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Abstract 
This paper is concerned with the existence of traveling wave solutions in a reaction-diffusion pre- 
dator-prey system with Beddington-DeAngelis functional response and a discrete time delay. By 
introducing a partial quasi-monotonicity condition and constructing a pair of upper-lower solu- 
tions, we establish the existence of traveling wave solutions. Moreover, a numerical simulation is 
carried out to illustrate the theoretical results. 
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1. Introduction 
Recently, the dynamics of predator-prey systems is one of the fastest developing areas of modern mathematics 
due to their significant nature in biological fields and other practical fields. One significant component in these 
systems is the functional response describing the number of prey consumed per predator per unit time for given 
quantities of prey N and predators P. The traditional mathematical model describing the predator-prey interac- 
tions consists of the following system of differential equations. 

In recent years, many authors have explored the dynamic relationship between predators and their preys. There is 
extensive literature related to these topics for ordinary differential equation models (see [1]-[6] and the references 

 

 

*Corresponding author. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.56080
http://dx.doi.org/10.4236/am.2014.56080
http://www.scirp.org/
http://www.scirp.org/
http://creativecommons.org/licenses/by/4.0/


P. Du et al. 

 
844 

cited therein). We know that more realistic prey-predator models were introduced by Holling suggesting three kinds 
of functional responses for different species to model the phenomena of predation [3]. On the other hand, species 
have the natural tendency to move from areas of bigger population concentration to those of smaller population con- 
centration. This kind of diffusion process is called free diffusion and it is not considered in the above mentioned ref- 
erences. In the literature, many researchers have directly introduced the free diffusion to ODEs and DDEs and have 
also explained why to do so. To name a few, see [7]-[14]. Moreover, such models or similar models with delays and 
free diffusion have also arisen from a variety of situations like infectious disease dynamics, porous medium, chemi- 
cal reaction, engineering control theory. Taking into account the inhomogeneous distribution of the species in dif- 
ferent spatial locations within a fixed bounded domain nRΩ∈ , Peng and Wang looked at a diffusive Holling- 
Tanner prey-predator model in [7] 
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where ( ),u x t  and ( ),v x t  represent the species densities of the prey and predator, respectively. η  is the 
outward unit normal vector on the smooth boundary ∂Ω .The constants ( )1,2id i =  are the diffusion coeffi- 
cients corresponding to u  and v , respectively, and all the parameters appearing in (1.1) are assumed to be 
positive. The admissible initial data ( )0u x  and ( )0v x  are continuous functions on Ω . The homogeneous 
Neumann boundary condition means that (1.1) is self-contained and has no population flux across the boundary 
∂Ω . For more detailed biological implications of the model, one may further refer to [7] and the references cited 
therein. 

In recent years, great attention has been paid to the study of the existence of traveling wave solutions in reaction- 
diffusion system, since they determine the long term behavior of other solutions, and account for phase transitions 
between different states of physical systems, propagation of patterns, and domain invasion of species in population 
biology (see, for example, [10]-[12], and the references cited therein). 

Motivated by the work of Peng and Wang [7] and Wu, Zou [12], in the present paper, we consider the existence of 
traveling waves of the following predator-prey model with Beddington-DeAngelis functional response and a discrete 
time delay due to gestation of predator 
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The main purpose of the paper is to consider the existence of traveling wavefronts for the delay model (1.2). 
In order to study traveling wavefronts, we need to analyze the stability of the positive constant equilibrium first. 
As a result, the remaining part of this paper is organized as follows. We first use linearized method to study the 
stability of the positive constant equilibrium of (1.2) in Section 2. Then, applying the method of upper and lower 
solutions, we establish the existence of traveling wavefronts of (1.2) in Section 3. At the same time, we give 
some suitable examples to illustrate our results. 

2. Asymptotical Stability of the Positive 
Constant Equilibrium 
Set the right side of the system (1.2) to zero. It is easy to check that the system (1.2) has an axial equilibrium 

( )1 ,0E a  and a unique positive equilibrium ( )2 1 2,E k k , where 
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And 2 1k brk= . In this section, we discuss the locally asymptotical stability of the positive constant equili- 
brium by the linearized method. The linearized system of (1.2) about a positive constant equilibrium ( )1 2,k k  is 
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System (2.1) admits nontrivial solutions of the form 1 i
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which implies that 
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where λ  is a complex number and σ  is a real number (see, for example, Ge and He [11] and the references 
therein). 

It is easy to check that 2
2 0d bλ σ+ + ≠ , so, we rewrite (2.2) as 
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We claim that 0.µ < , if ( ) ( ), i ,vλ σ µ σ= +  satisfies (2.3) and 0τ ≥  is sufficiently small. Otherwise, 
suppose that there exists a ( )0 0 0i ,vµ σ+  satisfying (2.3) such that 0 0µ ≥ . Then direct computation gives us 
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We can prove that 
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It is a contradiction. This proves the claim. As a result, we have proved. 
Theorem 2.1. The positive equilibrium ( )2 1 2,E k k  of (1.2) is locally asymptotically stable for 0τ ≥  suffi- 

ciently small. 
Remark 2.1. In [7], it was showed the following result: Suppose that ( )2 22 2 0m a b m a abγ γ+ + + − ≥ . Then 

positive equilibrium of (1.1) is asymptotically stable. However, in this paper, we also obtain the asymptotical 
stability about the positive equilibrium without conditions in absence time delay τ . 

