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Abstract 
We start with analyzing stochastic dependence in a classic bivariate normal density framework. 
We focus on the way the conditional density of one of the random variables depends on realiza- 
tions of the other. In the bivariate normal case this dependence takes the form of a parameter 
(here the “expected value”) of one probability density depending continuously (here linearly) on 
realizations of the other random variable. The point is, that such a pattern does not need to be re- 
stricted to that classical case of the bivariate normal. We show that this paradigm can be genera- 
lized and viewed in ways that allows one to extend it far beyond the bivariate or multivariate 
normal probability distributions class. 
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1. Introduction 
This paper can be viewed as an extension of our previous work (Filus and Filus [1]) on the bivariate Gaussian 
pdf structure’s genesis of wide classes of newly constructed bivariate probability distributions. These distribu- 
tions we constructed in our papers since 2000 up to recently (see, Filus and Filus [1]-[6], also see Kotz, Bala- 
krishnan and Johnson [7] pp. 217-218). Here, our explanations concerning the relation of our models to the biva- 
riate normal were modified and we extended the topic to higher dimensional models and to the relation between 
our “parameter dependence method” of models construction and the multivariate normal paradigm.  

It is a well-known fact that among existing multivariate probability distributions, there are no more than a few 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.56088
http://dx.doi.org/10.4236/am.2014.56088
http://www.scirp.org/
mailto:jfilus@oakton.edu
mailto:L-Filus@neiu.edu
http://creativecommons.org/licenses/by/4.0/


J. K. Filus, L. Z. Filus 
 

 
929 

classes that are widely and successfully applied in practical stochastic modeling procedures. Typically, the un- 
derlying random variables are assumed to be independent or having an “approximately Gaussian” bivariate or 
multivariate distribution. The normality often is assumed even when corresponding data hardly agree with that 
mathematical model (showing asymmetry, for example). On the other hand, from all the multivariate distribu- 
tions used in applications, the normal seems to be “the best”. The reason for this is that the Gaussian models 
catch the stochastic relationship (mainly by a regression function) between its marginal random variables in the 
most natural way. We first analyze and interpret the specific way the multivariate normal density of the random 
vector ( )1, , mX X  relates to the marginal quantities 1, , mX X . Next we extend the “Gaussian pattern” to 
more general classes of bivariate and multivariate distributions including cases with non-Gaussian marginals. 
First of all we show that the common “mechanism” of the stochastic dependences both in the Gaussian distribu- 
tions structure and the structure of the distributions we define, relies on the same way of conditioning. Namely, 
in all the considered cases, the conditional density of one random variable, say, ( )2,3, ,jX j m=  , given rea- 
lizations, say, 1 1, , jx x − , of the marginal random variables 1 1, , jX X −  can be obtained by setting (often ar-
bitrarily) an “initially constant” parameter, say, θj of the density of Xj to be any continuous function 

( )1 1, ,j jx xθ −
 of the realizations. In this way the conditional pdf of Xj, given 1 1, , jx x −  is defined, which 

stands for the “source” of the stochastic dependences.  
Pursuing this method successively for 2,3, ,j m=   we always arrive at a unique model. This manner, 

however, is characteristic for the m-variate normal where we turn an “original” normal N(µj, σj) density of Xj in- 
to the conditional density by setting a new value jµ

∗  of the “affected old parameter µj” to be the following (li- 
near regression) function: 1 1 1 1j j j jc x c xµ µ∗

− −= + + + . Our main contribution is to generalize the latter func- 
tion to any, not necessarily linear, function and consider not only the parameter µj but also any other parameter 
of any probability density to define the corresponding conditional distributions. This is the essence of the so- 
called parameter dependence method. Specifically in this paper, our task will be showing more closely relation 
of this method to the multivariate Gaussian model construction.  

In Section 2, we analyze the stochastic dependences between marginal random variables of the bivariate nor- 
mal in order to point out the original version of the parameter dependence pattern next extending to other con- 
structed bivariate probability densities. The explanation as well as the example of applications of the bivariate 
normal is different from that in Filus and Filus [1]. In Section 3 we present the extension of the bivariate normal 
pdf to the bivariate FF-normal (formerly called “pseudonormal”). In Section 4 we apply the parameter depen- 
dence method to construct the bivariate FF-Weibull (formerly “pseudo-Weibull”) density in reliability frame- 
work of joint density of parallel system components life times. Comparison with other, similar, methods in the 
literature is presented in Section 5. In Section 6 we extend the constructions from bivariate to multivariate 
probability densities, first showing their relation with the multivariate normal dependences structure. Examples 
of the construction of multivariate FF-normal and multivariate FF-exponential (“pseudo-exponential”) densities 
are given. 

In Section 7, we point out that the “method of parameter dependence” is used in some more areas of reliabil-
ity theory for different situations than we are considering. This is a part of the accelerated life testing theory 
where the dependence of life time distribution’s parameter from a given (high) stress is investigated.  

Another (fairly new) area is the “load optimization theory” sometimes associated with the load sharing phe- 
nomena analysis that we sketch in Subsection 7.2. The differences between these approaches and our theory are 
pointed out in 7.2. 

