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Abstract 
We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau 
approximations that were first considered by Dubiner. The asymptotic formulas for 
Jacobi polynomials NP ( , ) , , 1> −α β α β  are derived and confirmed by numerical approxi- 
mations. More accurate results for the slowest decaying mode are obtained. We explain 
where the large negative eigenvalues come from. Furthermore, we show that a large 
negative eigenvalue of order 𝑵𝑵𝟐𝟐  appears for 1 0− < <α ; there are no large negative 
eigenvalues for collocations at Gauss-Lobatto points. The asymptotic results indicate 
unstable eigenvalues for 1>α . The eigenvalues for Legendre polynomials are directly 
related to the roots of the spherical Bessel and Hankel functions that are involved in 
solving Helmholtz equation inspherical coordinates. 
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1. Introduction 
Pseudospectral methods were developed to solve differential equations, where derivatives are computed numer- 
ically by multiplying a spectral differentiation matrix [1]. Compared to finite difference methods that use local 
information, pseudospectral methods are global, and have exponential rate of convergence and low dissipation 
and dispersion errors. However in boundary value problems, they are often subject to stability restrictions [2]. If 
the grid is not periodic, the spectral differentiation matrices are typically nonnormal [3], and the nonnormality 
may have a big effect on the numerical stability and behavior of the methods. On a grid of size N, pseudos- pec-
tral methods require a time step restriction of 2( )O N −  [4] for hyperbolic and 4( )O N −  [5] for parabolic prob-
lems. 

Dubiner [6] carried an asymptotic analysis for theone-dimensional wave equation. He pointed out the ( )O N
boundedness of the eigenvalues of the spectral differentiation matrix with collocation at Legendre points. It was also 
proposed in [7] that the 2( )O N  eigenvalues could be shrunk to ( )O N  byreplacing Chebyshev Tau method with 
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Legendre Tau method. That would mean a time step size increase from 2( )O N −  to 1( )O N − . However, the eigen- 
values of Chebyshev and Legend respectral differentiation matrices are extremely sensitive to rounding errors and 
other perturbations [4]. On agrid of size N , machine rounding could lead to errors of size 2( )O N . Thus the Le- 
gendre Tau method which has an 1( )O N −  time step restriction in theory, is subject to an ( )2O N −  restriction in 
practice. 

The slowest decaying mode and largest wave numbers are often of interest. They affect stabilities and limit time 
step sizes of pseudospectral approximations. It is reported in [6] [8] that there exists a large negative eigenvalue of 
order 2N  for Chebyshev spectral differentiation matrix. Where does that eigenvalue come from? When does it ap- 
pear? And how does it affect the time step size? In this paper, we will consider the first-order spectral differentiation 
matrix and examine the behavior of its eigenvalues asymptotically and numerically. 

Let’s consider the first-order eigenvalue problem 

( ), 1 1, 1 0du u x u
dx

λ= − < < =                             (1) 

The spectrum of the differentiation operator is empty. However, the spectrum of the Tau approximations to the 
eigenvalue problem affects the stability of the associated wave equation t xu u=  on ( 1,1)−  with boundary condi- 
tion ( )1, 0u t = , whose solution is a leftward translation at speed 1 [3]. Let ( )Nu x  be a polynomial approxima- 
tion of degree N . ( )Nu x satisfies 

( ) ( ), 1 0N N N Nu Du P x uλ − = =  

where /D d dx≡ , ( )NP x  is a polynomial of degree N . We can write ( ) ( )
x

x s
N N

a

u x e e P s dsλ λ−= − ∫  for some arbi- 
trary constant a. Integration by parts gives 

( ) ( ) ( )

0 0

( )1 k kx a
N NN N

N k kk k

D P x D P aeu x
λ

λ λλ λ

−

= =
= −∑ ∑ .                       (2) 

The non-polynomial contribution (the second term) is eliminated by picking a = −∞  if 0λ <R , and a = +∞  
if 0λ >R . We then obtain 

( ) ( )
0

1 k
N N

N kk

D P x
u x

λ λ=
= ∑                                  (3) 

The boundary condition ( )1 0Nu =  implies 
( ) ( )1 1 0, 0s

Ne P s dsλ λ−

−∞
− = <∫ R                               (4) 

( ) ( )1

1

0, 0s
Ne P s dsλ λ

∞
− = >∫ R                                (5) 

