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Abstract 
 
Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained 
by numerical integration will be a solution of the differential equation only if it is independent of the integra-
tion step h. A numerical solution is considered to have converged, when the difference between the time se-
ries for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuita-
ble in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of 
this kind of solution. We present here a criterium of convergence that involves the comparison of the attrac-
tors associated to the time series for integration time steps h and h/2. We show that the probability that the 
chaotic attractors associated to these time series are the same increases monotonically as the integration step 
h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the 
method of statistical distance of probability distributions. 
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1. Introduction 
 
When using as nonlinear models ordinary differential 
equations (ODE’s) or delay differential equations (DDE’s), 
it is necessary, in general, to resort to numerical simula-
tions for analyzing their dynamical behaviour. Numerical 
solutions of differential equations are obtained by discre-
tizing them, and it should be recalled that solutions of the 
continuous equation are always solutions of the discre-
tized equation but not vice-versa. The time series obtai- 
ned by numerical integration will be a solution of the 
continuous differential equation if it is independent of 
the integration step h, indicating that convergence of the 
numerical integration has been reached. Usually the cri-
terium of convergence of the numerical integration is 
based on the direct comparison of the numerical time 
series calculated using steps of integration h and h/2: the 
difference between these time series should decrease as h 
is decreased, and convergence is achieved when this dif-
ference is smaller than a given precision ε. It should be 
remarked that the comparison has to be made after sta-
tionarity is reached, that is, the transient must be re-
moved before comparison is made.  

Nonlinear systems can exhibit complex behaviour and, 
in the case of chaotic solutions, the direct comparison of 
the calculated time series, as the integration step is hal- 
ved, is not appropriate for establishing numerical conver- 
gence, due to their characteristic sensitivity to initial con- 
ditions. In fact, it is very common the assertion that cha- 
otic solutions do not converge (see, for instance, Teixeira 
et al. (2007) [1], Yao and Hughes (2007) and (2008) [2, 
3]. The sensitivity to initial conditions causes the blow 
up of the difference between the time series calculated 
using integration steps h and h/2, respectively, regardless 
of it being initially extremely small (Teixeira et al. [1] 
state that “for chaotic systems, numerical convergence 
cannot be guaranteed forever”). Sauer (2002) [4] has 
shown that numerical integration cannot produce appro- 
ximate correct individual (or even average) chaotic tra-
jectories due to shadowing breakdown, even though it 
may produce an approximately correct chaotic attractor. 
So, in the case of chaotic solutions, as convergence crite-
rium of the numerical integration, we propose the com-
parison of the chaotic attractors associated with the ape-
riodic time series calculated using integration steps h and 
h/2. The chaotic attractor is the object that is invariant, 
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thus our proposal of a convergence criterium of the nu-
merical integration based on the comparison of the at-
tractors as the integration step is halved. Of course this 
criterium is applicable also to the case of time series 
corresponding to periodic or quasiperiodic solutions. 

DDEs, due to the presence of delays, have infinite di-
mension, but the corresponding discretized equations are 
finite dimensional so that, in this case, numerical con-
vergence is a problem even more delicate, so we shall 
illustrate our method using the multilooped negative 
feedback equations that have been proposed by Glass  
et al. [5] for modelling physiological control systems. It 
should be stressed that our method can be applied for 
ODE’s also. In Section 2 we briefly present the multi-
looped negative feedback equations for three delays, and 
introduce the notation for the time series solution ob-
tained numerically. We exhibit the blowing up of the 
difference between the time series calculated using steps 
h and h/2, in the case of aperiodic solution. In Section 3 
we present the criterium of convergence based on the 
comparison of the attractors corresponding to the time 
series calculated using h and h/2. We then apply it to the 
nonlinear model presented in Section 2, and show that 
the probability of the attractors being the same increases 
monotonically as the step of integration h decreases. The 
comparison of the attractors is made using 1) the method 
of correlation integral, and 2) the method of statistical 
distance of probability distributions (divergence meas-
ure). Final comments are presented in Section 4. 
 
2. The Multilooped Negative Feedback  

Equation with Three Delays 
 
The DDE model, proposed by Glass et al. [5] for model-
ling physiological control system, consists of N loops 
described by variables xi, the variable of primary interest 
being the average 
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where τi is the delay associated to the loop corresponding 
to the variable xi, and 
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The function Fi is a monotonically decreasing function, 
the parameters n and θi governing the steepness and the 
threshold, respectively. The equation for the variable x is 

easily obtained by summing the equations for variables xi 
(2) and dividing by N: 
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The initial condition will be a continuous function, x(t) 
= (t), −max(τi) ≤ t ≤ 0.  

