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Abstract 
 
In this paper, a novel strategy using embedding process and sliding surface is proposed. In this method, a 
state trajectory starting from a given initial point reaches a definite point on a sliding surface in the minimum 
time, and then tends to the origin along the sliding surface (SS). In the first, a SS is designed, then using an 
appropriate measure, an embedding is constructed to solve a time optimal control problem such that the sys-
tem trajectory reaches the SS in minimum time, after that a control is designed such that the system trajecto-
ry tends to the origin along the SS. It is well-known that the main disadvantage of the use of sliding mode 
controls (SMCs) is a phenomenon, the so-called chattering. The proposed SMC here is piecewise continuous 
and chattering free. Some numerical examples is presented to illustrate the effectiveness and reliability of the 
proposed method. 
 
Keywords: Time Optimal Control Problem, Measure Theory, Sliding Mode Control, Sliding Surface Design, 

Equivalent Control 

1. Introduction 
 
The concept of sliding mode control (SMC) introduced a 
second order system by Emel’yanov [1] in the late 1960s 
based on the conceptions of variable structure control 
(VSC) in which the second order system trajectories has 
been driven towards a line in the state space termed as 
the sliding line and enforcing the trajectories to the origin. 
However, Flügge-Lotz [2] was the first to present the 
concept of sliding motion, and Filippov [3] was the first 
to consider the solution of differential equations with a 
discontinuous right-hand side. Filippov’s pioneering work 
still serves as the basis for work in sliding mode control 
which was essentially developed by Utkin [4] and 
Emel’yanov [1,5], Draženović [6] and their co-workers.  

The pioneering work had not been presented the out-
side of Russia until the mid 1970s when a book by Itkis 
[7] and a survey paper by Utkin [8] were published in the 
west. SMC which is a particular type of control, known 
as variable structure control (VSC), is a powerful and 
robust control, and it has been extensively studied in the 
last three decades for many classes of linear and nonli-

near systems, from theoretical concepts to industrial ap- 
plications, including autonomous underwater robot [9], 
continuously stirred tank reactor [10], PUMA 560 robot 
[11], finger for a prosthetic hand [12], cable suspended 
loads [13] and four rotors helicopter [14].  

Utkin [4] has developed the concept of sliding mode 
control to guarantees the existence of a sliding mode 
motion. In the classical SMC approach, infinite frequen-
cy control switching between different sub-controllers is 
required to maintain the trajectories on a prespecified 
surface in the state space and to eventually enforce the 
state trajectories to the equilibrium point along the sur-
face. Therefore, the system stability and behaviour de-
pend on the selection of sliding surface [8,15]. Several 
methods have been proposed to design a stable SS, such 
neural network [9], fuzzy SMC [16], SMC a system with 
mismatched uncertainties [17], discrete-time SMC [18], 
minimizing integral absolute error [19], passivity-based 
SMC [10,20] and flatness, back stepping with SMC [21]. 
SMC approach is well known as one of powerful and 
effective robust control approaches to reject the matched 
disturbances, to reduce the influence of unmatched un-
certainties and insensitivity to parameter variations. How-
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ever, the repetitious control switching creates a phenome-
non, the so-called chattering, which may be dangerous 
and exhibits high-frequency vibrations of the controlled 
plant [22,23]. To overcome this unwanted behaviour, 
many methods including several continuous approxima-
tions of the discontinuous SMCs have been proposed, in 
which the switching function enforces the trajectories to 
stay within a boundary layer of the sliding surface. The 
main disadvantage of such approximation is that the ro-
bustness of SMC may be lost inside the boundary layer if 
the size of the boundary layer is not sufficiently small. In 
fact, the uncertainties and disturbances may influence the 
system behaviour. Other methods for eliminating the 
chattering are based on high order sliding mode control 
concepts in which the higher order time derivative of the 
switching function is used. The traditional discontinuous 
sliding mode control enforces the state trajectories on the 
sliding surface while the continuous part of sliding mode 
control imposes the trajectories remain on the surface 
after a finite time. The continuous part has a particular 
structure which leads to the invariance conditions for the 
sliding motion and in the average sense; it is termed the 
equivalent control.  