In the Tau method [1], the polynomial approximation ( )Nu x  is determined from the boundary condition 
( )1 0Nu =  and the requirement that ( )NP x  is orthogonal to all polynomials of degree 1n −  with respect to the 

weight function ( ) 0w x ≥  in the interval ( 1,1)− . For Jacobi weight function ( ) ( )( , ) 1 (1 )w x x xα β
α β = − + ,

( ) ( )( , )
N NP x P xα β= , the Jacobi polynomial of degree N  with , 1α β > − . 
Assume 0λ ≠ , otherwise 0λ =  corresponds to the trivial solution ( ) 0Nu x = . From (3), the boundary 

condition ( )1 0Nu =  leads to the characteristic polynomial ( ) 0Φ (1)N k k
N Nk D Pν ν

=
= ∑ , with 1/ν λ= . It is 

proved [9] that the eigenvalues lie in the left half-plane for Jacobi polynomial ( )( , )
NP xα β  if 1 1α− < ≤  and 

1β > − . The eigenvalues are computed numerically using the three term recurrence relation for corresponding 
Jacobi polynomials [10] (see Figure 1). We will show that the theorem is sharp by obtaining asymptotic results 
indicating unstable eigenvalues for 1α > . 

In order to obtain the asymptotic behavior for large values of λ , we use the method of steepest descents to 
deform the integration paths to obtain the dominant contribution from saddle points. In general there are two 
saddle and two boundary points. The balance between the dominant saddle and boundary contributions leads to 
an asymptotic equation for λ . The two saddle points collide to form a third-order saddle when / N iλ = ± ; 
nearly merge when 0α =  and / 1N iλ ±  ; and are too close to the boundary points when ( )O Nλ > . 
These cases complicate the analysis.  
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Figure 1. The limit curve and eigenvalue approximations for Cheby- 

shev polynomials ( 1
2

α β −
= = ). Thick solid: ( ), 1 0F µ σ = − = , dash: 

( ) 3 ln 1, 1
2

NF O
N N

µ σ  = − = − −  
 

, dash-dot: ( ) 3 ln, 1
2

NF
N

µ σ = = −

1O
N

 −  
 

, where ( )
2

2 1 1, 1 lnF σ µ
µ σ µ σ µ

µ

 − + = + + + 
  

R . 

Thin solid: contours of ( )B µ . Take dash-dot branch for ( ) 0B µ > , 

dash for ( ) 0B µ < .  

 
The paper is organized as follows. In Section 2, we present the asymptotic analysis and numerical results for 

Chebyshev polynomials. We generalize the results to Jacobi polynomials in Section 3, and derive the approxi- 
mations of the slowest decaying mode and largest wave numbers. In Section 4, we show that the eigenvalues for 
Legendre polynomials are directly related to the roots of spherical Bessel and Hankel functions. The analysis 
and numerical results for collocation methods are explained in Section 5. Finally we conclude in Section 6. 

2. Chebyshev Polynomials 
We use Chebyshev polynomials ( ) ( )N NP s T s≡  to illustrate the approach and derive the asymptotic formulas. 
They correspond to the class of Jacobi polynomials with 1/ 2α β= = −  and are especially relevant in practice. 
With a change of variable coss φ= , (cos ) cosNT Nφ φ= , and (4) becomes 

0 cos cos ( sin ) 0
i

e N dλ φ
π

φ φ φ−

+ ∞
− =∫                             (6) 

It suggests that Nλ µ= . Define ( ) cos iρ φ µ φ φ= − + , and I  twice the above integral, 
( )

1 20 2
sin

i i NI e d I I
π π ρ φ

π
φ φ

+ ∞ − ∞
= + = +∫ ∫                           (7) 

We will apply the method of steepest descent to deform the integration path without changing the value of the 
integral, so that it goes through the critical point (saddle point) *φ  in such a way that *( )ρ φR  is maximum 
along the path, and *( )ρ φR  decreases along either direction away from *φ  as rapidly as possible. As N →∞ , 
the dominant contributions come from the saddle points and boundary points 0 and 2π . 

2.1. Saddle Contributions 
The saddle points of ( )ρ φ  satisfy the equation ' ( ) sin sin 0iρ φ µ φ= + = , which implies *sin /iφ µ= − . The 
steepest-descent curves of ( )Ne ρ φ  vary as μ varies. We consider two cases: 0µ ≠R  and 0µ =R . 