2. The Bivariate Normal Case 
We start with the following situation. Suppose the normally distributed random variable X2 describes an attribute 
of a physical or biological object, say u. Consider the (stochastic) behavior of the object u in two distinct “phys- 
ical” situations. In the first situation, u is exposed to some random stress whose magnitude is described by a 
normally distributed random variable X1. In the second situation we assume there is no such a stress present or 
the stress takes on a fixed predetermined value. The usual task here is to determine the joint distribution of X1, 
X2. Let the densities of X1, X2 be normal, i.e., ( ) ( )1 1 1 1,g x N µ σ= , ( ) ( )22 2 2,g x N µ σ= . [It is clear that we 
must assume that the value (µ2 – kσ2) is positive for at least k = 3, in order to assure approximate positivity of the 
normal life-time X2]. 
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2.1. Simplified Biomedical Example 
Imagine the following fictitious experiment whose goal is to establish the possible stochastic impact of a medi- 
cation’s dose change on some cancer treatment results. Suppose a person of a certain fixed age, was diagnosed 
with a kind of cancer. Assume that one of the significant characteristics of that kind of cancer is a tumor with a 
size X2. During a given time period T after the patient was diagnosed, a specific medication was administered. 
Also suppose that this medication was routinely administered in the past, and that the average dose is estimated 
(or fixed) to be µ1 milligrams per kilo of weight daily. Assume that, originally, the known (either measured or 
estimated) average size of the tumor is, say, µ2 millimeters and after the period T of treatment the tumor size X2 
is measured again and its negative or positive increment 2 2X µ−  is statistcally confronted with the dose X1 of 
the medication administered.  

We assume that the goal of the underlying experiment is to make a prediction on effect 2 2X µ−  of the 
treatment when the dose is changed from its “original level” 1 1X µ=  to a level 1 1X µ≠ . Randomness of the 
doze X1 may be justified when only “historical data” are analyzed and then extrapolated for a larger population 
of cases not yet recorded. In the case of extrapolation of historical data for a larger population we assume that 
the only information one possess on the applied in the past dose X1 is its probability distribution, which is the 
Gaussian ( )1 1,N µ σ  with given values for both the parameters µ1, σ1. Also, for 1 1X µ=  the tumor size X2 
(after the treatment) is assumed to be a random variable having a normal ( )2 2,N µ σ  density, where 2 2X µ−  
is the value of the tumor “increment” under the treatment characterized by the dose level µ1. For any other ap- 
plied doze X1 = x1 the, associated with a single patient, value (x1 – µ1) statistically affects the change in the tu- 
mor size X2 – µ2 i.e., the treatment result. The word “statistically” here means that the impact of a nonzero quan-
tity (x1 – µ1) (“the dose is not the standard one”) on the (former) probability density N(µ2, σ2) of the tumor size 
X2 realizes through affecting the value of the mean µ2 rather than directly affecting the numerical value x2 of X2. 

If we were interested in finding the joint probability distribution of X1, X2 it is enough to determine the condi- 
tional density g2(x2|x1) of X2|X1, since the marginal density of X1 is not changing.   

In accordance with the “linear regression rule”, the dependence of the (new) expected value 2µ
∗  (so new 

probability density ( )2 2,N µ σ∗ ∗ ) of the tumor size X2 on the event X1 = x1, is determined by the familiar func- 
tional relationship: 

( ) ( )2 1 1 2 2 1 1E X X x a xµ µ µ∗= = = + −                          (1) 

where a = ρ(σ2/σ1) and ρ is the (linear) correlation coefficient of the variables X1, X2 . 
This approach directly leads to the determination of the conditional density of the random variable X2 given 

any realization X1 = x1. It is a well-known fact that the conditional density g2(x2|x1) is, again, normal and 

( )
( )

( )( )
( )

2
2 2 1 1

2 2 1 2 22
22

1 exp
2 12π 1

x a x
g x x

µ µ

σ ρσ ρ

− − − −
=

−−
,                     (2) 

i.e., the ( )( )2 1 2
2

1 1,N a xµ µ σ ρ− −+  density in x2. 
The joint density g(x1,x2) of the random variables X1, X2 is given by the usual arithmetic product 

g2(x2|x1)g1(x1) . 

2.2. Remark 
In the example above, one can reinterpret the “response random variable” X2 to be for example the patient’s “re- 
sidual life-time”, or blood pressure, or level of some important chemical in the blood (such as cholesterol). In 
such cases the mathematics of the problem would remain the same.      

Note the obvious fact that the tumor size X2 does not have a physical influence on the medication dose X1 so 
that the original marginal pdf g1(x1) remains the same. However, the stochastic dependence between X1, X2 is 
mutual, since, in general, g1(x1|x2) ≠ g1(x1). 

It is well known that the actual problem with the bivariate normal density construction is to get to the condi- 
tional density (2), which fully represents the underlying stochastic dependence of random variable X2 on X1. 

Our claim is that the above paradigm for the stochastic dependence (characteristic for the bivariate Gaussians) 
can be extended to other classes of bivariate and multivariate distributions (see Filus and Filus [3] [4]). 
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3. The FF-Normal (Pseudonormal) Extension 
Historically, people relied on the nice symmetry in the stochastic dependence of X1 and X2 when using their joint 
bivariate normal distribution. This kind of symmetry (i.e., both marginal and both conditional distributions are 
normal and both sides regression functions are linear) can only be achieved with the linear regression functions 
as described above (1). However, are linear regression functions really the only functions that one can success- 
fully apply within this framework? Assuming that the function µ2(X1) is any continuous function in X1, one ob- 
tains a wide and interesting extension of the class of bivariate normal densities. We called this class FF-normal 
(previously named “pseudonormal”, see [2] and also [7]). In this case the parameter σ2 can as well become a 
continuous function of the stress X1 (X1 may have a “stress” interpretation in a very wide sense). This stress may 
change the parameter σ2 of the (normal) density of, say, the “life-time” X2 into another value ( )2 2 1xσ σ∗ ∗=  that 
depends on the particular realization x1 of the random variable X1. The price for such a wide generalization is 
loss of the, mentioned above, symmetry (the marginal of X2 ceases to be normal) but the gains are considerable. 
Anyway, the bivariate normal remains to be a special cases of the FF-normals. 

