Inequalities for the Polar Derivative of a Polynomial

Gulshan Singh ${ }^{1}$, Wali Mohammad Shah ${ }^{2}$, Yash Paul ${ }^{1}$
${ }^{1}$ Bharathiar University Coimbatore, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, Kashmir University, Srinagar, India
E-mail: \{gulshansingh1,wmshah, yashpaul2011\}@rediffmail.com
Received February 20, 2011; revised March 1, 2011; accepted March 5, 2011

Abstract

If $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n, having all its zeros in $|z| \leq K, \quad K \geq 1$, then it was provied by Aziz and Rather [2] that for every real or complex number α with $|\alpha| \geq K, \operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq$ $\frac{n(|\alpha|-K)}{\left(K^{n}+1\right)} \operatorname{Max}_{|z|=1}|P(z)|$. In this paper, we sharpen above result for the polynomials $P(z)$ of degree $n>3$.

Keywords: Polynomial, Inequality, Polar Derivative

1. Introduction

Let $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n and $P^{\prime}(z)$ its derivative, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \operatorname{Max}_{|z|=1}|P(z)| \tag{1}
\end{equation*}
$$

Inequality (1) is a famous result due to Bernstein and is best possible with equality holding for the polynomial $P(z)=\lambda z^{n}$, where λ is a complex number.
If we restricted ourselves to a class of polynomial having no zeros in $|z|<1$, then the above inequality can be sharpened. In fact, Erdös conjectured and later Lax [6] proved that if $P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

On the other hand, it was proved by Turán [10] that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| \tag{3}
\end{equation*}
$$

The inequalities (2) and (3) are also best possible and become equality for polynomials which have all zeros on $|z|=1$.

For the class of polynomials having all the zeros in $|z| \leq K$, Malik [7] (See also Govil [5]) proved that if $P(z)$ is a polynomial of degree n having all zeros lie in $|z| \leq K$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+K} \operatorname{Max}_{|z|=1}|P(z)|, \text { if } K \leq 1 \tag{4}
\end{equation*}
$$

where as Govil [5] showed that

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+K^{n}} \operatorname{Max}_{|z|=1}|P(z)| \text {, if } K \geq 1 \tag{5}
\end{equation*}
$$

Both the inequalities are best possible, with equality in (4) holding for $P(z)=(z+K)^{n}$ and in (5) the equality holds for the polynomial $P(z)=\left(z^{n}+K^{n}\right)$.

Let $D_{\alpha} P(z)$ denote the polar derivative of the polynomial $P(z)$ of degree n with respect to α, then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

Aziz and Rather [2] extended (5) to the polar derivative of a polynomial and proved the following:

Theorem 1: If the polynomial $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ has all its zeros in $|z| \leq K, K \geq 1$, then for every real or complex number α with $|\alpha| \geq K$,

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-K)}{\left(K^{n}+1\right)} \operatorname{Max}_{|z|=1}|P(z)| \tag{6}
\end{equation*}
$$

In this paper, we prove the following result which is a refinement as well as generalization of Theorem 1.

Theorem 2: Let $P(z):=\sum_{j=0}^{n} a_{j} z^{j}, a_{n} a_{0} \neq 0$ be a polynomial of degree $n>3$, having all its zeros in $|z| \leq K$,
$K \geq 1$, then for every real or complex number α with $|\alpha| \geq K$,

$$
\begin{align*}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq & \frac{n(|\alpha|-K)}{\left(K^{n}+1\right)}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\operatorname{Min}_{|z|=K}|P(z)|+\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right]\right. \\
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]\right\}, \text { if } n>3 . \tag{7}
\end{align*}
$$

Remark 1: For $K=1$, Theorem 2 provides a refiment of a theorem proved by Shah [9].
Remark 2: For $K>1$, and for $y>1$,

$$
\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right]
$$

$\frac{\left[\left(K^{y}-1\right)-y(K-1)\right]}{y(y-1)}$ and $\frac{\left(K^{y}-1\right)}{y}$ are both increasing functions of y and so the expressions

$$
\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]
$$

and
are always non-negative so that for polynomials of degree $n>3$, Theorem 2 is an improvement of Theorem 1.