2.1.1. 0≠µR  

There are two saddle points ( )
*
σφ , ( )

*sign 0σσ φ= ≠I , and ( )
*"( ) 0σρ φ ≠ . They satisfy the relationship
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( 1) (1)
* *φ π φ− = − , ( ) ( )1 1

* *( ) ( )ρ φ ρ φ− = −R R , ( ) ( )1 1
* *( ) ( )ρ φ π ρ φ− = −I I , and 

( )( ) ( ) ( )
2

2
* * *

1 1
cos 1 lniσ σ σ σ µ

ρ φ µ φ φ σ µ
µ

− +
= − + = + +                      (8) 

The integration paths follow the constant-phase contours ( )
*( ) ( )σρ φ ρ φ=I I , i.e. the steepest-descent curves, 

from 0 to iπ + ∞  for I1 and from 2π  to iπ − ∞  for I2, passing through the saddle points ( )
*
σφ . The steepest 

curves corresponding to the opposite signs of µI  are mirror images about φ π=R  axis. Define 

( ) ( )( ) ( )( )
2

1 1 2
* * 2

1 1
2 1 ln

1 1
B

µ
µ ρ φ ρ φ µ

µ
−

 − + ≡ − = + + 
+ +  

R R R                    (9) 

and redefine σ to be sign ( )Bσ µ= . Then *( )sI σφ  dominates when ( ) 0B µ ≠ . 
Following the standard saddle point approximation ([11] §7.3), we evaluate the integrals near the saddle 

points and obtain the dominant contribution 

( ) ( ) ( ) ( )*( )1/2
* * ( )

*

2~ sin
"( )

Ns s iI I N e e
σ σ σρ φσ θ

σ

πφ φ
ρ φ

−=                         (10) 

As N →∞  when ( ) 0B µ ≠ .  
If ( ) 0B µ = , ( ) ( )(1) ( 1)

* *
s s sI I Iφ φ −= + . 

2.1.2. 0Rµ =  
Let ibµ = . The two saddles points collide and form athird-order saddle point at iµ = ± . 

1) 0 1b< < . In this case ( ) 0B µ < .  
( )1 1

* / 2 cosh ( 1/ )i bφ π± −= ± −  when 1 0b− < < , 13 / 2 cosh (1/ )i bπ −±  when 0 1b< < . 
( )( 1)

*
s sI I φ −= . 

2) 1b > . We have ( ) 0B µ = . 
( )1 1

* sin ( 1/ )bφ −= − , ( )1 1
* sin ( 1/ )bφ π− −= − − when 1b < − . ( )1 1

* 2 sin ( 1/ )bφ π −= + − ,  
( )1 1

* sin ( 1/ )bφ π− −= − −  when 1b > . 

( )(1)
*

s sI I φ= . 

3) 1b = ± . * / 2bφ π π= +  is a third-order saddle point. A similar saddle point approximation leads to

( ) *

1 1
2 33 32

* ~ ( )6 / 3Γ(1/ 3)
b ii

iNsI N e e e
π π π

φφ
 −− − 
 − + . 

2.2. Boundary Contributions 
We approximate the contour at 0φ =  by the straight line ivφ =  with [0, ]v ε∈  and obtain the dominant 
contribution at 0φ = , 

( ) ( ) ( ) ( )

( )

' 0
00 2

2'
0

0 ~ ~
0

N
N vNb eI e e vdv N

ρε
ρρ

ρ

− −− −∫                         (11) 

as N →∞ . The approximation is the same near 2φ π= . Therefore, 

( )
( )

( )

0
2

2'
0 (2 ) ~ 2

0

N
b b b eI I I N

ρ

π
ρ

−= + −                           (12) 

2.3. Balance between Saddle and Boundary Contributions 
There are four possible balances from Section 2.1:  

1) 0µ ≠R  and sign ( ) 0Bσ µ= ≠ , 2) 0µ =R  and ( ) 0B µ = , 3) 0µ <R  and ( ) 0B µ = , 4) 0µ =R  
and ( ) 0B µ < . 
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In case 1), using ln ln | | arg 2z z i z k iπ= + + , k ∈ , the balance between (10) and (12) leads to 

