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Abstract 

In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method 
of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation  , , , ,xx x tu f x t u u u , 0< x <1, t > 0 

subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and 
time-directions, respectively. The cubic spline approximation produces at each time level a spline function 
which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic 
spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- 
convection equation shows the unconditionally stable character of the cubic spline method. The numerical 
tests are performed and comparative results are provided to illustrate the usefulness of the proposed method. 
 
Keywords: Quasi-Linear Parabolic Equation, Implicit Method, Cubic Spline Approximation, 

Diffusion-Convection Equation, Singular Equation, Burgers’ Equation, Reynolds Number 

1. Introduction 

The use of cubic splines for the numerical solution of 
linear two point boundary value problems has been dis-
cussed by Bickley [1], Fyfe [2], Albasiny and Hoskins [3] 
and Rubin and Khosla [4]. Later, Chawla et al [5,6] have 
developed fourth order accurate cubic spline methods for 
singular two point boundary value problems. In 1983, 
Jain and Aziz [7] have derived fourth order cubic spline 
method for the solution of general two point non-linear 
boundary value problems. Khan and Aziz [8] have used 
parametric cubic spline approach for the solution of a 
system of second order boundary value problems. Re-
cently, Monoj Kumar et al [9-11], and Rashidinia et al 
[12-13] have discussed higher order cubic spline finite 
difference method for singular two point boundary value 
problems. A cubic spline technique for the solution of 
1D heat equation was discussed by Papamichael and 
Whiteman [14]. This technique was extended by Fleck Jr 
[15] and Raggett and Wilson [16] for solving one-di- 
mensional wave equation. Archer [17] has developed a 
fourth order collocation method for quasi-linear parabolic 
equation. Jain and Lohar [18] have solved non-linear 

parabolic equations by using second order cubic spline 
method. Recently, Rashidinia et al [19] have studied non- 
polynomial cubic spline methods for the solution of pa-
rabolic equations. High order finite difference methods 
for the solution of non-linear parabolic equations have 
been discussed by Jain et al [20] and Mohanty et al 
[21-22]. In the present paper, using three spatial grid 
points (see Figure 1), a new cubic spline technique sim-
ilar to that of Jain and Aziz [7] is developed for the solu-
tion of one dimensional general quasi-linear parabolic 
equation. We use the cubic spline approximation in the 
space direction together with a finite difference approx-
imation in the time direction. This approximation pro-
duces at each time level a cubic spline function, which 
may be used to obtain the solution at any point in the 
range of the space variable. In next section, we discuss 
the cubic spline method. In Section 3, we give the com-
plete derivation of the method. Stability of a linear dif-
ference scheme, which is consistent with diffusion- con-
vection equation, is discussed in Section 4 and it is 
shown that the linear scheme is unconditionally stable. 
Difficulties were experienced in the past for the high 
order cubic spline solution of parabolic equations with 
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Figure 1. (Schematic representation of two-level scheme). 

singular coefficients. The solution usually deteriorates in 
the vicinity of the singularity. In this paper, we refine our 
technique in such a way that the solution retains its order 
and accuracy everywhere in the solution region. In Sec-
tion 5, we compared the proposed cubic spline method 
with the corresponding finite difference methods discussed 
in [20-22]. Finally, concluding remarks are given in Sec-
tion 6. 

2. The Two Level Implicit Cubic Spline 
Method 

Consider the quasi-linear parabolic equation in which the 
function u(x,t) satisfies 

   
2

2
, , , , , ,x t

u
f x t u u u x t

x


 


        (1) 

where the solution space is defined by 
  , 0 1, 0x t x t     . 

The initial condition is given by 

   0,0 , 0 1u x u x x            (2) 

and the boundary conditions are given by 

       0 10, , 1, , 0u t a t u t a t t        (3) 

where    0 0,u x a t  and  1a t  are given smooth func-
tions. 

The region   is covered in the usual manner by a 
rectangular net    , ,l jx t lh jk , 0 1, 0l N j    , 
where (N + 1)h = 1, and h > 0 and k > 0 are grid sizes in 
x- and t-directions, respectively. The mesh ratio parame-
ter is given by  2 0k h   . Let j

lU  be the exact 
solution value of u(x,t) and j

lu  denotes a discrete ap-
proximation to u(x,t) at the grid point  ,l jx t . 