With the bivariate FF-normal densities of (X1, X2) we can use general continuous µ2(x1) and σ2(x1) functions, 
and, performing similar calculations as above, we find, rather surprisingly, that g2(x2|x1) is once more a regular 
normal density in x2.  

Consider now the following situation with a bivariate FF-normal distribution in which the “physical” inter- 
pretation of the underlying random variables can now be more general than above. Let u1, u2 be two objects (or 
phenomena) which are characterized by the random variables X1, X2 respectively. If the objects are physically 
separated then the random variables X1, X2 are assumed to be independent, having normal pdfs 

( ) ( )1 1 1 1,g x N µ σ=  and ( ) ( )22 2 2,g x N µ σ=  respectively. When the objects physically interact (or rather only 
u1 physically impacts u2), then the corresponding joint FF-normal density g(x1, x2) of the random vector (X1, X2) 
is given by the usual product formula:  

( ) ( ) ( )1 2 1 1 2 2 1,g x x g x g x x=  with the invariant marginal density ( ) ( )1 1 1 1,g x N µ σ= . 
For the conditional density of X2|x1 we have: ( ) ( ) ( )( )*

2
*

2 2 1 1 2 1,g x x N x xσµ= .  
The functions ( ) ( )2

*
2

*
1 1,x xσµ  are “formed” from the “no-stress” parameters µ2, σ2 of X2’s density.  

More explicitly, one obtains the bivariate FF-normal pdf in the form: 

( ) ( )
( )

( )( )
( )

22
2 11 1

1 2 2 *2*
1 2 11

*

1

2

2

– 1 1, exp exp
2 22π 2π

x xx
g x x

xxσ

µµ
σ σσ

−− −
=  

where ( )2 1 2 1x E X xµ =     is the (in general, nonlinear) “regression function”, and ( )
2*

2 1 2 1Varx X xσ      =  
is the conditional variance obtained from the “previous” variance 2

2σ .  
In particular, one may consider the “nonlinear regression function” 

( ) ( ) ( )2 1 2 1 2 1 1 1 1   nE X x x a x A xµ µ µ µ∗= = + − + −    

with arbitrary real parameters a∗  and A, 2,3,n =  .  
Realize that in the case A = 0 and ( ) 2

2 1 2 1xσ σ ρ−=  we obtain the regular bivariate Gaussian density. The 
coefficient A of the term ( )1 1

nA x µ−  may be considered as a nonlinear “correction” of the regular Gaussian 
(linear) regression. The main purpose of that correction is to enhance the accuracy in various modeling proce- 
dures. For some type of asymmetric data, especially interesting may be the “non-symmetric” “quadratic” case n 
= 2. 

Equally important is the “symmetric” “cubic” case when n = 3. Also interesting is the case where a* = 0 and A 
≠ 0. Here, the linear correlation coefficient is zero, while the (nonlinear) dependence may be quite “heavy”.  

Another interesting case (which may be combined with those above) is when we choose the standard devia- 
tion function as belonging to the “parametric class” of “quadratic functions” defined by ( ) ( )2 2

1 22 11x k r xσ σ∗ = +  
with k positive real. It is rather obvious that the idea of the construction of bivariate normal (and FF-normal as 
well) can be extended to other probability distributions such as exponential, gamma, Weibull, lognormal, etc.  

Generally speaking, the essence of the construction method is that for any pair of (“initially independent”) 
random variables X1 and X2 with given probability densities ( )1 1  ,g x ω  and ( )2 2 ;g x Θ  respectively, one can 
simply “declare” some parameter (or a vector parameter), say Θ, of the density ( )2 2 ;g x Θ  to be dependent on 
the values of the other random variable X1. This means that when X1 = x1 we may assume that 



J. K. Filus, L. Z. Filus 
 

 
932 

( )( ) ( )2 2 1 2 2 1,g x x g x xΘ =  is the “affected by x1” distribution of the random variable X2 (given the event X1 = 
x1 occurred, with probability density g1(x1) ).  

Then the joint density of the pair (X1, X2) is always ( ) ( )( ) ( )1 2 2 2 1 1 1, ,g x x g x x g x= Θ .  
This situation is especially natural if we consider X2 to be the life-time of an object and X1 is the stress put on 

it.  
Roughly, one can say that the construction method of bivariate distributions, presented above is an extension 

of the method used in the construction of the bivariate normal. 