( )2
2

2

2 2

1 arg 1 arg 2
1 1 2 23 ln 11 ln ~ ln

2 2 2 1

i k
N i

N N N

π σ µ π
σ µ µπµ σ µ
µ µ µ

 −
− − + + + − +  + + + − − −

+
  

(13) 
As N →∞ , this implies the limit curve 

2
2 1 1

1 ln 0
µ

µ µ
µ

 + + − + + = 
  

R                          (14) 

In case (2), from Section 2.1.2, the balance leads to the limit curve 0,| | 1µ µ= ≥R I , i.e. the interval [ , )i i± ∞ . 
The balances in cases (3) and (4) lead to inconsistent results. The limit curve (14) is in agreement with Dubin- 
er’s result ([9] Equation (8.5)). It can be divided into three parts: the interval [ , )i i± ∞  and a curve connecting 

i±  in the left half-plane. The number of eigenvalues distributed around each part is given by the number of in-
tersections of Equation (14) and 

2
2 1 1 2 π1 ln k

N
µ

µ µ
µ

 + + − + + = 
  
I                          (15) 

Around [ , )i i± ∞  are distributed about 1 1
2 2

N
π

 − 
 

 eigenvalues respectively. There are left about 

1 1
2

N
π

 + 
 

 eigenvalues distributed around the curve connecting i±  in the lefthalf-plane. Figure 1 shows the 

limit curve and eigenvalue approximations for Cheybshev polynomials. The numerical eigenvalues are com- 
puted using 128-bit or 34 decimal digits of precision. They distribute near the limit curve except a large negative 
real eigenvalue ~ ( )O Nµ , which is addressed in the next section. The asymptotic results are accurate even for 
small N ’s. 

From Equation (13) we derive that the slowest decaying eigenmode has wave number 

3 ln 1 1 ln~ ln ln 3
2 2 2 2

N N bi
N N N

πµ   − − − ±    
                       (16) 

where 
3
21 13 1 27 ln 3 ln 1~1 / 1

2 4 2 8 2 2 6ln
N Nb

N N N N
π σ σπ

 +      − − − + +           
 

. 

The eigenvalues are plotted in Figure 3. They demonstrate better approximations than Dubiner’s results ([6] 
Equation (8.6)). 

If the boundary condition ( )1 0Nu − =  is imposed instead, then 0λ >R , and the limit curve is a reflection 
by the imaginary axis. 

2.4. The Large Negative Eigenvalue 

The largest wave number limits the time step size of the numerical approximation. When ( )O Nλ > , the sad- 

dle points ( )1 1
* sinh Niφ

λ
−  =  − 

 and ( )2 1
* 2 sinh Niφ π

λ
−  = +  − 

 are too close to the boundaries 0 0, 2φ π= .  

Thus we have to take the integration path of I1 from 0 up to ( )1
*φ , then to iπ + ∞ , and that of I2 from 2π  up to 

( )2
*φ , then to iπ + ∞ , going down passing through ( )1

*φ
−  to iπ − ∞ . Both ( )1

*φ  and ( )2
*φ  are dominant sad- 

dles and ( )1
*φ
−  is subdominant. The integral then becomes 
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| | cos
| |

1 20 2
sin

Nii i
I e d I I

λ φ φπ π λ
π

φ φ
 

+ + ∞ − ∞  = + + = +∫ ∫                          (17) 

The balance between saddle and boundary contributions implies a polynomial equation for 2 / | |x N λ= , 
1

0 0
!2 (2 1) !2

n n

n nn

x x
n n n

+
∞

=
− =

+∑                                (18) 

The real root of (18) approaches a constant as the degree of the equation increases. Solving the equation of 
degree 5 gives 2| | / ~Nλ 0.5855. This large negative eigenvalue is plotted in Figure 2. The approximation 
agrees well with numerical results. 

3. Jacobi Polynomials 
We now generalize the asymptotic analysis in Section 2 to Jacobipolynomials ( )( , ) cosNP α β φ with weight func- 
tion ( ) ( )cos 1 cos (1 cos ) , , 1w α βφ φ φ α β= − + > − . 

3.1. Approximation of Jacobi Polynomials 
We approximate Jacobi polynomials in two regions, i.e. near 0 and away from 0. 
 

 
Figure 2. The large negative eigenvalue for Chebyshev 
polynomial, ~λ 0.5855 2N , confirmed by numerical 
approximations at N = [10:10:80], indicated by *.  