On the other hand, many methods based on sliding 
mode and output feedback control schemes have been 
also proposed for robust stabilisation of uncertain sys-
tems [24,25]. El-Khazali and DeCarlo [25] have de-
signed sliding surfaces for linear time-invariant systems 
without disturbances using eigenvalue assignment and 
eigenvector techniques. Żak and Hui [24] have devel-
oped a geometric condition to guarantee the existence of 
a SS and the stability of the reduced order sliding motion. 
Most established results are based on the matched dis-
turbances, i.e. the disturbances acts in the channels of the 
inputs. Even when there are uncertainties in the system 
with unknown structure, SMC is an appropriate control 
design method. When the system is in a sliding mode, 
the dimension of the system is reduced and it is the same 
the SS. This subsystem is termed the reduced-order sys-
tem, and the stability of the original system depends on 
the stability of this subsystem. 

In this paper, a novel strategy based on measure theory 
and sliding surface is proposed to design an almost time 
optimal control as well as a sliding mode control to en-
force the system trajectories from an initial point to a 
definite point on the designed SS in minimum time, and 
then force the trajectories tend to the equilibrium points 
along the SS. In fact, the entire of control design is com-
pleted in three steps. In the first step, the SS is designed. 
In the second step, the minimum time optimal control 
problem from an initial point to a given point on the SS, 
is solved.  In the third step, an equivalent control is de-
signed such that the system trajectories tend to the equi-

librium point along the SS. In fact, the trajectory moves 
along the SS and eventually reaches the equilibrium 
point (say origin) in infinite-horizon. The proposed con-
troller is piecewise continuous and yields a chattering 
free motion. Furthermore, this method guarantees a slid-
ing mode motion and system stability. Moreover, the 
proposed approach is straightforward without requiring 
any predication or conditions on the initials and using 
any iterative algorithm. 

This paper is organised as follows: Section 2 briefly 
introduces SMC. Section 3 addresses the functional space 
and measure theory facts which are used in this paper. 
Section 4 addresses the proposed SMC approach. In Sec-
tion 5, some examples are presented to illustrate the pro-
cedure and validity of the proposed control design. Fi-
nally, conclusions are given in Section 6. 
 
2. SMC Design 
 
Consider the linear time varying system  

         x t t x t t u t  A B ,         (2.1) 

  00x x , and the equilibrium point is the origin, 
where n nA  , n mB  , while  x t   is the 
state and  u t   is the control input. The sets   
and   are bounded, closed subsets respectively in n  
and m . It is assumed that 1 m n   and the input 
distribution matrix B  has full rank. Define the sliding 
function as:  

 s x Gx ,               (2.2) 

where m nG   and the sliding surface as:  

  : 0nS x s x   .          (2.3) 

It is also assumed that  GB t  is a nonsingular matrix. 
Suppose there exists a finite time st  such that the so-

lution of (2.1) represented by  x t  satisfies 

   0  for all  ss x t t t  ,  

then an ideal sliding motion is said to be taking place for 
all st t . Time st  is termed the reaching time and it is 
the time that the system trajectories (2.1) lie on the sur-
face (2.3). This fact can be mathematically expressed as 
    0s t Gx t   and     0s t Gx t   for all st t .  
In this paper an almost optimal control  aou  is de-

signed to ensure the trajectories hits the SS in minimum 
time. Then using the sliding mode conditions   0s t   
and   0s t   as two extra boundary conditions, a sub- 
control  equ  is designed such that the trajectories con-
verge to the equilibrium point. Thus the traditional SMC 
is defined as: 

if 0

if
ao s

eq s

u t t
u

u t t

   
           (2.4) 
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where st  is the reaching time to the SS , i.e.   0sS t  . 
In fact, aou  is a sub-controller which impose the trajec-
tory that moves from an initial point hits the sliding sur-
face at point C  in minimum time and equ  is the equi- 
valent control which forces the trajectory moves from 
C  to the equilibrium point along SS.  

The sliding surface is selected such that the reduced- 
order system, i.e. the system during the sliding mode, is 
stable and crosses from the point C . To find the beha-
viour of the sliding mode system, the system may be 
decomposed into two subsystems as it is presented here. 

If the states are partitioned so that 

1

2

x
x

x

 
  
 

                 (2.5) 

where 1
n mx   and 2

mx  , then the linear system 
(2.1) can be written as the following regular form 

       1 11 1 12 2x t x t t x t  A A          (2.6) 

           2 21 1 22 2 2x t x t t x t t u t   A A B ,   (2.7) 

where the sub-matrices  11 tA ,  12 tA ,  21 tA ,  
 22 tA , and  2 tB  are defined appropriately. (See [26] 

for more details) 
Equation (2.6), which is independent of the control, 

considers as a system that shows sliding motion (the re-
duced-order system or the system in the sliding mode).  