4. Reliability Example 
Consider a 2-component (say u1, u2) parallel system reliability setting in which X1, X2 represent the components’ 
life-times (see Barlow and Proschan [8]). We start with the situation where the system’s components act sepa- 
rately. We call that pattern the “laboratory conditions”. In this latter case the components are physically sepa- 
rated and consequently their life-times (represented by the, statistically estimated, “baseline probability densities” 
g1(x1) and g2(x2) respectively), are stochastically independent. When the two components are installed into the 
system, they start to interact. Assume that during that interaction some irregularities in the work of component 
u1 cause corresponding changes in u2’s inner physical structure. This increases the hazard rate of that physically 
affected component u2. Such physical phenomena are then “responsible” for the occurrence of stochastic de- 
pendence in the “in-system” component life-times X1 and X2.  

One can also imagine this situation as follows. During the two components’ “in-system” performance, com- 
ponent u1 creates a situation in which component u2 is “constantly bombarded” by a string of harmful “mi- 
cro-shocks” (see Filus and Filus [5]). Each such micro-shock causes a corresponding “micro-damage” in the af- 
fected component u2’s physical constitution. We also assume that these micro-damages in component u2’s inner 
physical structure “cause” some corresponding “micro-changes in the original (baseline) failure rate” (and, in 
parallel, in the corresponding probability distribution) of its life-time X2. After a, possibly long, time period X1 
of such interaction all these micro-damages cumulate their effects. As a result of this accumulation, the overall 
change in the corresponding “hazard rate function” will become significant. To describe formally the change in 
the hazard rate function we have chosen to consider corresponding changes in its parameter(s). In what follows 
we present a particular bivariate model for a 2-component system reliability which we called FF-Weibullian 
(formerly “pseudo-Weibullian” in Filus and Filus [4]). 

Suppose the lifetimes of the components u1 and u2 in “laboratory conditions” are independent and distributed 
according to the Weibull density random variables X1 and X2.  

Let ( ) 1 expk k
k k k k k k kg x x xα ααλ λ−= −  be the pdf of Xk (k = 1, 2).  

Here, for k = 1, 2, we have the “vector parameter” ( ),k k kaθ λ= .  
Next consider the components u1 and u2 as acting within the system. Let the resulting (changed) values 2λ

∗ , 
2σ
∗  of the parameters of the (original) pdf g2(x2; λ2, α2) be determined by the following continuous functions of 

x1: 

( )2 2 1xλλ∗ ∗=  and ( )2 2 1xαα∗ ∗= . 

One then obtains the wide class of bivariate FF-Weibullian densities: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )* *
2 1 2 11 1 11 * * *

1 2 1 2 2 1 1 1 1 1 1 2 1 2 1 2 2 1 2, exp ( ) x expx xg x x g x g x x x x x x x xα αα αλα λ λ α λ−−= = − −       (3) 

where, for ease of computation, we recommend to apply as “sub-model” the following family of “parameter 
functions”:  

( ) ( )1 22 11 rx Axλλ∗ = +  and ( )12 2x sα α∗ =  with parameters A, r, s positive reals.  
In particular, s may depend on x1. 
Another analytically interesting “sub-model” is given by:  

( ) 22 1 1exp rx Axλ λ∗ =     with A and r real, and ( ) ( )12 2 11x s cxαα∗ = + with s > 0, c ≥ 0.  

Note that both factors g1(x1) and g2(x2|x1) of the joint density g(x1, x2) given by (3) are Weibullian densities. In 
particular, g2(x2|x1) is Weibullian with respect to the argument x2 alone. 

For the simpler FF-exponential example, see [1]. 
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5. Notice on Similar Investigations in the Literature 
A parallel and basically independent path of investigation, which also has its roots in the bivariate normal dis- 
tribution’s dependence paradigm, is present in the literature under the key word “conditioning”. 

This method, used in the construction of numerous multivariate probability distributions, was extensively 
developed mostly since around 1987. See, for example, Arnold, Castillo and Sarabia [9] with citations. Also 
consider Castillo and Galambos [10]. 

The underlying method (by numerous authors called the “conditioning method”) relies on imposing condi- 
tional structure X|Y and Y|X on, given in advance, “baseline” probability densities f(x; A) and g(y; B) of some 
(“initially independent”) random variables X and Y respectively, where A and B are scalar or vector parameters. 
The two conditional densities are defined as we did above, i.e.  

g(y|x) = g(y; B(x)) and f(x|y) = f(x; A(y)) 
where A(y) and B(x) are continuous functions of realizations of the random variables Y, X respectively.  

In this case the task is to find two proper (unknown) marginal densities for the bivariate probability distribu- 
tion of (X, Y) which are, as a rule, not unique and sometimes do not exist.  

Despite similarities this method essentially differs from ours. In our case, instead of the two conditional den- 
sities g(y|x) and f(x|y), we define only one, say, g(y|x), but together with the marginal f(x).  

Pursuing this way we always directly obtain a unique model simply as the product of the two (known) densi- 
ties.  

In such a way, we have obtained a wide class of bivariate densities which is essentially disjoint from the class 
obtained by that alternative method. Also, the physical interpretation of the, so defined, conditional densities 
differs in the two approaches. However, both approaches are devoted to the same purpose which is to extend of 
the paradigm of the bivariate normal in stochastic modeling. Nevertheless, using the conditioning method it is 
very difficult to construct the multivariate distributions of any higher than two dimensions.  

Practically that method reduces to the bivariate cases while the method we present has a remarkable easiness 
of construction of probability distributions of, actually, arbitrary finite dimension. There is, namely, a recurrence 
procedure which allows to construct any j-th dimensional pdf based on corresponding (j – 1)-th dimensional pdf 
( )3,4,j =   constructed “at an earlier stage”. That procedure was also used in Filus and Filus [11] for the con- 
struction of discrete time stochastic processes.   

