AR(1), process 
with serial correlation coefficients ( )1,1iλ ∈ −  and driven by mean-zero iid shocks. The linear stochastic dif-
ference Equation (2) is a discrete-time analogue of the Langevin equation driven by AR(1) processes. The auto-
regression coefficients are calculated by using the von Neumann’s ratio [22] [23], the ratio of the mean square 
successive difference 2

iη
σ∆  to the variance 2

iη
σ  for AR(1) variable iη , that is, 2 21 2

i ii η ηλ σ σ∆= − . Equation (2) 
is iterated to give the t∆ -year difference of population size 

( ) ( ) ( ) ( ) ( )
2 1

0 0
1 0

1
t

t j
i

i j
n t t n t n t t t jλ λ η

∆ −
∆

= =

+ ∆ − = − − + + ∆ −∑∑                       (3) 

with 0 1λ γ= − .  

2.2. Equilibration Time 
The population process with multiple decay-rate constants { }( )ln , 0,1, 2i iλ− ∈  is considered to calculate the 
asymptotic decay-time constant eqT , i.e. the total equilibration time; the approach follows Roughgarden [11]. 
Let ( )2 2

0ˆ 1
i i iη ησ σ λ λ= − . Taking the mean squares over Equations (2) and (3) mediates the following two rela-

tions, respectively, 
2

2 2 2 2

1
ˆ2

ir n i n
i

ησ σ γ σ λ σ
=

= −∑                                  (4) 

with the ratio of the mean square successive difference 2
rσ  to the variance 2

nσ  in population size ( )n t , and 

( ) ( )
2

2 2

0 1
ˆ1 1

in i i
t i

t ηγ ρ σ σ λ λ
∞

−

∆ = =

∆ = + −∑ ∑                              (5) 

with the autocorrelation function of series ( )n t  at lag t∆  years 

( )
2

2 2 0
0

1 0

ˆ ,
i

t t
t i

n i
i i

t η
λ λ

ρ λ σ σ λ
λ λ

∆ ∆
∆ −

=

−
∆ = +

−∑                              (6) 

where the correction (the second term on the right-hand-side) is due to memory effects of external perturbations. 
From the recursion, ( ) ( )2

01 0
j

ii jn t t jλ η∞

= =
= −∑ ∑ , a corollary to Equation (5) is obtained: 

( ) ( )
2

2 2 2
0 0

1
ˆ1 1 .

in i
i

ησ λ λ σ λ
=

= + −∑                                (7) 

Equations (4) and (7) yield the quadratic equation for the elasticity γ  

( )
2

2 2 2 2

1
1 .

in r
i

ηγ σ γ σ σ
=

+ − = ∑                                  (8) 

Thus, the (linear) response of a system to external perturbations is expressed in terms of fluctuation properties of 
the system in equilibrium. The elasticity and the variance of population fluctuations cannot be independent, but 
they are related to each other in the equilibrium system [24]. 

The average relaxation time of population fluctuations defines the total equilibration time eqT  as follows [24] 

( ) ( )eq
0 0

exp .
t t

t t Tρ
∞ ∞

∆ = ∆ =

∆ = −∆∑ ∑                                (9) 

After the time eqT  memory of the initial conditions is lost: the deviation from the equilibrium is expected to 
decay away in an exponential fashion with a time constant given by the equilibration time eqT . The total elastic-
ity with respect to change in population size measures the strength D of total density dependence [10] [16]: 

( ) ( ) ( )E 1 ,n t n t n t n Dn + − = = −   

i.e. the expectation of change in population size given ( )n t n=  is equal to 100 × D percent negative feedback. 
Since the total density dependence is the asymptotic multiplicative growth rate of population per year, 

( )ln 1 D− −  reads the asymptotic decay-rate constant. Smaller values of D indicate that systems return to equili-
brium slower. Since the exponential-decay time is the inverse of the decay-rate constant, the total density de-
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pendence reads 
eq11 e .TD −= −  

Therefore, the density dependence D and the variance of population fluctuations are related to each other 
through the relation ( )1

0tD tρ∞−
∆ =

= ∆∑  with Equation (5). 