 

 
Figure 3. ○: the slowest decaying eigenmodes for Chebyshevpolynomial giv- 
en by (16) (left) and Jacobi polynomialwith 0.3, 0.5α β= − =  (right). ◊: Du- 
biner’s approximation ([6] Equation (8.6)). *: numerical approximations. The 
limit curves move to the rightas N increases.  
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1) If | |nφ π ε− ≥ , 
( ) ( ), 1/2 1 1cos ~ (2 ) ( ) ( )iN i iN i

NP e D e e D eα β φ φ φ φφ π − − − − − +                     (19) 

where ( )
1 1 1

2 2 22 (1 ) (1 )D z z z
α β α β+ +

− + +
= − + , defined for 1,1z z R< < ≤ < ∞ , 

| | 1
l (m )i

z
D z±→

 exists. We de- 

rived it from Szego [12] Theorem 12.1.2. 
2) If | 0 | 1φ −  , 

( ) ( ) ( )
11

, 2 22sin cos ~ (2 ) 2 iN i iN i
NP e e e e

α β
α α β φ γ φ γφ φ π

−
−+ − − +                     (20) 

where ( 1/ 2) / 2γ α π= − + . We derived it from Szego [12] Theorem 12.1.4. 

3.2. Limit Curve 
Using approximation (19), the integral in (4) becomes 

( ) 1
0 2

( ) sin
i i N iI e D e d

π π ρ φ φ
π

φ φ
+ ∞ − ∞ − −= +∫ ∫ ,                              (21) 

with the same ( ) cos iρ φ µ φ φ= − + . A similar analysis gives the saddle contribution 

( ) ( ) ( )

( )( )
*

*

( )1/2 *
( )

*

sin 2~
"( )

Ns i

i
I N e e

D e

σ σ

σ

σ
ρ φ θ

σφ

φ π
ρ φ

−

−
                         (22) 

This is in agreement with the results for Chebyshev polynomials in Section 2, where 

( ) ( ) 1/2
sini iD e i e

αφ φφ
+− −=  for α β= . 

Using the asymptotic formula for Bessel function of the first kind [13], ( ) ( )
1 3
2 22( ) cos ( )J z z O z

zα γ
π

−
= + +  

as | |z →∞  with ( )arg , 0z π δ δ≤ − > , we obtain 

( ) ( )
1

12
0 0

0

2( ) cos ( )J N N O N
Nα φ φ γ

π φ
−= + +  

As N →∞  for 1/3
0| 0 | Nφ −−  . From (20), we have 

( ) ( ) ( )
1

, 2 2cos ~ 2 ( )NP N N J N
α β αα β α

αφ φ φ
−

+ −                         (23) 

Plug (23) to the integral in (4) and we obtain the boundary contribution 
3 1 1
2 2 2 2(0) ~ 2 (2 )

Γ( )
b NI N e

α β αα µ π
α

− −− −                            (24) 

(0) ~ 0bI  when 0α = . 

3.2.1. 0≠α  
The dominant balance is between saddle and boundary contributions. This gives the same limit curve as (14). 
The slowest decaying eigenmodes are plotted in Figure 3 for 0.3, 0.5α β= − = . 

The theorem in [9] proves that the eigenvalues lie in the left half-plane for Jacobi polynomial ( ),
NP α β  if 

1 1α− < ≤ . We have derived asymptotically that the eigenvalue becomes unstable for 1α > . 

3.2.2. 0=α  
The dominant balance is between two saddle contributions from ( )1

*φ
± , and this leads to a new limit curve 

2
2

2

1 1
2 1 ln 0

1 1

µ
µ

µ

 − + + + = 
+ +  

R                                  (25) 
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The intervals [ , )i i± ∞  are excluded because only one saddle point contributes. 
The limit curve and eigenvalue approximations for Chebyshevpolynomials of the 2nd kind ( 1/ 2α β= = ) and 

Legendre polynomials ( 0α β= = ) are plotted in Figures 4 and 5. The eigenvalues huddle around the limit 
curve. Note that even at a small N  = 10, the eigenvalue approximations for Legendre polynomials lie exactly 
on the dashed curve, which is true for all the other figures. 
 

 
Figure 4. The limit curve and eigenvalue approximations for Cheby- 
shev polynomials of the 2nd kind ( 1 / 2α β= = ). Thick solid: 

( ), 1 0F µ σ = − = , dash: ( ) 1 ln 1, 1
2

NF O
N N

µ σ  = − = − −  
 

, dash-dot: 

( ) 1 ln 1, 1
2

NF O
N N

µ σ  = = − −  
 

.  