The next section is devoted to the construction of multivariate distributions for any arbitrary finite dimension. 

6. Method of Parameter Dependence for Multivariate Probability Distributions  
Construction 

For the construction, mentioned in the title, we successively use the simple recurrence method that yields the j-th 
dimensional probability density, given the (j – 1)-th one. Realize, that (for j = 3) we have already defined the 2- 
dimensional densities g2(x1, x2) by means of the products g1(x1)g2(x2|x1), where each underlying conditional den- 
sity was given by g2(x2|x1) = g2(x2, θ2(x1)). 

So the “first step” is already done. Suppose now that we have at our disposal the (j – 1)-th dimensional (j ≥ 3) 
pdf, say ( )1

1 2 1, , ,j
jg x x x−
−

 of the random vector ( )1 2 1, , , jX X X −
. The task of obtaining the joint density 

( )1 2, , ,j
jg x x x

 of the random vector ( )1 2 1, , , ,j jX X X X−
 always reduces to defining the conditional den- 

sity ( )1 2 1, , ,j j jg x x x x − , given any univariate baseline pdf ( ),j j jh x θ  by the method of parameter depen- 
dence. Assuming that originally θj is a constant parameter, we define the conditional pdf ( )1 2 1, , ,j j jg x x x x −  
by setting (according to the new physical situation of “being in the system” together with the other j – 1 objects): 

( ) ( )( )1 2 1 1 2 1, , , , ,  , ,j j j j j j jg x x x x h x x x xθ ∗
− −=   

Now, the “new” value jθ
∗  of the parameter is a continuous function of the realizations (“multi-stresses”) 

( )1 2 1, , , jx x x −
 of the random vector ( )1 2 1, , , jX X X −

. 
The j-dimensional pdf of the random vector ( )1 2 1, , , ,j jX X X X−

 one obtains simply as the product: 

( ) ( ) ( )1
1 2 1 2 1 1 2 1, , , , , , , , ,j j

j j j j jg x x x g x x x x g x x x−
− −=    

The latter pdf becomes the basis for identical construction of the (j + 1)-dimensional pdf and so on.  
We then stop the procedure once j + 1 = m, where m is the total dimension of the considered (maximal) ran- 
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dom vector, say, ( )1, , mX X . 
Since the analogy with the construction of each j-dimensional normal pdf ( )3,4,j =   is not as straightfor- 

ward as in the bivariate case, we found it beneficial to show this analogy closer, by reducing the normal’s con- 
struction to the “diagonal case”. Let us start with recalling that any normally distributed random vector, say, 

( )1, , jX X X= 
, 2,3, ,j m=   is obtainable from the random vector ( )1, , jZ Z Z= 

 by an affine transfor- 
mation 

T T TX AZ µ= + ,                                  (4) 

where the random variables 1, , jZ Z  are independent and each having the standard normal N(0, 1) pdf. A is an 
arbitrary j × j matrix with real entries (here, without losing generality, we restrict ourselves to nonsingular ma- 
trices A, only) and ( )1, , jµ µ µ= 

 is an arbitrary fixed vector in Rj. The symbolT denotes the usual matrix 
transpose. Recall that every matrix A can be decomposed as 

A MB= ,                                      (5) 
where B is a lower triangular and M is an orthogonal matrix. From (5) we obtain that any nonsingular lower tri- 
angular matrix B can be represented as the product: 

TB M A= ,                                     (6) 
where A is an arbitrary nonsingular matrix. If we replace representation (4) of the random normal vector X by 
the following representation 

T T TY BZ µ= + ,                                  (7) 

then we replace the arbitrary random vector X by an arbitrary “triangular” random vector Y related to X by: 

( ) ( )T TTY M Xµ µ− = − ,                                   (8) 

where MT is an arbitrary orthogonal transformation.  

Since the two zero-expectation random vectors X – µ, Y – µ are obtained one from another by an isometry 
(here, rotation) MT in the Euclidean space Rj, they may be considered as representing the same “stochastic data” 
expressed in two different (but still rectangular) coordinate systems. So from a stochastic viewpoint the “differ- 
ence” between the random vectors X and Y is inessential and we can consider the random vector Y as an “arbi- 
trary normal” (“with accuracy to the rotation” MT). 

Collecting all the above, we will consider the normal random vector Y, given by (7), where matrix B is any 
lower triangular matrix and Z is the standard normal j-vector. Write (7) in the form: 

1 11 1 1

2 21 1 22 2 2

1 1,1 1 1, 1 1 1

,1 1 , 1 1 ,

j j j j j j

j j j j j j j j j

Y b Z
Y b Z b Z

Y b Z b Z

Y b Z b Z b Z j m

µ
µ

µ

µ
− − − − − −

− −

= +
= + +

= + + +

= + + + + →







                       (7*) 

where m ≥ j is the actual dimension of the constructed (final) random vector, say ( )1, , mX X  (if m = ∞, one 
defines, in effect, a stochastic process with time j). 