2.3. Indeterminacy in Population Dynamics 
Equation (2) with (8) yields 

( ) ( ) ( ) ( )
2

2
2 1

2 2
2

1

11
1

i

i
n n i

r r n r

i

tn t n t n t

η

η
σ σγ γ γ

σ σ σ σ
σ

=

=

++ −
= − + − +

∑

∑
 

(where each term is standardized), implying that, if a population is governed by slowly damped dynamics 
( )0 1γ< < , external noises mask signals for evidence of deterministic behavior of the system. Unless the popu-
lation exhibits damped-oscillator dynamics (i.e. over-compensation, 1 2γ< < ), the relationship between ( )r t  
and ( )n t  is characterized by large variance in growth rate; most of the changes in population size occur in a 
density-independent manner. If a perturbation brings the system away from the equilibrium point such that  

( ) ( )2 2 21 1n n rn σ γ γ σ σ> + − , then the deterministic signal becomes visible over the noise; using Equations (4) 

and (5) this inequality reduces to 

c πnn Lσ  

with 

( )eq1
c 1 2 e 1 π.TL  = + −

 
 

When one performs some observations for L years, the uncertainty in locating the population equilibrium,  

[ ]SDn n∆ = , i.e. the standard deviation of the sample mean ( )1
L
tn n t L
=

= ∑ , propagates into the density de- 

pendence. The variance of n  is written as [13] [16], [ ] ( )2 2
, 1Var L

n i jn i j Lσ ρ
=

= −∑ . Making use of the expli-  

cit form for the autocorrelation function (6) yields 

[ ] ( )
2

0
Var 2 1n

t
n t

L L
σ ζρ

∞

∆ =

 = ∆ − +  
∑  

with 

( )
( )

( )
( )

( )
( )

220 0 0 0

2 2 2 2
1 00 0

2 1 1 1ˆ 2
.

1 1 1
i

L L L
i ii

i in i

ηλ λ λ λ λ λσ λ
ζ

λ λσλ λ λ=

 − − −
 = − − −

−  − − − 
∑  

By virtue of Equation (9), a time-equilibrium uncertainty relation is obtained: 

( )3 2
c π ,nn L L Lσ −∆ = +                               (10) 

where ( )3 2L−  denotes a remainder term of order 3 2L−  given by 3 2
cπ 4L Lζ − . Thus, Lc provides another 

measure of the time scale of population dynamics, and reads ( )1
c eq eq2πL T T −= +  for 1D <  with large valued  

eqT . Any observation over a short duration is associated with large indeterminacy. The supposed population 
equilibrium ln S  (chosen as the sample mean) and the length of time-series data are complementary: the un-
certainty of population equilibrium is decreased by increasing the duration of observation. Lc is designated the 
complementary time. It is worth pointing out that the complementary time is always positive for 0 2D< < , 
while the equilibration time can acquire either non-negative real number or complex number. 
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2.4. Coarse Graining 
Let CL be the degree of certainty, with which the supposed equilibrium lies within the bounds  

( ) ( )E 0n t n t   : 

( )Pr 2 πL nC n σ= ≤  

for normally distributed population fluctuations (with the true (population) standard deviation nσ ). This is  

equivalent to ( )cPr 2n n L L∆ . Let [ ] ( ){ }[ ] ( )( )00 #n tt n t±
⋅ = ⋅∑   be the sample mean, taken under the con- 

dition that n is larger (smaller) than the supposed equilibrium point, where ( ) 0#n t   is the number of observa- 

tions ( ) 0n t   in the time-series. The negative relationship of conditional sample mean of growth rate, [ ]r
±

, 

versus [ ]n
±

 is expected to be visible with a probability CL. The larger the probability CL, the more accurately 
the density dependence D is measured from the population time-series. 