We shall consider the case of N = 3 that has been stu-
died in detail by Glass and Malta [6] and Bastos de Fi-
gueiredo et al. [7] with the following parameter values: 

1 2 3
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The initial condition used was (t) = 0.4, −2.00 ≤ t ≤ 0. 
It was shown that by increasing n (increasing the steep-
ness of Fi(x) (3)) a period-doubling cascade was obtained. 
For n = 45 the solution had period 2, and for n = 75 the 
solution was shown to be aperiodic. 

The numerical integration of Equation (4) is perfor- 
med using the three-step integration method of Gear. 
This method has been tested by Malta and Teles (2000) 
[8], and was found to be more efficient than the 4th order 
Runge-Kutta method for the above equation. The step h 
is such that the delays (τi = kih, with ki integer. Given an 
initial condition, the numerical integration of equation 
(4), with step h, after discarding the transient (t ≤ t0), 
produces the stationary series xh (t0 + mh), m =1, 2,  , 
M. Comparison of the stationary series obtained for steps 
h and h/2 is made by calculating the following quantity 
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For a given precision ε, the usual convergence crite-
rium is that convergence is achieved if  

  max .h m               (7) 

If the parameter values used correspond to a periodic 
or quasi periodic solution, the quantity (6) can be kept 
within the required precision for any time interval (M as 
large as possible). This is illustrated in Figures 1 and 2 
that display the time series difference ∆h for n = 45 (pe-
riod 2) and n = 75 (aperiodic), respectively. 

Figure 1 shows that the condition (7) is a good con-
vergence criterium in the case of periodic solution, while 
Figure 2 shows that, in the case of aperiodic solution, 
after some time the condition (7) is no longer satisfied 
(this has also been pointed out in [1-3]). The smaller h is, 
the longer it takes for this to take place. This amplifica-
tion of ∆h as time evolves could be due to lack of statio-
narity of the time series (transient not removed com-
pletely). To check the stationarity of the time series we 
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Figure 1. Period-2 case (n = 45): (a) h = 0.01; (b) h = 0.001. 
 

 

Figure 2. Chaotic case (n = 75): (a) h = 0.01; (b) h = 0.001; (c) h = 0.0001. 
 
have used the correlation integral. Grassberger and Pro-
caccia [9] have observed that the probability that two 
points of the same attractor fall inside a box of size r 
may be approximated by the correlation integral that 
gives the probability that two points of an attractor are 
separated by a distance ≤ r. The correlation integral is 
related to the correlation dimension (that is an invariant) 
of an attractor, thus it will not depend on the time inter-
val considered, unless the series is not stationary. The 
correlation integral is defined as 
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where m is the dimension of the embedding space,   is 
the Heaviside function, and xi

(m) is the m-dimensional 
vector constructed from the time series, with time lag p: 

         1 , , , ,m
i i i ix x t m p x t p x t        (9) 

We have used m = 2 and p = max(τi) = 2.00 to calcu-
late the correlation integral (8) for points of the series 
contained in the time interval [kδt1, kδt1 + δt2], (k = 1, 2, 3, 
 ). This correlation integral will be denoted by C(2, r, 
k), and stationarity will be achieved at t = kδt1 if increas-
ing k causes no significant change. We have taken δt1 = 
25 and δt2 = 200, and in the Figure 3 we show the curves  
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Figure 3. Curves log C(2, r, k) × r, k = 1, 2, ···, 6 for the time 
series with n = 75 calculated with step h = 0.0001 (same 
time series used in the Figure 2(c)). 
 
logC(2, r, k) × r for k = 1, 2, ···, 6. Stationarity is achie- 
ved for k = 4 (t = 100) and this rules out the possibility of 
the amplification of ∆h observed in Figure 2 being due to 
nonstationarity effects. This indicates that the amplifica-
tion of ∆h observed in Figure 2 for the case n = 75, is a 
consequence of the system dynamics. 
 
3. Comparison of Attractors 
 
Since the chaotic attractor is known to be invariant, we 
propose that the criterium of convergence be based on 
the comparison of the attractors associated with the time 
series calculated using h and h/2 as integration step. We 
shall present two procedures for comparing the attractors, 
one based on the Kolmogorov-Smirnov test [10,11], and 
another one based on the calculation of the attractors 
divergence measure proposed by Diambra (2001) [12]. It 
should be stressed that given any pair of time series, 
these procedures can be used for comparing them. 
 