Considering the first –1 lines in (7*) as a system of linear equations, one obtains all 1 1, , jZ Z −  as linear 
combinations of 1 1, , jY Y − . Substituting these solutions back into (7*) one obtains the following form: 

( )
( )

( )

1 11 1 1

2 22 2 21 1 2

3 33 3 31 1 32 2 3

1 1, 1 1 1,1 1 1, 2 2 1j j j j j j j j j

Y c Z
Y c Z c Y

Y c Z c Y c Y

Y c Z c Y c Y

µ
µ

µ

µ− − − − − − − − −

= +

= + +

= + + +

= + + + +





                      (9) 

Realize that transformation (9) is easily reversible.  
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Assuming that realizations 1 1, , ky y −  of the random variables 1 1, , kY Y −  are known, we obtain for each 
1, ,k j=  : 

( ),1 1 , 1 1

 
k k k k k k

k
kk

Y c y c y
Z

c
µ− −− + + +

=


                            (10) 

where from the above assumed nonsingularity we have ckk ≠ 0. From (10) it follows that the conditional density 
of each Yk, given the values 1 1, , ky y − , is normal and for the corresponding conditional expectation we have 

1 1 ,1 1 , 1 1, ,k k k k k k kE Y y y c y c yµ− − −= + + +  
 

while for the (constant) conditional variance we obtain 
2

1 1Var , ,k k kkY y y c−  = 
 

To adopt the above procedure to our concept of “baseline” Tj versus “in system” Yj random variables, replace 
in (9) the independent standard random variables 1 2, ,Z Z   by independent random variables, say, 1 2, , ,T T   
where each Tk has the (“baseline”) normal N(µk, σk) pdf ( )1,2,k =  . 

Replace transformation (7) by 
TY BT= ,                                       (11) 

where ( )1, , jT T T= 
. Using this change, (10) will be replaced by the following inverse transformation: 

( ),1 1 , 1 1

 
k k k k k

k
kk

Y c y c y
T

c
− −− + +

=


                            (10*) 

This yields the conditional pdf of 1 1, ,k kY y y −  to be the normal 

( ),1 1 , 1 1,k k k k k kk kN c y c y cµ σ− −+ + +
 

Finally, the general pattern of “creation” of any successive j-variate normal pdf can be explained as follows.  
Given are the first j – 1 lines of transformation (11) in the form: 

( )

( )

1 11 1

2 22 2 21 1

3 33 3 31 1 32 2

1 1, 1 1 1,1 1 1, 2 2

 

j j j j j j j j

Y c T
Y c T c Y
Y c T c Y c Y

Y c T c Y c Y− − − − − − − −

=
= +

= + +

= + + +





                        (12) 

for some 1 1,2,j − =  . (Realize that the joint normal pdf ( )1
1 2 1, , ,j

jg y y y−
−

 of the random vector 
( )1 2 1, , , jY Y Y −

 was defined in j – 1 “previous” steps. In particular for j – 1 = 1, it is the univariate normal N(µ1, 
|c11|σ1) density of the variable Y1.)  

We may assume that the next baseline random variable Tj, originally having the N(µj, σj) pdf, is incorporated 
to the “system” by transforming 

1 1, ,j j jT Y Y Y −→ 
 

This transformation is thought of as adding to (12) the following j-th line: 

( ), ,1 1 , 1 1j j j j j j j jY c T c Y c Y− −= + + +
                          (13) 

[“Physically” this could mean that the variables 1 1, , jY Y −  “become” explanatory (“stresses”) for the “new” 
variable Yj obtained from Tj that (originally) was independent from these stresses]. 

From (13) one can determine the conditional pdf of Yj, given any realization ( )1 1, , jy y −
 of the random 

vector ( )1 1, , jY Y −
, as the following normal pdf in yj: 

( ),1 1 , 1 1,j j j j j jj jN c y c y cµ σ− −+ + + . 
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Thus, as the j-th “object” (originally independent from the “system” and characterized by the random quantity 
Tj) was “put into the system” the quantity Tj turns to the quantity Yj and, in parallel, the parameters µj and σj of 
its normal density are turned into ,1 1 , 1 1j j j j jc y c yµ − −+ + +  and j jjcσ , respectively, while normality is pre- 
served.  

Clearly, the new value jµ
∗  of the (conditional) expectation became the continuous (here linear) function 

( )1 1 ,1 1 , 1 1, ,j j j j j j jy y c y c yµ µ∗
− − −= + + + 

 

of realizations 1 2 1, , , jy y y −  while unfortunately the new value of the standard deviation does not depend on 
1 2 1, , , jy y y −  but remains constant even if multiplied by the specific, determined by the “system”, number cjj. 

This can be “made up” if we allow the number cjj in (13) to be dependent on 1 2 1, , , jy y y − , but then the so ob- 
tained multivariate FF-normal distribution ceases to be normal since (13) ceases to be linear.  

As we have shown also in multivariate cases, the origin of the “parameter dependence method for the con- 
struction”, lies in the construction of the multivariate normal distributions. Recall that having defined the condi- 
tional pdf ( )1 1, ,j j jg y y y −  and the joint pdf ( )1

1 1, ,j
jg y y−
−

 we automatically have the joint pdf 
( )1, ,j

jg y y
 as the simple arithmetic product of the two. In the case just considered, all the densities 

( )1, , , 1,2, ,j
jg y y j = 

 are (arbitrary with the accuracy to the rotations in Rj ) multivariate normal. 
Preserving the general spirit of the multivariate normal pdf derivation, let us extend all the Equations (13) for 

2,3, ,j m=   by allowing the translations ,1 1 , 1 1j j j jc Y c Y− −+ +  to be any nonlinear continuous function of 
1 1, , jY Y −  and replacing the constant cj,j by any continuous function of the same variables. Now, for any 