In order to calculate the probability CL, I analyze the time-series at different resolutions by constructing a 
coarse-grained time-series. Let ⋅    and ⋅    be the ceil and the floor functions. The coarse-grained time-series 
is built by taking the average inside a non-overlapping moving window with eqT    data points, 

( )
( )

( )
eq

eq
eq

eq eq
1 1

, 1, , .
j T

T
i j T

n j n i T j L T
  

 = − + 

    = =    ∑ 
 

The coarse-grained time-series are considered to be serially independent. Accordingly, the uncertainty of 
population equilibrium (the standard deviation of the mean) is calculated to be 

eq

1 2

eq

SD
,

Tn
n

L T

 
 ∆ =

    

 

and the statistic 

eq

eq

1 2

eqSD

T

T

nn
n n L T
=

∆        

                             (11) 

has a standard Gaussian distribution. In reality, we only have the sample standard deviation. So, replacing 

eq
SD Tn 

   in Equation (11) by the square root of the sample variance, ( ) ( )( )eq

eq

1 2
2

eq1 1L T
Tj n j L T

    
=

   −  ∑ , 

yields a statistic which has Student’s t-distribution with eq 1L T   −    degrees of freedom (d.f.); we can use 

the Student’s t-statistic to see how good the estimate of equilibrium population size. The value of CL, i.e. the 
integral of Student’s t-PDF between c2L L± , quantifies the ability to infer density dependence from a given 

(long) observation time-series, and c2L L  is the two-tailed ( )100 1 LC× −  percentage point of Student’s 

t-distribution with eqd.f. 1L T  = −   . Accordingly, the following holds 

( ) ( )c eq1 22 1
LCL L t L T−

  = −                               (12) 

(precisely the left-hand-side involves the remainder term of order 1 2L− ). After L years’ observation the negative 
relationship is visible with a probability of CL. Equation (12) with cL L=  and c eq2πL T=  yields  

( )Pr 2 0.784LC n n = ∆ ≤ =  , implying that, when the observation series is longer than Lc years, the negative  

relationship is visible with a probability of 78.4% or more. When monitoring an equilibrium population (in the  
dynamic balance) for L years, the probability of the true equilibrium lying outside the bounds ( )2 πnσ±  
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reads 1 LC− ; the sample mean growth rate [ ] 0r
±
  will then be observed, even when cL L> . The density  

dependence will be invisible with a probability of 1 LC− , that is, it has a tendency to overshoot and to leave the 
center point n  (i.e. sample average). 

2.5. North Atlantic Fisheries 
Empirical analysis [21] [25] suggests that population time-series from the North Atlantic fisheries are asymptot-
ically stationary. The notion of asymptotic stationarity means that the probability density function of the variable 
monitored over a wide time interval exists and it is uniquely defined. The logarithmic changes in annual spawn-
er abundance, ( )r t , are Gaussian distributed and the observed mean r’s are not significantly different from zero. 
There is no important overall trend in spawner abundance, as expected in the equilibrium system [3]. 

I now apply the theory for measuring density dependence to time series of North Atlantic commercial species, 
which are the same as the fish stocks analyzed in [26]; there are 38 populations of ten species, cod (Gadus mor-
hua), haddock (Melanogrammus aeglefinus), herring (Clupea harengus), mackerel (Scomber scombrus), plaice 
(Pleuronectes platessa), saithe (Pollachius virens), sardine (Sardina pilchardus), sole (Solea solea), sprat 
(Sprattus sprattus), and blue whiting (Micromesistius poutassou). Data are extracted from the 2008 working 
group reports of the International Council for the Exploration of the Sea (ICES) [27]. The length of examined 
time-series ranges from 23 to 60 years. Estimates of model parameters are plotted against the equilibration time  

eqT  in Figure 1. The estimates of D and cL  are 0.06 0.43D≤ ≤  and c11.5 93.7L≤ ≤  years. 
For a sufficiently long t∆ , Equation (3) with medium elasticity ( )01 1λ− < <  yields 

( ) ( ) ( ) ( ) ,n t t n t n t t tη∞+ ∆ − = − + + ∆  

where η∞  denotes time-independent random forcing with mean 0 and variance 2
nσ . This coarse-grained equa-

tion implies that, while for nn σ<  the signals ( t∆ -year growth rate) are at the level of noise, if the system is 
displaced ( )nn σ>  away from the equilibrium point, the negative relationship becomes visible over the noise 
on time scales longer than the marginal, equilibration time. Figure 2 demonstrates that though, when plotting 
annual growth rate against population size, the relationship well looks like a shotgun pattern, when  

( ) ( )eqy n t T n t = + −   is plotted against ( )x n t= , the negative feedback effects are visible, i.e. 0y   for 

nx σ± . 
 