 

 
Figure 5. The limit curve and eigenvalue approximations for Legendre poly- 

nomials ( 0α β= = ). Thick solid: 
2

2

2

1 12 1 ln 0
1 1

µ
µ

µ

 − + + + = 
+ +  

R , dash: 

2 2
2

2 2

1 1 1 112 1 ln ln
21 1 1 1N

µ µ
µ

µ µ

 − + + + + + = 
+ + − +  

R .  
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3.3. Olver Paths 
When 0α =  and | | 1iµ ±  , the two saddle points ( )1 1

* sin iiφ
µ

−  
= − 

 
 and ( )1 1

* sin iiφ π
µ

− −  
= − − 

 
 nearly 

merge. They coincide at * / 2φ π=  when iµ = − , and 3 / 2π  when iµ = . The expansions given by the or- 
dinary method of steepest descents are not uniformly valid for | | 1iµ ±  . We need to construct uniform ex- 
pansions near i±  and deform the contours into Olver paths [14]. 

Apply the cubic transformation, ( ) ( )31, ( )
3

Aρ φ µ ζ η µ ζ µ= − + , to map the saddle points of ( )ρ φ  in the 
φ -plane to the saddle points η±  in the ζ -plane. It is shown [15] that the mapping is uniformly regular and 
one-to-one for all µ  in a neighborhood of i± . The integral (21) becomes 

31( ) 13 ( ) sin s
N A i dI e D e d

d
ζ ηζ φ φφ ζ

ζ±

− + − −= ∫                         (26) 

where ±  is a contour running from −∞  to /3ie π±∞  when 1| |i Nµ −±  , through the saddle point ζ η= . 
The first order approximation gives 

51 4 2 1
2 63 3 3 3 6~ 2 Ai 2 ( )

iN i isI N e N e i
π π ππ

π µ
 

− ± 
 

 
±  

 

 

                     (27) 

for 1| |i Nµ −±  , where Ai is the Airy function. The eigenvalues are related to the zeros of the Bessel and 
Hankel functions of half-integer order 1/ 2N +  [16]. Further discussions are presented in Section 4. 

The slowest decaying eigenmode’s wave number satisfies 

( )
2 1

13 3 6Ai 2 ( ) 0
i

N e i O N
π

µ
± − 

± + =  
 

.                           (28) 

Ai (z) has a maximal zero 0 0, 0c c− >  [17]. Then Equation (28) gives 
1 1 2
3 3 6 3

0~ 2 ( ) [ (1)]
i

N N e c O N i N O
π

λ µ
− −

= − + +


 .                      (29) 

This is also the largest wave number (see Section 3.4). Hence when 0α = , the largest wave number is of or-
der N  instead of 2N . 

3.4. The Large Negative Eigenvalue 
The formulas for saddle points contributions are not valid when the saddle points are too close to the boundaries 
at ( )O Nλ > . The approximation of Jacobi polynomials has to be replaced by Equation (20). If λ  is not real, 
we can take the same integration paths as in Section 3.2 and obtain the saddle contribution. The boundary con- 
tribution remains the same with λ  used first and then replaced by Nµ . The balance between saddle and 
boundary contributions when 0λ ≠ , or between two saddle contributions when 0λ =  gives the same limit 
curve as before. 

If λ  is real negative, we take the integration paths as in Section 2.4. The balance leads to a polynomial equ- 
ation for / | |x N λ= , 

2 2 2
1

0 0 0

1
1cos 1 sin 02

2 2 !2 !2 (2 1)

n n
n

n n nn n n

n x xc x
n n nn

α
α π α απ

+
∞ ∞ ∞−
= = =

    −      + + − − + =       +         
∑ ∑ ∑       (30) 

where ( )2 / 2 2 1 !!nc kπ= −  when n  is even 2n k= ; 2k
nc k=  when n  is odd 2 1n k= + .  