3.1. Kolmogorov-Smirnov Test 
 
The Kolmogorov-Smirnov test provides the probability 
that two sets of measurements correspond to the same  

distribution. Let  11 2, , , N    and  
21 2
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corresponding cumulative distribution functions (not ex- 
ceeding a given value η) are given by 
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The Kolmogorov-Smirnov statistics is defined as 
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Smirnov [11] has demonstrated that, given λ > 0, the 
probability 
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gives the significance of acceptance of the null hypothe-
sis that the two sets of data derive from the same distri-
bution.  

Albano, Rapp and Passamante [13] proposed the use 
of the correlation integral for calculating the Kolmogo-
rov-Smirnov statistics to be used for comparing the at-
tractors. The correlation for the 2-dimensional embed-
ding of the attractor corresponding to the time series xh 
(t0 + mh), m = 1, 2, ···, M is 
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where the integer k3 = τ3/h, and (2)
,i hx  is the ith vector of 

the two-dimensional embedding of the attractor: 
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The Kolmogorov-Smirnov statistics related to the cor-
relation integral is given by 
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We have calculated Ch(2, r) for r in the interval [0.01, 
1.0] (N1 = N2 = 1000), using the time series resulting 
from the numerical integration of the three delay equa-
tion with h = 0.01/2k, k = 0, 1, 2, ···, 9 (with parameter 
values (5), t0 = 100). The results are displayed in Figure 
4(a) and Figure 4(c) for n = 75, and n = 45, respectively. 
In Figures 4(b) and 4(d) we display the corresponding 
QKS, calculated using the statistics (15). 

QKS, gives the probability that the attractors related to 
the series calculated with time steps h and h/2 are the 
same. Figure 4(b) shows that for the chaotic case (n = 
75) this probability gets close to 100% for h ≤ 0.01/25 
(probability is greater than 99.5%) while for the period-2 
case (n = 45) (Figure 4(d)) this occurs for h = 0.01 (pro- 
bability 100%). In the Figure 5 we display ∆h (6) for the 
chaotic case with h = 0.01/28, and we can see the ampli-
fication of ∆h for t > 300. 
 
3.2. Convergence Criterium Based on the  

Statistical Distance 
 
This method uses the divergence measure proposed by   
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Figure 4. (a) and (c): correlation integral for the cases n = 75 and n = 45, respectively; (b) and (d): the corres-
ponding QKS calculated using the statistics (15) that is based on the correlation integral (h = 0.01/2k, k = 0, 
1, ··· , 8). 

 

 

Figure 5. ∆h, h = 0.01/28, that corresponds to the last point in the Figure 4(b) (chaotic case, n = 75). 
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Diambra [12] for comparing attractors. The distribution 
of points of the attractor in phase space is analogous to a 
probability distribution, therefore the statistical distance 
of probability distributions can be used to evaluate the 
attractors similarity. The statistical distance of the distri-
bution probabilities p and g (it measures the amount of 
information associated with p relative to g) is given by 
(see [14]) 

   
   : d ,q q

p x
D p g f g x x
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   

 
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where f is a functional operator for the system entropy. 
Diambra [12] uses the generalized entropy function [15] 
given by 
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Substituting (17) in Equation (16) (q = 2) gives 
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To calculate (18) numerically, it is necessary to dis-
cretize it. The two-dimensional phase space attractor 
region is divided in B squares of side c (see illustration in 
the Figure 6), and then the points of the attractors inside 
each square cell is counted (pij and gij, respectively). 

Normalizing the distribution of points, ΣΣpij = 1, ΣΣgij 
= 1, (18) discretized is given by 
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In the Figure 7 we exhibit the statistical distance D2(p: 
g) where p (g) corresponds to the attractor associated 
with the time series calculated with step h (h/2). The 
number of boxes used was B = 2000 (c = 0.0005). Com-
parison of Figures 4(b), (d) and 7(a), (b) shows that the 
convergence of D2 (p:g) to zero is slower than the con-
vergence of QKS to 100%. According to the convergence 
criterium based on the attractors statistical distance, if we 
require D2(p:g) ~ 0, in the period-2 case (n = 45) con-
vergence is obtained for h = 0.01/22, compared to h = 
0.01 of the Kolmogorov-Smirnov test for which QKS is 
100%. In the chaotic case (n = 75), D2(p:g) ~ 0 for h = 
0.01/28, and QKS is 99.5% for h = 0.01/25. 
 