 
Figure 1. Estimates of decay-time constants of the North Atlantic 
systems. The equilibration time Teq of each population is compared 
with the decay-time constants { }( )1 ln , 0,1,2i iλ− ∈  inherent in 
the system and for the time-series of recruitment and catches-to- 
escapement ratio. The solid circles refer to λ0, and the open squares 
(triangles) to recruitment (annual catch) variability. The dashed line 
represents y = x. 
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(a)                                               (b) 

Figure 2. Population growth diagram of the North Atlantic fishes on fine- and coarse-grained time- 
scales. (a) The diagrams of annual growth rate (divided by total density dependence D) versus popu-
lation abundance of the examined fishes are aggregated and plotted. (b) The coarse-grained diagrams 
demonstrate that the negative relationship is visible between Teq-year growth rate and population im-
balance from equilibrium. The axes are scaled by σn. The lines represent y = −x. 

 
After averaged over sizes 0n  in the time-series data over cL L>  years, the negative relationship can be  

seen with a predicted probability 0.78LC  , whereas the dependence of [ ]r
±

 on [ ]n
±

 in the data comprising  

cL L<  years is rather vague (upper panels of Figure 3). Besides, I perform simulations to validate the criterion 
for visibility of density-dependent relationship. For simulations based on the population equation of motion (2) 
with the AR(1) model for the variations in the recruitment and the fishing mortality, I use parameter values that 
are obtained by analyzing the ICES time-series data sets. When plotting the simulated diagrams of mean growth 
rate versus mean abundance, conditioned on 0n , for the populations observed over cL L>  years, the data 
are divided into two piles; for cL L< , the gap between the piles is closed up (lower panels of Figure 3). Of 
1000 simulations for each population, the proportion of simulations in which the negative feedback on the sam-  

ple mean growth rate is observed (i.e. [ ] 0r
±
 ) is plotted in Figure 4. 

3. Intertwining of Stochastic Processes 
In this section, I discuss the effects of multiple noise sources and noise color on measuring density dependence. 

3.1. Delayed Density Dependence 
Recently, Ives et al. [10] developed a pragmatic approach based on the autoregressive moving average (ARMA) 
model to assessment of ecological time-series, and identified the lagged structure in the data as the ARMA order. 
The time-lagged density-dependent effect in population fluctuations appears: the direction of annual change in 
population size depends on the past population trajectory. 

Consider the system perturbed by multiple noise sources, where external perturbations iη  follow AR(1) with 
autoregression coefficient iλ , driven by mean-zero iid random shocks iε , under the assumption of mutual in-
dependence of iη ’s ( 1, , 1i p= − ; note that the results obtained in the above section can be generalized to an 
arbitrary number of environmental variables). Start by picking a variable 1η  to eliminate, and substitute 

( ) ( ) ( ) ( )1
1 0 21 p

iit n t n t tη λ η−

=
= − − −∑  into both sides of the AR(1) equation ( ) ( ) ( )1 1 1 11 1t t tη λη ε+ = + + ; this 

procedure, repeated to eliminate ( )2, , 1i i pη = −
 one by one from the simultaneous equations, yields the 

ARMA ( ), 2p p −  model 

( ) ( ) ( )
2

1 0

p p

n t n t tτ τ
τ τ

β τ τ
−

= =

= − + ⋅ −∑ ∑α ε  

with ( )1p − -dimensional vectors ( ),1 , 1, , pτ τ τα α −= α  and ( ) ( ) ( )( )1 1, , pt t tε ε −= ε . The ARMA coefficients  
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(a)                                               (b) 

      
(c)                                               (d) 