We let  jS x  denote the cubic spline interpolating 
the value j

lu  at the jth time level, and is given by 

     

 

3 3

1
1

2 2
1

1 1

1

6 6

,
6 6

, 1 1 1, 0

l lj j
j l l

j j j jl l
l l l l

l l

x x x x
S x M M

h h

x x x xh h
u M u M

h h

x x x l N j





 



 
 

                
      

    

 

(4) 

which satisfies at jth-level the following properties: 
1)  jS x  coincides with a polynomial of degree three 

on each    1, , 1 1 1l lx x l N   , j > 0, 

2)    2 0,1 ,jS x C  and 

3)    , 0 1 1, 0j
j l lS x u l N j    , 

and where 
j j

l xlm U  and 

   , , , , ,j j j j j
l j l xx l l j l l t lM S x U f x t U m U  

 0 1 1, 0l N j   . 

We consider the following approximations: 

j jt t k                   (5) 

 1 1j j j
l l lU U U              (6a) 

 1
1 1 11j j j

l l lU U U 
               (6b) 

 1j j j
t l l lU U U k               (7a) 

 1
1 1 1

j j j
t l l lU U U k

                 (7b) 

   1 1 2j j j j
l x l l lm U U U h             (8a) 

   1 1 1 13 4 2j j j j j
l x l l l lm U U U U h           (8b) 

 , , , ,j j j j
l l j l l t lf f x t U m U          (9a) 

 1 1 1 1 1, , , ,j j j j
l l j l l t lf f x t U m U            (9b) 

 
 

1 1

1 1

ˆ j j j j
l l l l

j j j
x l l l

m m ph M M

U ph f f

 

 

  

  
         (10a) 

1
1 1 1

1
1

ˆˆ 2
6

2
6

j j
j j j jl l

l x l l l

j j
j jl l

l l

U U h
m U M M

h

U U h
f f

h


  




      

     

   (10b) 

1
1 1 1

1
1

ˆˆ 2
6

2
6

j j
j j j jl l

l x l l l

j j
j jl l

l l

U U h
m U M M

h

U U h
f f

h


  




      

     

    (10c) 

where 

1 1,j j j j
l l l lM f M f       etc. 

Further, we define  

 ˆ ˆ, , , ,j j j j
l l j l l t lf f x t U m U          (11a) 

 1 1 1 1 1
ˆ ˆ, , , ,j j j j
l l j l l t lf f x t U m U           (11b) 

Then at each grid point  ,l jx t , the cubic spline method 
with accuracy of O(k2 + kh2 + h4) for the solution of dif-
ferential Equation (1) may be written as 
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 
 

2

1 1 1 1
ˆ ˆ ˆ ˆ2 10 ,

12
1 1 , 0

j j j j j j j
l l l l l l l

h
U U U f f f T

l N j

   
       

 
 (12) 

where  2 2 4 6ˆ j
lT O k h kh h    for 1

2   and 1
12p  . 

Note that, the initial and Dirichlet boundary conditions 
are given by (2) and (3), respectively. Incorporating the 
initial and boundary conditions, we can write the cubic 
spline method (12) in a tri-diagonal matrix form. If the 
differential Equation (1) is linear, we can solve the linear 
system using a tri-diagonal solver; in the non-linear case, 
we can use generalized Newton-Raphson method to 
solve the non-linear system (see Kelly [23], and Hage-
man and Young [24]). 

3. Derivation of the Cubic Spline Method 

For the derivation of the cubic spline method (12) for the 
solution of the quasi-linear parabolic Equation (1), we 
simply follow the approaches given by Jain and Aziz [7]. 

At the grid point  ,l jx t , let us denote 

, , ,

,

a b
j j

ab l la b

j j
l l

t

U f f
U

t Ux t
f f

m U

 

 

  
  

  
 

 
 

  (13) 

Further at the grid point  ,l jx t , we may write the dif-
ferential Equation (1) as 

 , , , ,j j j j j
xx l l l j l l t lU f f x t U m U         (14a) 

Similarly, 

 1 1 1 1 1 1, , , ,j j j j j
xx l l l j l l t lU f f x t U m U           (14b) 

A difference method of accuracy of  4O h  for the dif-
ferential Equation (1) in the absence of first derivative 
terms may be written as 