2,3, ,j m=   (13) may be rewritten into the following “triangular” (see Filus, Filus and Arnold [12]) form: 

( ) ( )1 1 1 1, ,  , ,j j j j j jY Y Y T Y Y− −= Φ + Ψ 
                            (13*) 

where Φj() and Ψj() are arbitrary continuous functions and ( )( )1 1, , 0 1j jP Y Y −Φ ≠ = . 
From (13*) we obtain its inverse: 

( )
( )

1 1

1 1

 , ,

, ,
j j j

j
j j

Y Y Y
T

Y Y
−

−

− Ψ
=

Φ





                                 (13**) 

and then for each observation ( )1 1, , jy y −
 of ( )1 1, , jY Y −

 the conditional pdf of 1 1, ,j jY y y −
 as follows: 

( ) ( ) ( )( )1 1 1 1 1 1,   ,  , , ; , ,j j j j j j j j jg y y y N y y y yσµ− − −… = + ΦΨ                 (14) 

It is clear that the sequence of the densities (14) ( )2,3, ,j m=   together with the normal initial density g1(y1) 
of Y1 uniquely determines the m-variate FF-normal pdf ( )1, , mg y y  of the random vector ( )1, , mY Y . Re- 
markably, this non-normal density has its natural representation as the product of m normal densities: 

( ) ( ) ( )
2

1 1 1 1 1, , , ,
m

j
j

m j jg y y g y y yg y
=

−= ∏                             (15) 

However, the marginal pdfs of 2 , , mY Y  are not normal anymore. 
The main conclusion which follows the considerations in Sections 6.2 - 6.4 may be stated as: There is a ge- 

neric relationship that associates the construction method of the parameter dependence with the stochastic de- 
pendence structure present within the multivariate normal distribution of any dimension.  

As an example of this relationship realize that the transformations (13) and (13*), when applied to the inde- 
pendent normal random variables ( )1,2, ,jT j m=  , define multivariate normal and FF-normal pdfs respec- 
tively. They produce other m-variate probability distributions if the normality assumption for Tj is dropped. 

Let now ( )1,2, ,jT j m=   be independent random variables all having the standard exponential pdf: 

( ) expj j jf t t = −  . 

Applying to the random vector ( )1, , mT T  transformation (13*) and then (13**) for 1,2, ,j m=  , one ob- 
tains the joint density ( )1, , mg y y  of the resulting random vector ( )1, , mY Y  to be given by the product of 
m factors (15), where according to first row of (12) we have ( ) ( )1 1 11 1 111 expg y c y c= −    and according to 
(13**) 
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( ) ( )
( )( )

( )
1 1

1 1
1 1 1 1

, ,1, , exp
, , , ,

j j j
j j j

j j j j

y y y
g y y y

y y y y
−

−

− −Φ

− −Ψ
=

Φ





 

 

where the latter is the two parameter exponential density with respect to yj for 2,3, ,j m=  . 
Another interesting case of the m-variate FF-Weibullian pdf can be obtained by applying transformations (13*) 

to m independent Weibullian random variables. An even more general class of FF-Weibullians one obtains us-
ing the pseudopower transformations (see Filus and Filus [4]) instead of the pseudoaffine (13*) which actually 
is a special case of the pseudopower.   

All these distributions (including the m-variate normal) can as well be obtained by direct use of the “parame- 
ter dependence pattern” which produces more m-variate models than the considered above transformations. On 
the other hand existence of the defining transformations facilitates an underlying statistical analysis and simula- 
tions. 

7. Other Parameter Dependence Paradigms in the Literature 
Some paradigms, applied in the reliability literature, are exactly those of the “parameter dependence” that we 
describe in this paper. However, in most of the cases they are not directly related to the problem of construction 
of multivariate probability distributions (so, also are different from the “conditioning” procedures in [9] [10]; 
see above, Section 5). There are two such subjects that we discuss in the following. 

7.1. The Accelerated Life Testing 
When testing the life times of some high reliability products, the stresses usually encountered such as tempera- 
ture, humidity, voltage sometimes are kept on significantly higher than usual levels in order to make the life 
times shorter than they are in normal conditions. The so obtained data (a “sample”) is then extrapolated into 
those (hypothetical) life times that would, possibly, be obtained under the regular values of the stresses. Exis- 
tence of rules, that associate the products’ life times with values of the stresses applied, is necessary for per- 
forming proper extrapolations. Several such rules, typically known as the Arrhenius or Eyring (see, Meeker and 
Escobar [13], Nelson [14] and [15] an internet source) relationships, are based on physical and chemical consid- 
erations on the rates of some chemical reactions that give rise to a given unit’s failure. The obtained models, in 
general, allow determining the ratio of life times of the same product under higher and under normal tempera- 
ture or, in the case of the Eyring model, some other physical quantities that play the role of the stresses (see, [13], 
formula (18.5) page 476). Methods like that (i.e., the so called SAFT models [13]) directly relate the (life) times 
by means of a simple coefficient called the “acceleration factor”.  

Unfortunately, with this method the simplicity often comes along with inaccuracy of the predictions. Other 
methods apply the “Proportional Hazards Relationships” known also as Cox Model (see Cox [16]) which instead 
of times relate hazard rates. 