4. Final Comments 
 
It is well known that if N = 1 Equation (4) does not ex-
hibit complex dynamics. In the case of N ≥ 3, chaotic 
solutions were found in the case of the feeedback func-
tion Fi being piecewise constant [5] or in the case of the 
smooth sigmoidal function (3) [6]. In the two feedback 
loops case [7] (N = 2) the comparison of the attractors 
corresponding to the time series for integration step h 
and h/2 was fundamental to establish the existence of 
chaotic solutions. One of the chaotic solutions was found 
for n = 45 with the parameters value.  

 

 
(a)                                                 (b) 

Figure 6. (a) Illustrating the square division of the plane region occupied by the attractor; (b) Detail of the insert 
in (a) to illustrate the counting of points in a square cell. 
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(a)                                                 (b) 

Figure 7. Attractors statistical distance D2(p:g): (a) chaotic case (n = 75); (b) period-2 case (n = 45). The time se-
ries were calculated for h = 0.01/2k, k = 0, 1, ···, 8. 
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To confirm that this time series corresponded to a 
chaotic solution, we constructed the bifurcation diagram, 
displayed in the Figure 8, by varying n in the interval 
[39,46] (computing 300 points in the Poincaré section for 
each value of n). 

The bifurcation diagram in Figure 8 shows the cha-
racteristic route of period-doubling bifurcation cascade 
to chaos, indicating the existence of chaos in the 
two-loops negative feedback system studied by Bastos de 
Figueiredo et al. [7]. Our numerical investigation has 
shown that the criterium of numerical convergence based 
on the comparison of attractors corresponding to the time 
series calculated using time steps h and h/2 (using either 
(15) or (19)) works well for all types of solutions: peri-
odic, quasi-periodic or aperiodic. Figures 4 (Kolmogorov- 
Smirnov test) and 7 (statistical distance) show that the 
probability of the attractors being the same increases 
(monotonically) as the step h is decreased.  

In the period-2 case (n = 45) the Kolmogorov-Smir- 
nov test (12) (using statistics (15)) indicates convergence 
for h = 0.01 (see Figures 4(c) and 4(d)), and the test (19) 
of attractors statistical distance gives the same result if 
we require that D2(p:g) < 2.2 (see Figure 7(b)). If we 
require that D2(p:g) < 1.0, it is necessary to use time step 
h = 0.005. If we require D2(p:g) < 0.1, it is necessary to 
use h = 0.0025. In the case of periodic or quasi-periodic 
solutions it is possible to use (7) as convergence crite-
rium for the numerical integration. However, in the chao- 

tic case (n = 75), due to the dynamical properties of this 
type of solution, the difference (6) blows up as shown in 
Figures 2 and 5. Nevertheless, the comparison of the 
phase space chaotic attractors corresponding to the time 
series calculated with time steps h and h/2 indicates that 
the probability of the corresponding chaotic attractors 
being the same increases monotonically as the time step 
h decreases (see Figures 4(a) and 7(a)). For h = 0.001, 
Figures 4(a) and 7(a) indicate that 87% < QKS < 93%, 
and 2.0 < D2(p:g) < 3.0, respectively. Therefore the time 
series calculated using h = 0.001 cannot be considered a 
solution of the differential Equation (4) despite the fact 
that (7), with ε = 0.000001, is satisfied for t < 100 (see 
Figure 2(b)). It is necessary to use h ≤ 0.01/25 to obtain 
a time series such that QKS ≥ 99.5% and D2(p:g) < 1.0 
(see Figures 4(b) and 7(a)). Therefore, the fact that the 
time series calculated by Teixeira et al. [1] satisfies con-
dition (7) during a certain time interval does not neces-
sarily mean that convergence has been achieved. It could 
well be that their numerical integration has not conver- 
ged as already pointed out by Yao and Hughes [2]. 

Our results indicate that D2(p:g) (Equation (19)) is 
more sensitive than QKS (Equation (12)): the value of h 
that gives probability ≥ 99.5% of the attractors being the 
same corresponds to D2(p:g) < 1.0 (see Figures 4(b) and 
7(a)). It is necessary to use h ≤ 0.01/28 to get D2(p:g) < 
0.3. 

Our method is very useful for detecting deviations 
from a given reference time series that corresponds to a 
behaviour that is desirable in a process being monitored 
as in Stienstra et al. [16]. 
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Figure 8. Bifurcation diagram for two feedback loops with 
parameters (20). The Poincaré section contains 300 points 
for each value of n; We considered 100 values of n in the 
interval [39,46]. 
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