The lowest order approximation by solving Equation (30) of degree 2 gives 
2/ 2 cot ( / 2)cot 2(3 / 2 )(1/ 2 )

~
3 / 2

x
π απ π απ α α

α
− + + + −

+
                   (31) 

For 1 0α− < < . Figure 6 shows the ratio 2/ Nλ  obtained from (31) and by solving Equation (30) of degree 
4, respectively, confirmed by the numerical eigenvalues at 40N =  for different values of α . The real root of 
the polynomial of degree > 2 is negative for 0 1/ 2α< <  and 1/ x  approaches −∞  as α  approaches 1/2 
from the left. Thus, there is a large negative eigenvalue of 2( )O N  for 1 0α− < <  and no large negative ei-  
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Figure 6. The large negative eigenvalue for 1 0α− < <  scaled by 

2N , compared with the numerical approximations for Jacobipoly- 
nomials at 40N =  and α =  [−0.001, −0.1: −0.1: −0.9], indicated 
as *. Solid: from solving Equation (30) of degree 4, dash: from Equa- 
tion (31).  

 
genvalue for 0 1/ 2α< ≤ . The integral diverges for 1/ 2α > . Therefor there is a large negative eigenvalue of 

2( )O N  for 1 0α− < < . 
When | 0 | 1α −  , the assumption ( )O Nλ >  is no longer valid. In this case, the negative eigenvalue is 

simply described by the zero of the limit curve given in (14). When 0α = , the balance is between two saddle 
points. It gives same limit curve as (20). This is not consistent with the assumption ( )O Nλ > . So (29) also 
gives the largest magnitude eigenvalue which is ( )O N . 

4. Legendre Polynomials and Spherical Bessel Functions 
Denote Legendre polynomials by ( ),

N NP P α β= , 0α β= = . As indicated in Section 3.3, the eigenvalues are di- 
rectly related to the roots of spherical Bessel and Hankel functions. 

The emission and scattering of electromagnetic radiation involves solving the vector wave equation [18]. The 
solutions are then expressed as an expansion in the orthogonal spherical waves, known as the multipole expan-  

sion. Consider the scalar wave equation 2

1 0UU
tc

∂
∆ − =

∂
, where ( , )U U t= x  is the velocity potential,  

( , , )x y z=x  and c  is the speed of sound. For time-harmonic acoustic waves of the form 
( ) { }, ( ) i tU t u e ω−=x xR  with frequency 0ω > , each Fourier harmonic ( )u x  satisfies the Helmholtz equation 

2 0u k u∆ + =  where /k cω=  is the wave number. It can be rewritten in terms of spherical coordinates
( , , )r θ ϕ . With the expansion ( ) ( , )n nu f r Y θ ϕ= ∑ , the radial function ( )nf r  satisfies the equation 

2 2 2" 2 ' [ ( 1)] 0n n nr f rf k r n n f+ + − + =                            (32) 

known as the spherical Bessel differential equation [17] (10.1.1). With a change of variable ( ) ( )n ng r r f r= , 
ng  satisfies the Bessel differential equation of half integer order 1/ 2n + . Now let /r iz k=  and replace nf  

by w , n  by N , then Equation (32) becomes the modified spherical Bessel equation [17] (10.2.1) 
2 2" 2 ' [ ( 1)] 0z w zw z N N w+ − + + =  

It has a solution, the modified spherical Bessel function of the third kind [17] (10.2.4), 

( ) ( )1
22N N

k z K z
z
π

+
= , where ( )1

2
N

K z
+

 is the modified Bessel function of the third kind of order 1/ 2N + . 

Using [17] (9.6.23) and integration by parts N  times, we obtain 
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( ) ( ) ( )
1 0

1zs z zt
N N Nk z e P s ds e e P t dt

∞ ∞
− − −= = +∫ ∫  

Similar to deriving Equation (3), 

( ) ( )
0

1kz
N N

N kk

D Pek z
z z

−

=
= ∑  

Thus the eigenvalues λ  in (3) are the roots of ( )Nk z , which are also the roots of Hankel function of order 
1/ 2N + , spherical and modified spherical Hankel functions using the relations [17] (10.1.1),(10.2.15). 

5. Collocation 
The Chebyshev collation method and stability analysis was discussed in [2], and then extended to general 
Gauss-Radau collocation methods [8] for the one-dimensional wave equation. The Gauss-Radau and Gauss- 
Lobatto Jacobi methods were compared and it is shown that the latter is asymptotically stable for 1α β≤ ≤  [8]. 
In particular the only Gauss-Lobattoultraspherical method which is marginally stable corresponds to 1α β= = . 