More recently ([15]), the relationships between the life times under different stresses are related indirectly 
through their probability distributions via distribution’s parameter in that way that considers distribution’s pa- 
rameter as a function of a given stress (mostly temperature, humidity, pressure, voltage). Those relationships, 
even if considered in a different context, obey the same paradigm (of the parameter dependence) as that consi- 
dered in this paper in association with the construction of the multivariate probability distributions.  

In what follows we discuss the differences. 
1) The generality of the “parameter dependence theory” we built in this paper, is significantly higher than the 

very special case applied to the accelerated life testing theory. There are three reasons for that.   
Firstly, in our approach the subject of constructing conditional probability distributions is not limited to the 

life testing, and not even to the “stress-life time” pattern only. The range of applications of our theory is very 
wide, including many biomedical (see, Collett [17]) and econometric relationships, (see, Filus and Filus [11] al- 
so Filus, Filus and Krysiak [18]). 

Secondly, in the paradigm we consider, the relation between a parameter and stress (or any other random 
quantity) is given by an arbitrary continuous function, while the number of such functions applied in association 
with the accelerated life time testing is very limited. Actually, the functions are restricted to few “models” such 
as the Arrhenius, Eyrie, inverse power law, log-linear, and not many more (see, for example, the Eyring-Weibull 
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model in [15], Section 5). Those models were obtained from physical and chemical considerations that are only 
valid for some simple failure (degradation) mechanisms while very often real failure mechanism is too compli- 
cated to be analyzed that way.  

Our idea is to omit the complicated physical or chemical phenomena that often are poorly understood and to 
apply two steps purely empirical approach.  

Speaking roughly, the first step is an “educated guess” (for choice of a proper function) and the second is sta- 
tistical verification of this guess.  

Thirdly, in our theory we may consider an arbitrary parameter of an arbitrary probability distribution as a 
stress dependent, while, according to our knowledge (see, for example, [15]), the only life time distributions so 
far considered in the accelerated life testing are exponential, Weibullian, and lognormal (normal), and for each 
the distribution only one parameter is taken under consideration.  

2) Besides the generality (of the constructed conditional distributions) our concept also differs with regard to 
the purpose. Namely, independently of the conditional distributions construction, we also have the construction 
of bivariate and multivariate probability distributions such as the FF-normal, FF-exponential, FF-Weibullian, 
FF-gamma and other (for comparison with similar “conditioning methods” of construction present in the litera- 
ture, see Section 5).   

The construction of high dimension multivariate distributions based on parameter dependence can easily be 
extended to Markovian and non-Markovian (still simple!) stochastic processes (see Filus and Filus [11]). The 
latter constructions seem to be rather unique in the literature. 

7.2. Load Control and Load Sharing 
1) Other than the accelerated life testing subject, where the “parameter dependence paradigm” is applied, is a 

set of problems centered around the notion of “load optimization” (see Filus [19] [20], Levitin and Amari [21], 
Nourelfath and Yalaoui [22] and others). This relatively new topic can be described as follows. Some working 
systems, such as cargo transporting trucks, trains, electric power lines, highways, computer processors, or other 
systems supporting varying amounts of load, require control of that load. On the one hand more load yields 
more gain, but, on the other hand, load (as stress) increment yields a corresponding increment of the system’s 
failure rate which, in turn, depends on certain parameters [20]. The optimization problem can be formulated in 
several ways ([20] [21]) but, in all cases, the main idea is to balance between an expected gain that follows a 
good (load) transportation and the loss in reliability of the transporting medium which decreases the overall gain. 
Thus, for some (optimal) value of the load to be found, the pure expected gain earned by the system is maximal. 
In this framework the relationship between stress (the load) and some parameters of the system life time proba- 
bility distribution (failure rate) is vital for finding a proper model. As examples of such relations, the power and 
exponential functions of the load were chosen in [20].  

2) Similar application of the parameter dependence pattern also occurs when “load sharing phenomena” takes 
place. Suppose that we have a parallel system supporting a load such as several engines aircraft or two electric 
power lines. Failure of any system’s component may cause the total load to be redistributed among fewer com- 
ponents, so that the load on each of them increases by some predictable value. Now we may encounter either the 
load optimization problem [21] or simply the task of determination of system’s life time probability distribution 
(see Freund [23] for the exponential case as well as Lu [24] and Filus [25] for Weibullian and lognormal cases). 
In all these cases the parameter dependence pattern is involved or it is desirable to apply it to get a deeper insight 
into the underlying stochastic phenomena. 

Remark. As a final remark, let me mention the relationship between the parameter dependence presented in 
this paper, and the stochastic dependence based on models initiated in 1961 by Freund [23]. Besides some simi- 
larity the most basic difference lies in the fact that in the Freund scheme the system components act indepen- 
dently until the first failure. In general, the components successive failures cause the total load to be shared by 
fewer and fewer remaining components, affecting their failure rates (via the parameters).  

Quite opposite to that, in the models we introduce, the component interactions take place only when the 
components work. Any failure of a system component stops its influence on the remaining components’ life 
times. Therefore, the two paradigms, the “Freund’s load sharing” and our “parameter dependence”, are “disjoint” 
and in a sense “complementary”. In reality, both (physical) phenomena may take place at the same time and it 
seems to be quite possible in the future to construct stochastic models (i.e., multivariate probability distributions) 
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that would obey both paradigms.  
Nevertheless, we stress the generic relation of all the multivariate probability distributions based on the para- 

meter dependence with the multivariate Gaussians. 
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