Figure 3. Mean behavior of fish populations in the North Atlantic. Shown are the diagrams (scaled 
by 2 n∆ ) of mean growth rate (divided by D) versus mean abundance, conditioned on a current 
population imbalance ( ) 0n t  . For the populations observed over L > Lc years (panel (a)), the neg-

ative feedback becomes statistically visible with a probability of 0.78LC  . For 15 of the 38 popu-
lations examined, the time-series data comprise L < Lc years (panel (b)). In panels (c) and (d) (show-
ing the counterparts of panel (a) and (b), respectively), the simulated growth diagrams of North At-
lantic fish populations are depicted. 100 pairs for each population are piled up. 

 
iβ  and ijα  are extracted by expanding the right-hand-side of the following pth- and ( )2p − nd-degree poly-

nomials 

( )
1

0 0
,

pp
p

i
i

x xτ
τ

τ
β λ

−
−

= =

= − −∑ ∏                                (13) 

( )
( )

12
2

0 1
, 1, 2, , 1.

pp
p

j i
i i j

x x j pτ
τ

τ
α λ

−−
− −

= = ≠

= − = −∑ ∏ 
 

Since the characteristic equation for the pth-order AR component is 0 0p p i
ii xβ −

=
=∑ , the roots are found from 

Equation (13) to be iλ  ( )0,1, , 1i p= −
. We see that the delayed density dependence in population dynamics 

arises from serial correlation in the external stochastic forcing [12] [24]. 
Equation (2), transformed into the ARMA(3,1) form, gives 
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Figure 4. Degree of certainty. The values of CL are plotted against 
L/Lc (solid circles for the North Atlantic fish populations). The 
dashed line is calculated from Equation (12) with the approxima-
tion Lc = 2πTeq. The open circles read CL estimated from 1000 si-
mulated data sets. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 1

3 2

0 00
1 1 1 3 ,i i j i

i i j i
n t n t n t n t tτ

τ
λ λ λ λ τ

= < ==

∆ = − − ∆ − + ∆ − − + ⋅ + −∑ ∑ ∑∏ α ε  

where ∆  denotes the differencing operation, and ( ){ }tε  is a sequence of two-dimensional independent ran-
dom vectors. This third-order stochastic difference equation of population motion does not have an oscillatory 
solution (except for the period of two years), because iλ ’s are restricted between ±1. Figure 1 shows that the 
time constant of the dominant mode (with the slowest decay rate determined by the maximum eigenvalue) disa-
grees with the equilibration time eqT . The differential coefficient of eqT  with respect to the variance 

1

2
ησ , for 

fixed constant 1λ , is readily seen from Equation (5), as 

( )
2

1 1

eq 2
2 12

const

T
Qη

η λ

λ λ σ
σ

=

 ∂
= − − 

∂  
 

with 

( )
( ) ( ) ( )( )

eq
2

1 2
eq

0
224

0 0 0
1

e 1 1
,

1 1 1 1

T
i

i

n i i
i

T
Q

λ

σ λ λ λ λ λ

=

=

 − + 
 =

− + − −

∏

∏
 

where the variance 
1

2
ησ  varies linearly with the variance of 1ε . Accordingly, the equilibration time eqT  is not 

determined solely by the eigenvalues iλ ’s, but depends on the amplitude nσ  of population fluctuations through 
the driving noise iε  of the AR(1) process ( )i tη . 

3.2. Noise Color 
I have shown that apparently density-independent influences, which arise from colored environmental variations, 
modulate the population elasticity. In the following let us further analyze the impact of color of environmental 
variation on the total density dependence in a population. Here, for mathematical simplicity, the effects of re-
cruitment fluctuations 1η  are only taken into account on the variance in population abundance, where the in-
herent elasticity γ  of the system is a given constant; the variance 

1

2
ησ  varies with the value of AR(1) coeffi-

cient 1λ  (the variance of 1ε  is fixed at a constant). 
Equations (4), (5) and (7) describe the interaction between endogenous dynamics of the population and exter-

nal disturbances. I demonstrate, in Figure 5, how color of recruitment variation affect the population fluctuations.  
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(a)                                                (b) 

