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Abstract 
We analyze in the framework of the space group theory the change of the dispersion law in gra-
penein and the vicinity of the (former) Dirac points due to application of supercell potential with 
the 3 3×  space priodicity and the same point symmetry as graphene. 
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1. Introduction 
Graphene is a two-dimensional crystal of carbon atoms, which form a honeycomb lattice with the point symme-
try described by the group 6hD . The first Brillouin zone (BZ) has a hexagonal form, and the conduction band 
touches the valence band in six BZ corners which form two non-equivalent triads of BZ corners, K  and ′K . 
One of the routes toward tailoring the electronic properties of graphene is through the adsorption of metals [1] 
[2]. Recently, several types of adatoms were used to dope graphene in attempts to tailor properties of graphene- 
based devices [3]-[7]. The gap opening in the high symmetry points for the hexagonal lattices due to interaction 
with the interface was considered in [8]. In Ref. [9], it was shown that, using ab initio density functional ory 
calculations, the adsorption of an alkali-metal submonolayer ongraphene occupying every third hexagon of the 
honeycomb lattice in a commensurate ( )3 3 30R×   arrangement induces an energy gap in the spectrum of 
graphene. We decided to analyze this opening of the gap in the framework of the group theory. In our previous 
publications [10]-[12] we summed up the classification of the energy bands in graphene on the basis of the point 
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group analysis. The only fact from that analysis we need in the present work, is the fact that the little group at 
the point K  is 3hD  and the bands π  and *π  realize E′′  representation of the group. The same can be 
said about the point ′K . This fact by itself means that the bands π  and *π  touch each other at the points 
K  and ′K , and the electron states in the vicinity of these points are described by massless Dirac equation 
[11]. 

For the purpose of the present paper, we should put the abovementioned fact into the framework of the theory 
of the space group symmetry [13] [14], from which we will need only a few basic ideas. According to the theory 
of the space group symmetry, the bands π  and *π  should be considered at the points K  and ′K  (these 
two points can be considered as the stars of the wave vector K , and designated *K  together, thus realiz-
ing a 4-dimensional representation of the 6hD  group. Due to the identity 

6 3 2 3h h hD D C D= ×                                  (1) 

any element of the group 6hD  can be presented as an element of the group 3hD G , or as a product of 2C  
and such element. Representation of the point group 3hD E′′  realized at the point ( )′K K  defines repre-
sentation of the space group realized at *K . The matrix representing an element G  is a super-matrix 
2 2×  
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                             (2) 

super-indices 1 and 2 referring to the points K  and ′K  respectively. The matrix representing an element 
2C G×  is 

( )* , ''
2

0
.0

K ED C G
 

× =   
 





                               (3) 

We will not need the exact form of the non-diagonal matrix elements in Equation (3); what we need is the 
fact that the trace of the matrix ( ),

2
K ED C G

∗ ′′ ×  is equal to zero. Naturally, when we consider dispersion in 
grapheme as it is, space group symmetry point of view adds very little in comparison to point group symmetry 
point of view, because the Hamiltonian, which has the symmetry 3hD , is block-diagonal.  

Now we apply the group theory to analyze what happens at the points , ′K K  in grapheme with a perfectly 
commensurate superlattice potential (which appears either because of the substrate or because of the absorbed 
atoms), which has the same point symmetry 6hD  as graphene. We consider explicitly a 3 3× superlattice, 
known as the Kekule distortion of the honeycomb lattice [9]. In this case we may consider the Bril-louine zone 
(BZ) of the superlattice as the folding of the original [9] [15]. The folding leads to the identification of the cor-
ners of the original BZ ( K  and ′K ) with the center Γ  of the new BZ. The Hamiltonian is no longer block 
diagonal and, because the points K  and ′K  are now identical, has the full symmetry 6hD . We thus observe 
a paradox situation: due to decrease of the translational symmetry the point symmetry of the Hamiltonian has 
increased. 

Because of the symmetry of the Hamiltonian, we need to decompose representation realized by Matrices (2) 
and (3) with respect to the irreducible representations of the group 6hD .To obtain the decomposition, it is con-
venient to use equation 

( ) ( )*1 ,
G

a G G
gα αχ χ= ∑                                 (4) 

which shows how many times a given irreducible representation α  is contained in a reducible one [16]. In 
Equation (4) g  is the number of elements in the group, ( )Gαχ  is the character of an operator G  in the ir-
reducible representation α  and ( )Gχ  is the character of the operator G  in the representation being de-
composed. Actually, even without using Equation (4), just by inspection of the two lowest line of Table 1 we 
obtain the decomposition 

1 2 .g uR E E= +                                    (5) 

We see that due to supercell potential two degenerate Dirac points disappear. At the point Γ  we have two 
merging bands realizing representation 1gE  and another two merging bands realizing representation 2uE . We  
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Table 1. Characters table for irreducible representations of 6 3, hD D  point groups. 