In order to illustrate the validity of the theoretical result on the asymptotical stability, we perform numerical 
calculations using the software MATLAB. 

Consider the following system: 



P. Du et al. 

 
846 

( )

( )

( )
( ) ( ) ( ) ( )0 0

1 , in  0, ,
0.4

1 , in  0, ,

0,on  0, ,

,0 0.3, ,0 0.4,on  ,

t xx

t xx

vu u u u
u

vv v v
u

u v

u x u x v x v x
η η

 − = − − Ω× +∞ + 
 − = − Ω× +∞ 
 

∂ = ∂ = ∂Ω× +∞

= = = = Ω

 

the positive equilibrium ( )1 2,E k k  of system (1.2) is locally asymptotically stable (see Figure 1 and Figure 2). 

3. Existence of Traveling Wavefront 
A traveling wave solution of (1.2) is a special translation invariant solution of the from  

( ) ( )( ) ( ) ( )( )1 2, , , ,u x t v x t x ct x ctφ φ= + +  with wave speed c. Various methods including the monotone itera-  
 

 
Figure 1. 1 0.4633k = .                                  

 

 
Figure 2. 2 0.4633k = .                                   
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tion technique [11] [12] and the degree theory [10] have been adopted to study the existence of traveling wave 
solutions to reaction-diffusion systems with delays. In this section, we use the approach introduced by Canosa 
[14] to establish the existence of traveling wave solutions connecting the axial equilibrium ( )1 ,0E a  to the pos- 
itive equilibrium ( )2 1 2,E k k . To seek such a pair of traveling wavefronts of (1.2), we substitute ( ) ( )1,u x t sφ=  
and ( ) ( )2,v x t sφ= , where s x ct= + , into (1.2) to obtain 
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Now, we follow the approach of Canosa [14] to construct a uniformly valid asymptotic approximation to the 
wavefronts for large values of the wave speed c. Suppose that c is large enough. Then 21 cε =  is a small para- 
meter. We aim to seek a pair of solutions to (3.1) of the form 
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Then (3.1) becomes 
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Denote 

( ) ( ) ( ) ( )2
0 1 2, , 1, 2i i i i iψ η ε ψ η εψ η ε ψ η= + + + =  

and substitute them into (3.2). It turns out that ( )10ψ η  and ( )20ψ η  satisfy 
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For simplicity of notation, we still denote ( )10 ,ψ η  ( )20ψ η  by ( ) ( )1 2,s sφ φ , respectively. Then (3.3) be- 
comes 
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Now, we are ready to state and prove the following result by the upper and lower solution technique developed 
by Wu and Zou [12]. 

Theorem 3.1. System (1.2) has a traveling wavefront connecting ( ),0a  to ( )1 2,k k  for 0τ ≥  sufficiently 
small. 

Proof. The proof is divided into the following two steps. 
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Step I: Verify a quasi-monotonicity condition. For this purpose, we define the functional 
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Step II: Establish the existence of a pair of upper and lower solutions. To achieve this, we look for wave front 
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Then ( ) ( )( )T
1 2, .s sφ φ φ= ∈Γ We distinguish two cases to show that ( ) ( )( )T

1 2,s sφ φ  is a pair of upper solu- 
tions to (3.4). 
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The above discussion tells us that ( ) ( )( )T
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if 0,s ≤  This proves that ( ) ( )( )T
1 2,s sψ ψ  is a pair of lower solutions to (3.4). 

So far, we have verified all the assumptions in the theory developed by Wu and Zou [12]. Therefore, there 
exists at least one solution in the set Γ , that is, system (1.2) has a traveling wavefront solution connecting 
( ),0a  to ( )1 2,k k .This completes the proof.  

Remark 3.1. We study the existence of traveling wave for a reaction-diffusion Holling-Tanner model with 
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delay. In order to illustrate the validity of the theoretical result obtained in this section, we also perform numeri- 
cal calculations using the software MATLAB. 

Consider the following Holling-Tanner system: 
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It should satisfy the following boundary conditions: 
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=  2 1.k rk=  Fix 1 2 1, 0, 0.6, 0.2,d d a bτ= = = = =   

1, 0, 1.m n r= = =  Then system (3.8) has a positive equilibrium ( )0.5,0.5E . By Theorem 3.1, we see that sys- 
tem (3.8) has a traveling wave solution connecting the axial solution ( )1,0  with the positive equilibrium 
( )0.5,0.5  when the wave speed c is larger. Numerical simulation can be carried out by using MATLAB7.01. 
See Figure 3. However, when the wave speed c is smaller, the system (3.8) doesn’t exist the traveling wave solu- 
tion. Following we also give a simulation to illustrate our result. See Figure 4. 
 

 
Figure 3. The wave speed c = 6, c = 2.3.                                                            

 

 
Figure 4. The wave speed c = 2, c = 1.8.                                                             
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Of course, we mention that the smallest wave speed should exist in between 2c =  and 2.3c =  by numeri- 
cal simulation, theoretical proof of the existence of such wave speed seems extraordinarily difficult in this paper 
and this remains as our future work. 

4. Conclusion 
In summary, when 0τ ≥  sufficiently small, we have obtained the positive equilibrium ( )2 1 2,E k k  of system 
(1.2) which is locally asymptotically stable. At the time, we establish the existence of traveling wavefronts of 
(1.2) connecting ( ),0a  to ( )1 2,k k  . 
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