      
(c)                                                (d) 

Figure 5. Effects of noise color on population processes. The total density dependence D (panel (a)), 
the variance 2

nσ  of population fluctuations (panel (b), semi-log scale), the uncertainty nn σ∆  of 
population equilibrium (panel (c)), and the complementary time ( )c πL Lζ+  including the re- 
mainder term (panel (d), semi-log scale) are plotted as a function of environmental autocorrelation λ1, 
where L = 30 and the inherent elasticity γ of the system is fixed as ( )0 1 0.5λ γ= − =  (solid line) or 
−0.5 (dashed line). In panel (b), 2

nσ  is divided by the variance of population process driven by white 
noise. In panel (d), the dotted line represents the equilibration time Teq (indicating 1 ln 1 D− −  for 
D > 1), where λ0 = 0.5. 

 
The total density dependence D decreases when redness of noise color is increased (an increase in the autocor-
relation is denoted “increased redness”), and 0D →  as 1 1λ →  for any ( )0,2γ ∈ . The reduction in neg- 
ative feedback on population growth leads to a slowing down of the equilibration process: population fluctua-
tions have very long relaxation times and the system returns to equilibrium very slowly. In the limit 0D → , the 
population imbalance follows a random walk irrespective of the values of γ . In a blue environment, 2D →  as 

1 1λ → −  for any γ . In the limit 2D → , the system is expected to behave as ( ) ( ) ( )1 1n t n t tε+ = − + +   
(with a mean-zero iid random variable ( )tε ), which is iterated to yield ( ) ( ) ( ) ( )1 1 1n t n t t tε ε+ = − + + −   ;  

consequently, the amplitude jitter in the population oscillation exhibits a random-walk property and is non-sta- 
tionary (regardless of the value γ ). In the limit 1 1λ → − , while the system exhibits negative feedback, the 
population is not regulated. Both 1 1λ → ±  lead to reduction in population regulation, resulting in unstable dy-
namics: the amplitude nσ  of population fluctuations diverges asymptotically. Either way, ( )0 1 0λ γ= −  , the 
variance 2

nσ  reaches a minimum at ( )3
1 0 0λ λ λ= − + . Note from Equation (13) that when 0iiλ =∑ , the 

temporal correlation of population fluctuations significantly decreases (fluctuations become white in time) and 
the population follows rapidly mean-reverting stochastic process. The effect of an increase in redness of noise is 
to enhance the uncertainty in locating the population equilibrium and the complementary time. In the limit 

1 1λ → , we are far from the allowed certainty in measuring density dependence, 1nn σ∆ →  for any γ , re- 
gardless of L. It is also confirmed that n∆ →∞ in both the limits 1 1λ → ± ; while in the limit 1 1λ → − , the un- 
certainty of population equilibrium diverges less rapidly than the standard deviation of population fluctuations,  
i.e. ( )1 1 2L

nn Lσ∆ → − − . 
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4. Concluding Remark 
Analyzing a stochastic process with slowly damped dynamics, I have derived the expression of complementarity 
between uncertainty in locating the population equilibrium and length of monitoring. The complementarity rela-
tion imposes a limit on the degree of certainty to which a measurement of density dependence is known. The 
complementarity is an essential criterion for disentangling density-dependent signals from external noise in the 
population process. Looking at a long time-scale makes the negative feedback on population fluctuations visible. 
It is difficult to know whether the system is heading toward the equilibrium point in the time-series of length 
less than the complementary time. This implies that density dependence is a concept that emerges from applying 
a proper coarse-graining procedure for time-series analysis. 

The approach taken in this article is based on linear approximation of a nonlinear stochastic model. A linear 
approximation applies for “small” perturbations from an equilibrium point, where the “smallness” should be 
measured relative to the range of the uncertainty of population equilibrium. Because a large uncertainty exists in 
determining the population equilibrium from short observation series in ecology, it is probable that the system 
spends most of its time “near” the equilibrium point; a linear approximation would be usually enough accurate. 
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