In the next section, we briefly introduce the functional 
space used in embedding method. 
 
3. Functional Space 
 
To describe our embedding method, consider the general 
following control system: 

   , ,x t g t x u              (3.1) 

   . .    ,  a bs t x a x x b x  ,         (3.2) 

where a and b are two nonnegative numbers with a b , 
 .t a b   , the trajectory function  .x  satisfies 

 x t   and is absolutely continuous, the control func-
tion  .u  is Lebesgue measurable and  u t  , where 
  and   are respectively closed, and bounded sub-
sets in n  and m , and  : , ng a b       is a 
continuous time varying vector function. 

Clearly the operating regions   and   are com-
pact sets and ,a bx x  . It is desired to design the con-
trol u  such that the system trajectory starting from the 
initial state ax  reaches the final state bx  at t b . 

An optimal control problem is presented as the following: 
Minimise: 

   0, , , d
b

a
J x u f t x u t            (3.3) 

subject to: 

   , ,x t g t x u              (3.4) 

   ,  a bx a x x b x  ,           (3.5) 

where  0 : ,f a b    �  is a continuous function.  
The pair     ,w x u    satisfying the conditions 

(3.4) and (3.5) is termed admissible. The set of all ad-
missible pairs, is denoted by W . Now, one seeks to find 
an optimal pair     * * *,w x u W     which gives the 
minimum value of  ,J x u  defined in (3.3). In general 
the minimisation of the functional (3.3) over W  may 
not always possible. The set W  may be empty, even if 
W  is not a null set, the functional measuring the per-
formance of the system may not achieves its minimum in 
this set. It appears that the situation may become more 
promising if the set W  could somehow be made larger. 
In the following a transformation is used to enlarge the 
set W . Let     ,w x u    be an admissible pair and 
B  an open ball containing I   where  ,I a b . Let 

 C B   where  C B  denotes the space of real- 
valued continuously differentiable functions on B . De-
fine the function g  as 

       
          

d
, , ,

d

, , , , ,

g

x t

t x t u t t x t
t

t x t g t x t u t t x t

 

 



 
     (3.6) 

with     , ,t x t u t I      for all t I . The 
function g  is in the space  C  , the set of all con-
tinuous functions on the compact set  . For each ad-
missible pair,   

          
 

, , d , ,

.

b g

a
t x t u t t b x b a x a

C B

   



   

 

  

(3.7) 

Let  0D I  be the space of infinitely differentiable 
real-valued functions with a compact support in 0I , 
where  0 ,I a b . Define  

         
          

 0

d
, ,

d

, , ,

,  1,2, , .

j j

j j

t x t u t t x t
t

t x t t g t x t u t

D I j n

 

 





 

   

    (3.8) 

Then, if     ,w x u    is an admissible pair, for 
every  0D I  , 

    , , d 0,  1, 2, , .
b

ja
t x t u t t j n         (3.9) 

Let  1C   be a subspace of the space  C   of all 
bounded continuous functions on   depending only on 
the variable t. Now, by selecting the function  1f C  , 
it is obtained 
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       1, , d    
b

fa
f t x t u t t a f C   ,    (3.10) 

the set of Equalities (3.7), of which we have singled out 
the special cases (3.9) and (3.10), are properties of the 
admissible pairs in the classical formulation of the op-
timal control problem. In the following a transformation 
is developed to a non-classical problem to obtain en-
hanced properties in some aspects (see [27] for the de-
tails). 

For each admissible pair w , there is a positive linear 
continuous functional w  on  C   such that 

       : , , d    w I
F F t x t u t t F C    . 

By the Riesz representation theorem (see [28]) there 
exists a unique positive Borel measure   on Ω such 
that 

        
  

, , d d

.

w I
F F t x t u t t F F

F C

  


  

 

 
 (3.11) 

Thus, the optimal control problem (3.3)-(3.5) is equi- 
valent to the minimisation of 

   0 0dJ f f  


             (3.12) 

over the set of measures  , associated with the ad-
missible pair w , which satisfy 

   

   
   

0

1

, 

0, ,  1, 2, ,

,  .

g

j

f

C B

D I j n

f a f C

   

  



  

  

  

     (3.13) 

Let  M    be the set of all positive Borel measures 
on Ω. Define the set  Q M    of all positive Borel 
measures on Ω which satisfy (3.13). Now if the space 

 M    is topologised by the weak*-topology, it can be 
shown that Q  is compact with the topology induced 
(see [28]). In the sense of the weak*-topology, the func-
tional  0 :f Q    defined as in (3.12), is a linear 
continuous functional on the compact set Q . Thus it 
attains its minimum on Q , and therefore, the measure- 
theoretical problem, which consists of finding the mini-
mum of the functional (3.12), over the subset of  M   , 
possesses a minimising solution, say * , in Q . 