6D   E  2C  32C  62C  23U  23U ′  

 3hD  E  σ  
32C  32S  23U  3 vσ  

1A  1A′  1 1 1 1 1 1 

2A  2A′  1 1 1 1 −1 −1 

1B  1A′′  1 −1 1 −1 1 −1 

2B  2A′′  1 −1 1 −1 −1 1 

2E  E′  2 2 −1 −1 0 0 

1E  E′′  2 −2 −1 1 0 0 
 
may expect that representation 1gE , as being more symmetrical, is realized at the top of the valence band, and 
the representation 2uE  is realized at the bottom of the conduction band. 

To get the form of the energy spectrum of the electrons in the vicinity of the point Γ  let us consider both the 
⋅k p  term [17] and the supercell potential as a perturbation. The effective Hamoltonian is 

ˆ ˆ ˆ,eff k pH H V⋅= +                                    (6) 

where 
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and ( )0V̂  reduces to two independent real constants 
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                                  (8) 

The specific form of the operator ( )0V̂  follows from the symmetry of the base functions realizing representa-
tions 1gE  and 2uE . By shifting origin of the energy axis these two constants can be chosen as 

1 2 .V V V= − =                                        (9) 

Forming and solving the secular equation from these matrix elements, we obtain 
(0) 2 2 2( )k v k Vε = ± +                                   (10) 

the sign plus corresponding to an upper pair of bands, and the sign minus corresponding to a lower pair of 
bands. 

To resolve between the branches in each pair we should take into account k  corrections to the operator ( )0V̂ . 
The first order in k  corrections is equal to zero because the symmetry group contains the center of inversion. 
To the second order in k  we have ( ), 1, 2i k =  

( ) ( ) ( )0 2 0ˆ ˆ ˆ ˆ ˆ ,ik i kV V V V k kγ= + = +                             (11) 

where îkγ  is an Hermitian tensor operator (symmetrical in the suffixes i  and k ). These include the correc-
tions from the terms linear in k  in the Hamiltonian in the second-order perturbation theory and the corections 
from the terms quadratic in k  in the first-order perturbation theory [17]. Notice that ( )2V̂  is small relative to 
both ( )0V̂  (because we consider the states in the vicinity of the point Γ ), and with respect to ˆ

k pH ⋅ . 
The relations exist between the matrix elements of the operator because of the requirements of symmetry. As 

regards their transformation law under the symmetry operations, the wave functions which form the basis of the 
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representation 2uE  (1, 2 branches) can be taken in the form 

1 2, .zx zyψ ψ                                  (12) 
and the wave functions which form the basis of the representation 2uE  can be taken in the form 

1 2, .z zxyψ ψ                                  (13) 
From this, we easily conclude that in the first case the matrix elements of the îkγ  reduce to three independent 

real constants 

1 1 2 2 ,

2 2 1 1 ,

1 2 2 1 .

xx yy

xx yy

xy xy

A

B

C

γ γ

γ γ

γ γ

= =

= =

= =

                               (14) 

The matrix elements of the operator ( )2V̂ are 
( ) ( )

( ) ( )

2 2 2 2

2 2

ˆ ˆ1 1 2 2
ˆ ˆ1 2 2 1 2 .
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x y

V V Ak Bk

V V Ck k

= = +
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                           (15) 

In the second case the matrix elements of the îkγ also reduce to three independent real constants 

 

1 1 1 1 ,

2 2 2 2 ,

1 2 1 2 .

xx yy

xx yy

xx yy
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γ γ

γ γ
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= =
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                              (16) 

The matrix elements of the operator ( )2V̂ are 
( )

( )

( ) ( )

2 2

2 2

2 2

ˆ1 1 ,
ˆ2 2 ,
ˆ ˆ1 2 2 1 2 .X Y

V Dk

V Ek

V V Fk K

=

=

= =

                           (17) 

Forming and solving the secular equation from these matrix elements, we obtain the 1gE  branches of the 
spectrum 

( ) ( )(0) 2 2 2x y x yAk Bk Ck kε ε= + + ±k k                          (18) 

The sign of ( )(0)ε k  is determined by the fact whether we are dealing with the lower or upper bands. The 
formula for the 2uE  branches of the spectrumcan is obtained similarly. 

The folding of the BZ, together with the destruction of previously existing gapless Dirac points, leads to ap-
pearance of the new ones. In fact, the new BZ is still a hexagon, and the same symmetry arguments used for 
graphene can be used to explain appearance of the gapless Dirac points at the corners of the new BZ ( ), ′K K  . 
However, these new Dirac points are situated deep below or high above the Fermi level, hence, less of them ma-
nifest themselves than Dirac points of unreconstructed graphene. 
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