Dividing both sides of (7) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we get the following:

Corollary 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}, a_{n} a_{0} \neq 0$ be a polynomial of degree $n>3$, having all its zeros in $|z| \leq K$, $K \geq 1$, then

$$
\begin{align*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq & \frac{n}{\left(K^{n}+1\right)}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\operatorname{Min}_{|z|=K}|P(z)|+\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right]\right. \\
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]\right\}, \text { if } n>3 . \tag{8}
\end{align*}
$$

2. Lemmas

We need the following lemmas.
Lemma 1: Let $P(z)$ be a polynomial of degree n, then for $R \geq 1$.

$$
\operatorname{Max}_{|z|=R}|P(z)| \leq R^{n} \operatorname{Max}_{|z|=1}|P(z)| .
$$

The above lemma is a simple consequence of the maximum modulus principle [8].

Lemma 2: If $P(z):=\sum_{j=0}^{n} a_{j} z^{j}, \quad a_{n} \neq 0$, is a polynomial of degree n having all its zeros in $|z| \leq 1$, then

$$
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\operatorname{Min}_{|z|=1}|P(z)|\right\} .
$$

This lemma is due to Aziz and Dawood [1].
Lemma 3: If $P(z):=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z| \leq 1$, and $m=\operatorname{Min}_{|z|=1}|P(z)|$, then for $R \geq 1$ and $n>3$,

$$
\begin{aligned}
M(P, R) \leq & \frac{\left(R^{n}+1\right)}{2} \operatorname{Max}_{|z|=1}|P(z)|-\frac{\left(R^{n}-1\right)}{2} m-\frac{2\left|P^{\prime}(0)\right|}{(n+1)}\left[\frac{\left(R^{n}-1\right)}{n}-(R-1)\right] \\
& -\left|P^{\prime \prime}(0)\right|\left[\left\{\frac{\left(R^{n}-1\right)-n(R-1)}{n(n-1)}\right\}-\left\{\frac{\left(R^{n-2}-1\right)-(n-2)(R-1)}{(n-2)(n-3)}\right\}\right]
\end{aligned}
$$

The above result is a special case of a result due to Dewan, Singh and Mir [4, Theorem 1] with $K=1$ and $\mu=1$.

Remark 3: Here we note that for the proof of this result an additional hypothesis that $P(0) \neq 0$ is required. A simple counter example in this case is $P(z)=z^{n}$.

3. Proof of Theorem 2

Since $P(z)$ has all its zeros in $|z| \leq K$, therefore $G(z)=P(K z)$ has all its zeros in $|z| \leq 1$ and hence by applying lemma 2 to the polynomial $G(z)$, we get
$\operatorname{Max}_{|z|=1}\left|G^{\prime}(z)\right| \geq \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|G(z)|+\operatorname{Min}_{|z|=1}|G(z)|\right\}$.
Let $H(z)=z^{n} \overline{G\left(\frac{1}{\bar{z}}\right)}$. Then it can be easily verified that

$$
\begin{equation*}
\left|H^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right|, \text { for }|z|=1 \tag{10}
\end{equation*}
$$

The polynomial $H(z)$ has all its zeros in $|z| \geq 1$ and $|H(z)|=|G(z)|$ for $|z|=1$, therefore, by result of
a de Bruijn [3]

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \leq\left|G^{\prime}(z)\right| \text { for }|z|=1 \tag{11}
\end{equation*}
$$

Now for every real or complex number α with $|\alpha| \geq K$, we have

$$
\begin{aligned}
\left|D_{\frac{\alpha}{K}} G(z)\right| & =\left|n G(z)-z G^{\prime}(z)+\frac{\alpha}{K} G^{\prime}(z)\right| \\
& \geq\left|\frac{\alpha}{K}\right|\left|G^{\prime}(z)\right|-\left|n G(z)-z G^{\prime}(z)\right|
\end{aligned}
$$

For this, we get by using (10) and (11)

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\frac{\alpha}{K}} G(z)\right| \geq \frac{|\alpha|-K}{K} \operatorname{Max}_{|z|=1}\left|G^{\prime}(z)\right| \tag{12}
\end{equation*}
$$