The set I      is covered with a grid, where 
the grid will be defined by taking all points in   as 

 , ,j j j jz t x u . Instead of the infinite-dimensional li-
near programming problem (3.12) and (3.13), the fol-
lowing finite dimensional linear programming (LP) 
problem is considered where jz   in which   is an 
approximately dense subset of   (see [29] and its ref-
erences for more details). The finite dimensional LP 
problem, which approximates the action of the infinite 
dimensional LP problem (3.12) and (3.13) for a suffi-
cient large integer N is as follows. 

 01
min  

N

j jj
f z

  

. .s t  

   

   
   

11

0
21

11

, 1, 2, , , 

0,  1,2, , , 

,  1, 2, , , 

0,  ,  1, 2, ,

N g
j i j i ij

N

j r jj

N

j s j fs sj

j j

z i M C B

z r M D I

f z a s L f C

z j N

   

  



 







   

  

   

  













(3.14) 

Now, using the solution of this problem, one can ob-
tain the coefficients  1, 2, ,j j N   , and also from 
the analysis of the problem as in Rubio (see [27]), it is 
possible to obtain the piecewise-constant control func-
tion  u   which approximates the action of the optimal 
measure. As a final stage, from the dynamical system 
(3.4) and (3.5), one can obtain the state trajectory  x  .  
 
4. Applying Embedding Method 
 
In this section a time optimal control, a sliding surface, 
and a so-called equivalent control, for a system such as 
(2.1) is considered. 
 
4.1. Step 1: Sliding Surface Design 
 
Consider the regular form of the linear dynamical system 
(2.6) and (2.7). Define the sliding surface (2.3) as:  

   11 1 12 2 0s x x x   I A A ,       (4.1) 

from (4.1), 

   1

2 12 11 1x x
  A I A , 

where 1

2

x

x

 
  
 

x ,   1

12 L


A  is the left inverse of the ma- 

trix  12A , and I  is the identity matrix. 
The SS as (4.1) guarantees the stability of the system. 

One can see this in the following theorem. 
Theorem 1. The sliding motion (2.6) is asymptotically 

stable (by Lyapunov sense) on sliding surface (4.1). 
Proof. To show the stability of dynamical system (2.6) 

and (2.7) on SS (4.1), one can define a suitable Lyapu-
nov function  V x  from n mR   to R  as: 

 
1 1

1

2
TV x x x , 

then, 

   
1 1 11 1 12 2 1

TTV x x x x x x    A A , 

By considering SS Equation (4.1), we have  

 1 11 1 12 2x x x  A A . 
Hence, 
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     11 1 12 2 11 1 12 2

T
V x x x x x    A A A A  

and so     0V x V x  . 
That is, while trajectory lies on sliding surface (4.1), 

one have     0V x V x  , and this procedure, guarantees 
the asymptotically stability of sliding motion (2.6) with 
respect to SS (4.1). □ 
 
4.2. Step 2: Time Optimal Control 
 
Now, use of embedding technique is suggested to solve a 
time optimal control problem. Using this method, the 
sub-control aou  is designed such that a state trajectory 
starting from the initial point B reaches the point C  on 
the SS in minimum time. By considering Section 3, this 
time optimal control problem governed by dynamical 
system (2.6) and (2.7) is metamorphosed to the following 
linear programming problem: 

1
min  

N

jj


  

subject to: 

   

   
   

   

11

0
21

11

1

    1, 2, ,     

0         1, 2, ,    

       1, 2, ,       

0

0,                 1, 2, , .