We take the discretization 0 11 1Nx x x− = < < < =  of the interval [−1,1], and approximate ( )u x  by a po- 
lynomial ( )Nu x  of degree N  that satisfies 

( )1 1, for , , 1 0N N N NDu u x x x uλ −= = =                          (33) 

( )Nu x interpolates the values 0 1 1, , ,0Na a a −  at 0 11 1Nx x x− = < < < =  and can be written as 

( ) 1
0 ( )N

N j jJu x a l x−

=
= ∑ , where { }( )jl x  are the cardinal functions. Substituting Nu  into (33) gives the matrix  

system with eigenvalue λ . Collocation at zeros of orthogonal polynomials (Gauss points) is identical to the 
Tau method with Gauss quadrature. We consider three sets of Gauss-Lobattopoints 1 1[ , ]T

Nx x −=x  : 

1) Chebyshev extreme points: cosj
jx
N
π

= − ; 2) Chebyshev extreme points of the 2nd kind: jx j=  th zero of 

'NU ; 3) Legendre extreme points: jx j=  th zero of 'NP . 
They can all be described as zeros of '( )NQ x , where NQ  is Chebyshev, Chebyshev of the 2nd kind and Le- 

gendre polynomial of degree N , respectively. Defineresidual ( ) ( ) ( )N NR x D u xλ= − . It is a polynomial of 
degree N  that vanishes at 1x = −  and zeros of '( )NQ x . Thus NR  takes the form ( ) ( 1) '( )N NR x x Q x= + . In 
general, for Jacobi polynomial ( ),

NP α β , from [19], 

( ) ( ) ( ) ( )( ) ( ), 1, 1
1

11 1 1
2N N N

dR x x P N x P
dx

α β α βα β + +
−= + = + + + +  

Using (19) and (20), we obtain approximations of ( )cosNR φ  for φ  away from 0 and near 0. The balance 
remains valid with 

( )
( )

( )col col col2

2 , 1, 1
1

i i

i
D e D e

e
φ φ

φ
α α β β= = + = +

+
 

However, for Legendre extreme points, the balance is now between saddle and boundary contributions since
col 1α = , and the limit curve is the same as the other two. Figure 7 shows the eigenvalues obtained using the 

Tau and collocation methods, together with their limit curves for Chebyshev ( 1/ 2α β= = − ), Chebyshev of the 
2nd kind ( 1/ 2α β= = ) and Legendre ( 0α β= = ) polynomials. Collocations at Chebyshev and Legendre ex-
treme points are stable. Collocation at Chebyshev extreme points of the 2nd kind becomes unstable. In general, 
collocation at Gauss-Lobatto points is stable when 1 1α + ≤ , i.e. 0α ≤ , unstable when 0α > . There is no 
large negative eigenvalue with Chebyshev extreme points used. This can be derived asymptotically using the 
same method as before, or simply follows from col 1α α= + . 

6. Conclusions 
We have presented pseudospectral approximations of the first-order spectral differentiation matrices with zero 
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Figure 7. From left to right: Tau method at 1 / 2α β= = − , collocation at Chebyshev extreme points, Tau method at 

1 / 2α β= = , collocation at Chebyshev extreme pointsof the 2nd kind, Tau method at 0α β= = , collocation at Legendre 
extreme points.  
 
boundary condition. We use the method of steepest descent to deform the integration path without changing the 
value of the integral, in order to obtain the dominant contributions from saddle and boundary points. This ap- 
proach leads to the asymptotic formulas for the eigenvalues of Jacobi Tau method. Numerical examples with 
Chebyshev of the 1st and 2nd kind and Legendre polynomials are presented. They agree well with the asymptotic 
analysis, even at small sizes. 

The approximations for the slowest decaying modes give more accuracy than those obtained in [6]. The larg- 
est wave numbers have raised interest in stabilities in pseudospectral approximations. We show that a large neg- 
ative eigenvalue of order 2N  appears for 1 0α− < < . The collocation methods are also examined. There are 
no large negative eigenvalues for collocations at Gauss-Lobatto points.  

For Jacobi polynomials, the eigenvalues lie in the left half-plane if 1 1α− < ≤ . We show that the theorem is 
sharp by obtaining asymptotic results that indicate unstable eigenvalues for 1α > . The eigenvalues for Legen- 
dre polynomials are related to the roots of Bessel and Hankel functions of half-integer order, spherical and mod- 
ified spherical Bessel and Hankel functions. These results complete Dubiner’s earlier analysis [6]. 
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