Using (9) in (12), we get

$$
\operatorname{Max}_{|z|=1}\left|D_{\frac{\alpha}{K}} G(z)\right| \geq \frac{(|\alpha|-K)}{K} \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|G(z)|+\operatorname{Min}_{|z|=1}|G(z)|\right\} .
$$

Replacing $G(z)$ by $P(K z)$, we have

$$
\operatorname{Max}_{|z|=1}\left|D_{\frac{\alpha}{K}} P(K z)\right| \geq \frac{n(|\alpha|-K)}{2 K}\left\{\operatorname{Max}_{|z|=1}|P(K z)|+\operatorname{Min}_{|z|=1}|P(K z)|\right\} .
$$

This gives

$$
\operatorname{Max}_{|z|=1}\left|n P(K z)+\left(\frac{\alpha}{K}-z\right) K P^{\prime}(K z)\right| \geq \frac{n(|\alpha|-K)}{2 K}\left\{\operatorname{Max}_{|z|=1}|P(K z)|+\operatorname{Min}_{|z|=1}|P(K z)|\right\} .
$$

Equivalently

$$
\begin{equation*}
\operatorname{Max}_{|z|=K}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-K)}{2 K}\left\{\operatorname{Max}_{|z|=K}|P(z)|+\operatorname{Min}_{|z|=K}|P(z)|\right\} . \tag{13}
\end{equation*}
$$

Since the polynomial $\mathrm{P}(\mathrm{z})$ has all its zeros in $|z| \leq K, K \geq 1$. If $Q(z)=z^{n} P\left(\frac{1}{z}\right)$ be the reciprocal
all its zeros in $|z| \geq 1$. Hence applying lemma 3 to the polynomial $Q\left(\frac{z}{K}\right), K \geq 1$, we get polynomial of $P(z)$. Then the polynomial $Q\left(\frac{z}{K}\right)$ has

$$
\begin{aligned}
\operatorname{Max}_{|z|=K}\left|Q\left(\frac{z}{K}\right)\right| \leq & \left.\left.\frac{\left(K^{n}+1\right)}{2} \operatorname{Max}_{|z|=1}\left|Q\left(\frac{z}{K}\right)\right|-\frac{\left(K^{n}-1\right)}{2} \operatorname{Min}_{|z|=1}\left|Q\left(\frac{z}{K}\right)\right|-\frac{2\left|a_{n-1}\right|}{(n+1)} \right\rvert\, \frac{\left(K^{n}-1\right)}{n}-(K-1)\right] \\
& -2\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]
\end{aligned}
$$

This in particular gives

$$
\begin{aligned}
\operatorname{Max}_{|z|=1}|P(z)| \leq & \frac{\left(K^{n}+1\right)}{2 K^{n}} \operatorname{Max}_{|z|=K}|P(z)|-\frac{\left(K^{n}-1\right)}{2 K^{n}} \operatorname{Min}_{|z|=K}|P(z)|-\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right] \\
& -2\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
\operatorname{Max}_{|| |=K}|P(z)| \geq & \left.\left.\frac{2 K^{n}}{\left(K^{n}+1\right)} \operatorname{Max}_{|z|=1}|P(z)|+\frac{\left(K^{n}-1\right)}{\left(K^{n}+1\right)} \operatorname{Min}_{|| |=K}|P(z)|+\frac{4 K^{n}}{\left(K^{n}+1\right)} \frac{\mid a_{n-1}}{(n+1)} \right\rvert\, \frac{\left(K^{n}-1\right)}{n}-(K-1)\right] \\
& +\frac{4 K^{n}}{\left(K^{n}+1\right)}\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right] \tag{14}
\end{align*}
$$