N g
j i j i ij

N

j r j rj

N

j s j fs sj

N

j jj

j j

z i M C B

z r M D J

f z a s L f C

s z s

z j N

   

  





 









   

  

   

 

  
















 

(4.2) 

The last equality guarantees the trajectory starting 
from B , hits the SS at the C  in minimum time 
 
4.3. Step 3: Equivalent Control Design 
 
In order to design the equivalent control, consider the SS 
as (4.1). The derivative of    1 2 11 1 12 2,s x x x x  I A A  
is as follow: 

  
 

11 1 12 2

11 1 11 1 12 2 12 2

d d

d d

s
S x x

t t

x x x x

   

    



  

I A A

A I A A A

. 

Now by considering (2.6) and (2.7), one have: 

  
 
11 1 11 11 1 12 2 12 2

12 21 1 22 2 2 eq

S x x x x

x x u

    

  

  A I A A A A

A A A B
, 

to guarantee the stability of the system on SS, we need to 
have, 0s  . So we get Equation (4.3): 

This control forces the trajectories stay on the SS, and 
the motion is chattering free. 

Remark: It is well-known that SMCs are robust 
against the matched disturbance and unmodelled dynam-
ics. Note that the system (2.1) with disturbance term is  

           x t t x t t u t D t   A B ,      (4.4) 

where   nD t  . Assume that the matched disturbance 
 D t  influences the system after a certain time Dt  

where s Dt t , and its effect on the system before this 
time is insignificant. Then the proposed method inhe-
rently has the robustness property because the system in 
the sliding mode is given by (2.6) in which the term 
 D t  is absent. If D st t  one may select st  such that 

the condition s Dt t  is fulfilled. Then the cost func-
tional (3.3) is minimised from 0t   to st . If such in-
formation is unavailable, but the disturbance term is 
bound to a known function  h t , i.e.    D t h t , 
then the term    Th t Rh t  where R  is a positive defi-
nite symmetric matrix is included in the integrand of the 
cost functional (3.3). However, in the presence of dis-
turbances, an appropriate method is to use a best estimate 
of  D t  which is available or can be designed. Assume 
that  D t  is a piecewise continuous and bounded sig-
nal and only a constant bound on the disturbance signal 
 D t may be available, i.e. there is a positive number 

0h  such that   0D t h . Let   be a small positive 
number, two appropriate estimates of  D t  are 

   
2

1

1
d if 2ˆ

0 otherwise

t

t
D t t t

D t





  




        (4.5) 

and 

   2
2

max if 2ˆ
0 otherwise

t t t D t t
D t         



  
   (4.6) 

Both estimates 1D̂  and 2D̂  are computable at the 
current time and a designer may select one of them de-
pending on the nature of a disturbances. Therefore, in 
both options, the term    ˆ ˆT

i iD t RD t   1 or 2i i   
where n nR   is an arbitrary positive definite sym-
metric matrix, is included to the integrand of the cost 
functional (3.3) i.e. 

        0
ˆ ˆ, , , d

b T
i ia

J x u f t x u D t RD t t     (4.7) 

Note that in both scenarios (4.5) and (4.6),   0
ˆ

iD t h , 
and the cost functional (4.7) is minimised subject to 

           ˆ
ix t t x t t u t D t   A B       (4.8) 

   0 ,  a s bx x x t x  . 

 

       1

12 2 11 1 11 11 1 12 2 12 2 12 21 1 22 2eq L
u x I x x x x x

        A B A A A A A A A A .               (4.3)
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5. Numerical Example 
 
Example 1. Consider the following dynamical system: 

1 1 2 32x x x x    

2 1 22x x x   

3 1 33x x x u    

   0 2.25,5.25, 4.2x   , and the origin is equilibrium 
point. 

It is desired to design an almost time optimal control 

aou  such that the trajectory starting from the initial point 
 2.25,5.25,4.2B    reaches the point  2,5,4.5C    

on the SS in minimum time, then derive the system from 
C  to the origin (equilibrium point) along the SS in an 
infinite time. Assume      2.5, 1.5 4.5,5.5 4,5      
and  1.1,1.1  . By solving the LP problem (4.2), 
the optimal time is found as 0.03st  . In next two steps, 
the SS and equivalent control equ  are designed such 
that the system is stable and the trajectories remain on 
the SS for all 0.03st t  . 

To design SS, From (4.1) we have: 

   1 1
3 12 11

2
L

x
x

x
  

    
 

A I A , 

or,   1 2 30.5 0s x x x x    . Now by (4.3), the equi- 
valent control achieves as follow: 

1 2 33 0.5 3equ x x x    . 

