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Abstract 
 

If   =0
:

n j
jj

P z a z  is a polynomial of degree n , having all its zeros in ,z K  1K  , then it was pro- 

vied by Aziz and Rather [2] that for every real or complex number   with K  ,  =1zMax D P z    

 
   =1

1
zn

n K
Max P z

K

 


. In this paper, we sharpen above result for the polynomials  P z  of degree > 3n . 
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1. Introduction 
 
Let   =0

:=
n j

jj
P z a z  be a polynomial of degree n and 

 P' z  its derivative, then  

   =1 =1z zMax P z nMax P z         (1) 

Inequality (1) is a famous result due to Bernstein and 
is best possible with equality holding for the polynomial 
  = nP z z , where   is a complex number. 
If we restricted ourselves to a class of polynomial 

having no zeros in < 1z , then the above inequality can 
be sharpened. In fact, Erdös conjectured and later Lax [6] 
proved that if   0P z   in < 1z , then  

   =1 =12z z

n
Max P z Max P z         (2) 

On the other hand, it was proved by Turán [10] that if 
 P z  is a polynomial of degree n having all its zeros in 

1z  , then  

   =1 =12z z

n
Max P z Max P z        (3) 

The inequalities (2) and (3) are also best possible and 
become equality for polynomials which have all zeros on 

1z  . 
For the class of polynomials having all the zeros in 

z K , Malik [7] (See also Govil [5]) proved that if 
 P z  is a polynomial of degree n having all zeros lie in 

z K , then  

   =1 =1 ,  if  1,
1z z

n
Max P z Max P z K

K
  


 (4) 

where as Govil [5] showed that  

   =1 =1 ,  if  1
1z zn

n
Max P z Max P z K

K
  


 (5) 

Both the inequalities are best possible, with equality in 
(4) holding for    =

n
P z z K  and in (5) the equality 

holds for the polynomial    = n nP z z K . 
Let  D P z  denote the polar derivative of the 

polynomial  P z  of degree n with respect to  , then  

       =D P z nP z z P z    .  

The polynomial  D P z  is of degree at most 1n   
and it generalizes the ordinary derivative in the sense that  

   = .lim
D P z

P z
     

Aziz and Rather [2] extended (5) to the polar deri- 
vative of a polynomial and proved the following: 

Theorem 1: If the polynomial   =0
:=

n j
jj

P z a z  has 
all its zeros in z K , 1K  , then for every real or 
complex number   with K  ,  

   
   =1 =1

1
z zn

n K
Max D P z Max P z

K


 



  (6) 

In this paper, we prove the following result which is a 
refinement as well as generalization of Theorem 1. 
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Theorem 2: Let   =0
:=

n j
jj

P z a z , 0 0na a   be a po- 
lynomial of degree > 3n , having all its zeros in z K , 

1K  , then for every real or complex number   with 
K  ,  
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Remark 1: For = 1K , Theorem 2 provides a refi- 

ment of a theorem proved by Shah [9]. 
Remark 2: For > 1K , and for > 1y ,  
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 and 
 1yK
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 are both increa-  

sing functions of y  and so the expressions  
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1
1

nK
K
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are always non-negative so that for polynomials of 
degree > 3n , Theorem 2 is an improvement of Theo- 
rem 1. 

Dividing both sides of (7) by   and letting   , 
we get the following: 

Corollary 1: Let   =0
=

n j
jj

P z a z , 0 0na a   be a po- 
lynomial of degree > 3n , having all its zeros in z K , 

1K  , then  
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2. Lemmas 
 
We need the following lemmas. 

Lemma 1: Let  P z  be a polynomial of degree n, 
then for 1R  . 

   = =1 .n
z R zMax P z R Max P z  

The above lemma is a simple consequence of the 
maximum modulus principle [8]. 

Lemma 2: If   =0
:=

n j
jj

P z a z , 0na  , is a poly- 
nomial of degree n having all its zeros in 1z  , then  

      =1 =1 =12z z z

n
Max P z Max P z Min P z   . 

This lemma is due to Aziz and Dawood [1]. 

Lemma 3: If   =0
:=

n j
jj

P z a z  is a polynomial of  

degree n having no zeros in 1z  , and  
 =1= zm Min P z , then for 1R   and > 3n ,  
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. 

 
The above result is a special case of a result due to 

Dewan, Singh and Mir [4, Theorem 1] with = 1K  and 
= 1 . 

Remark 3: Here we note that for the proof of this 
result an additional hypothesis that  0 0P   is required. 
A simple counter example in this case is   = nP z z . 
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3. Proof of Theorem 2 
 
Since  P z  has all its zeros in z K , therefore 
   =G z P Kz  has all its zeros in 1z   and hence by 

applying lemma 2 to the polynomial  G z , we get  

      =1 =1 =1 .
2z z z

n
Max G z Max G z Min G z    (9) 

Let   1
= nH z z G

z
 
 
 

. Then it can be easily verified  

that  

     = ,   for  = 1.H z nG z zG z z       (10) 

The polynomial  H z  has all its zeros in 1z   
and    =H z G z  for 1z  , therefore, by result of  

a de Bruijn [3]  

       for  = 1H z G z z         (11) 

Now for every real or complex number α with K  , 
we have  

       

     

=

                

K

D G z nG z zG z G z
K

G z nG z zG z
K






  

   

 

For this, we get by using (10) and (11)  

   =1 =1z z
K

K
Max D G z Max G z

K

 
    (12) 

Using (9) in (12), we get 

        =1 =1 =12z z z
K

K n
Max D G z Max G z Min G z

K

 
  . 

Replacing  G z  by  P Kz , we have  

        | |=1=1 =12 zz z
K

n K
Max D P Kz Max P Kz Min P Kz

K

 
  . 

This gives  

          =1 =1 =12z z z

n K
Max nP Kz z KP Kz Max P Kz Min P Kz

K K

       
 

.  

Equivalently  

        = = = .
2z K z K z K

n K
Max D P z Max P z Min P z

K

 
                    (13) 

Since the polynomial P(z) has all its zeros in  

z K , 1K  . If   1
= nQ z z P

z
 
 
 

 be the reciprocal  

polynomial of  P z . Then the polynomial 
z

Q
K

 
 
 

 has  

all its zeros in 1z  . Hence applying lemma 3 to the  

polynomial 
z

Q
K

 
 
 

, 1K  , we get  
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This in particular gives 
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which is equivalent to 
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    (14) 

Using (14) in (13), we get  
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Equivalently 
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          (15) 

 
Since  D P z  is a polynomial of degree 1n   and 1K  , therefore by using Lemma 1, we get  

   1
= =1

n
z K zMax D P z K Max D P z 

                                (16) 

Combining (16) and (15) we have  
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This completes the proof of Theorem 2. 
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