Using (14) in (13), we get

$$
\begin{aligned}
\operatorname{Max}_{|z|=K}\left|D_{\alpha} P(z)\right| \geq & \frac{n(|\alpha|-K)}{2 K}\left\{\frac{2 K^{n}}{\left(K^{n}+1\right)} \operatorname{Max}_{|z|=1}|P(z)|+\frac{\left(K^{n}-1\right)}{\left(K^{n}+1\right)} \operatorname{Min}_{|z|=K}|P(z)|+\frac{4 K^{n}}{\left(K^{n}+1\right)} \frac{\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right]\right. \\
& \left.+\frac{4 K^{n}}{\left(K^{n}+1\right)}\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]+\operatorname{Min}_{||z|=K}|P(z)|\right\}, \text { if } n>3 .
\end{aligned}
$$

Equivalently

$$
\begin{align*}
\operatorname{Max}_{|z|=K}\left|D_{\alpha} P(z)\right| \geq & \frac{n(|\alpha|-K) K^{n-1}}{\left(K^{n}+1\right)}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\operatorname{Min}_{|z|=K}|P(z)|+\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right]\right. \\
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]\right\}, \text { if } n>3 . \tag{15}
\end{align*}
$$

Since $D_{\alpha} P(z)$ is a polynomial of degree $n-1$ and $\quad K \geq 1$, therefore by using Lemma 1 , we get

$$
\begin{equation*}
\operatorname{Max}_{|z|=K}\left|D_{\alpha} P(z)\right| \leq K^{n-1} \operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \tag{16}
\end{equation*}
$$

Combining (16) and (15) we have

$$
\begin{aligned}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq & \frac{n(|\alpha|-K)}{\left(K^{n}+1\right)}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\operatorname{Min}_{|z|=K}|P(z)|+\frac{2\left|a_{n-1}\right|}{(n+1)}\left[\frac{\left(K^{n}-1\right)}{n}-(K-1)\right]\right. \\
& \left.+2\left|a_{n-2}\right|\left[\left\{\frac{\left(K^{n}-1\right)-n(K-1)}{n(n-1)}\right\}-\left\{\frac{\left(K^{n-2}-1\right)-(n-2)(K-1)}{(n-2)(n-3)}\right\}\right]\right\}, \text { if } n>3 .
\end{aligned}
$$

This completes the proof of Theorem 2.

4. Acknowledgements

The authors are extremely grateful to the referee for his valuable suggestions.

5. References

[1] A. Aziz and Q. M. Dawood, "Inequalities for a Polynomial and its Derivative," Journal of Approximation Theory, Vol. 54, No. 3, 1998, pp. 306-313.
[2] A. Aziz and N. A. Rather, "A Refinement of a Theorem
of Paul Turán Concerning Polynomials," Journal of Mathematical Inequality Application, Vol. 1, No. 2, 1998, pp. 231-238.
[3] N. G. de Bruijn, "Inequalities Concerning Polynomials in the Complex Domain," Nederl. Akad. Wetench. Proc. Ser. A, Vol. 50, 1947, pp. 1265-1272; Indagationes Mathematicae, Vol. 9, 1947, pp. 591-598.
[4] K. K. Dewan, N. Singh and A. Mir, "Growth of Polynomials not Vanishing inside a Circle," International Journal of Mathematical Analysis, Vol. 1, No. 11, 2007, pp. 529-538.
[5] N. K. Govil, "On the Derivative of a Polynomial," Proceedings of the American Mathematical Society, Vol. 41, 1973, pp. 543-546.
doi:10.1090/S0002-9939-1973-0325932-8
[6] P. D. Lax, "Proof of a Conjecture of P. Erdös on the Derivative of a Polynomial," American Mathematical Society, Vol. 50, No. 8, 1994, pp. 509-513.
[7] M. A. Malik, "On the Derivative of a Polynomial," Journal of the London Mathematical Society, Vol. 2, No. 1, 1969, pp. 57-60. doi:10.1112/jlms/s2-1.1.57
[8] Polya and G. Szegö, "Ausgaben und Lehratze ous der Analysis," Springer-Verlag, Berlin, 1995.
[9] W. M. Shah, "A Generalization of a Theorem of Paul Turán," Journal Ramanujan Mathematical Society, Vol. 11, 1996, pp. 67-72.
[10] P. Turán, "Über die Ableitung von Polynomen," Compositio Mathematica, Vol. 7, 1939, pp. 89-95.