This control causes   0s x  , so guarantee the trajec-
tories stay on sliding surface. Now by the procedure dis-
cussed in this article, the whole trajectory functions can 
be found. The entire trajectories using the control 

if 0

if
ao s

eq s

u t t
u

u t t

   
        (5.2) 

are designed through the steps 1 and 3. Figure 1 shows  

the action of the optimal controls (5.2), and the beha-
viour of the states using these controls. 

Example 2. Consider the following dynamical system: 

    
  

  

1 1

2

3

0.15 0.02sin 0.12sin 10

       0.7 0.01cos

       0.206 0.014sin 2

x t t x

t x

t x

 





  

 

 



 

  
    
  

2 1

2

3

1.45 0.1sin

       2.1 0.05cos 0.2cos 5

       1.03 0.07sin 2

x t x

t t x

t x



 



 

  

 



 

  
  

3 1 2

3

0.4 0.5sin 1.7

       0.6 1 0.014sin

x t x x

x t u





   

  


 

   0 0.1,0.69, 1.8x    , and the origin is equilibrium 
point. 

The above example is from [17], and is implemented 
by the method considered have, to compare outcome 
with the results appeared in [17]. It is desired to design 
an almost time optimal control aou  such that the trajec-
tory starting from the initial point  0,3, 2B    reaches 
the point  0.1,0.69, 1.8C     on the SS in minimum 
time, then derive the system from C  to the origin 
(equilibrium point) along the SS in an infinite time. As-
sume      1,0 1,3 6,0       and  1.5,1.5  . 
By solving the LP problem (4.2), the optimal time is 
found as 0.88st  . In next two steps, the SS and equiv-
alent control equ  are designed such that the system is 
stable and the trajectories remain on the SS for all 

0.88st t  . 
To design SS, from (4.1) we have: 

   1 1
3 12 11

2
L

x
x I

x
  

    
 

A A , 

hence,
 

           3 1 2

1
0.02sin 0.12sin 10 1.15 0.01cos 0.7

1.03 0.07sin 2
x t t x t x

t
  




    


, 

 
and equ  is found from (4.3). 

Figure 2 shows the action of the optimal controls (5.2), 
and the behaviour of the states using these controls. The 
trajectory hits SS at 0.88st   and reaches the neigh- 
bour of equilibrium point (origin) in the time less than 3, 
and the behavior is chattering free. The result show that 
the method used in this article is more accurate than the 
method in [17]. Since trajectories reach SS in shorter 
time, nevertheless, the method is very easy to use. 

Example 3. Consider the following linear dynamical 
system with disturbance: 

 
    

1 1 2

3

2 sin cos

      1 0.1sin 2 cos 3

x t x tx

t x t 

   

  


 

     2 1 2 3cos 2 sin 0.2cos 2sinx tx t x t x t        

   
 

3 1 2 31 cos sin 2 cos

       4 0.1sin 2

x t t x x t x

u t

    

 


 

   0 2, 5, 9x     , and the origin is equilibrium point. 

Without loss of generality, we assume  x   lies on 

SS. By (4.1) the SS defines as:  
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      3 1 2cos sin 1 sin cos 1
1 0.1sin 2

K
x t t x t t x

t


     


, 

and from (4.3) equ  as: 

       1

12 2 11 1 11 11 1 12 2 1 12 2 12 21 1 22 2 2eq L
u K x K I x x x x x           A B A A A A A A A A , 

 
where K  is a design parameter and selected such that 
the reduced ordered system (the system in the sliding 

mode) to be stable. In this example, K  is chosen as 1.5. 
Figure 3 shows the action of the controls (5.2), and  

 

 

Figure 1. The action of the SMC (5.2) and the behaviour of the state trajectories using this controller for Example 1. 
 

 

Figure 2. The action of the SMC (5.2) and the behaviour of the state trajectories using this controller for Example 2. 
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Figure 3. The action of the SMC (5.2) and the behaviour of the state trajectories using this controller for Example 3. 
 
the behaviour of the states using these controls. 
 
6. Conclusions 
 
In this paper, a new approach based on embedding 
process and sliding surface to control time-varying linear 
dynamical systems has been proposed. The method is 
robust against the matched disturbances, and the sliding 
motion is chattering free. However, since the embedding 
method is independent from the linearity or non-linearity 
of the dynamical system, if one can design the sliding 
surface, the method can be applied to any linear or non-
linear system. Three numerical examples were used to 
support the theoretical results, and show the effective-
ness and reliability of the proposed method. 
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