 
2

6
1 1 1 12 10

12
j j j j j j

l l l l l l

h
U U U f f f O h            (15) 

By the help of the notations (13) and simplifying (5)-(8b), 
we obtain 

 2
01

j j
l lU U kU O k            (16a) 

 1 1 01
j j

l lU U kU O kh             (16b) 

 2
022

j j
t l t l

kU U U O k             (17a) 

 1 1 022
j j

t l t l
kU U U O kh             (17b) 

 
2

2 4
11 306

j j
l l

hm m kU U O k h         (18a) 

 
2

3
1 1 11 303

j j
l l

hm m kU U O kh h         (18b) 

 
1 1

2 2 2
1 1 21

2

2

j j j
l l l

j j j
l l l

U U U

U U U kh U O k h
 

 

 

    
    (19) 

With the help of the approximations (5), (16a)-(18b), 
from (9a) and (9b), we obtain 

 
 

01 11

2
2 4

02 302 6

j j j j j
l l l l l

j j
l l

f f k U U

k hU U O k h

   

 

   

   
      (20a) 

 

 
1 1 01 11 02

2
3

30

2

3

j j j j j j
l l l l l l

j
l

kf f k U U U

h U O kh h

    



     

  
  (20b) 

Using the approximations (18a), (18b), (20a), (20b) and 
simplifying (10a), we get 

 

 

2

11 30

2 2 4

ˆ 1 12
6

j j
l l

hm m kU p U

O k kh h

   

  
       (21) 

From (21), it is easy to verify that for 1
12p  , we have 

 2 2 4
11ˆ j j

l lm m kU O k kh h           (22a) 

Similarly, from (10b) and (10c), we have 

 2 1 3
1 1 11ˆ j j

l lm m kU O kh k h h 
          (22b) 

Finally, by the help of the approximations (5), (16a)-(17b), 
(22a)-(22b), from (11a) and (11b), we get 

 
 

01 11 02

2 2 4

ˆ
2

j j j j j j
l l l l l l

kf f k U U U

O k kh h

        

  
  (23a) 

 
 

1 1 01 11 02

2 1 3

ˆ
2

j j j j j j
l l l l l l

kf f k U U U

O kh k h h

     



    

  
  (23b) 

Now differentiating the differential Equation (1) with 
respect to ‘t’ at the grid point  ,l jx t , we obtain a rela-
tion of the form 

02 01 11 21
j j j j

l l l lU U U U              (24) 

Using the approximations (19), (23a), (23b) and by the 
help of the relation (24), from (12) and (15), we obtain 
the local truncation error 

   
2

2 2 4 6
02

ˆ 1 2
2

j j
l l

kh
T U O k h kh h 

      (25) 

The proposed cubic spline method (12) to be of 
 2 2 2 4O k h kh h  , the coefficient of 2kh  in (25) must 

be zero. Thus we obtain the value of 1 2  , for which 
 2 2 4 6ˆ j

lT O k h kh h   . 
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4. Cubic Spline Scheme for Parabolic 
Equation with Singular Coefficients 

Consider the linear parabolic equation of the form 

     
2

2
, ,

0 1, 0

u u u
D x E x u g x t

t xx
x t

   
   
 

  
    (26) 

subject to appropriate initial and Dirichlet boundary con-
ditions are prescribed by (2) and (3), respectively. As-
sume that the functions  D x ,  E x  and  ,g x t  

 2C  . 
For      21 , 1 ,D x x E x x    the equation above 

represents linear parabolic equation with singular coeffi-
cients. For  1, ,D x x        2 ,E x x  the 
above parabolic equation becomes a cylindrical and spheri-
cal problem for 1   and 2, respectively. 

Applying the formula (12) to the differential Equation 
(26), we get 

 

   

2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

ˆ2
12

ˆ

ˆ10 , 1 1 , 0,1, 2,

j j j j j j
l l l tl l l l l

j j j j j
l t l l l l l l

j j j j
tl l l l l l

h
u u u u D m E u

g u D m E u g

u D m E u g l N j

       

      

    

    

      

(27) 

where 

     , , ,j
l l l l l l jD D x E E x g g x t   , 

     1 1 1, , ,
j

jl l l l llD D x h E E x h g g x h t         etc. 

At the grid point  ,l jx t , let us denote 

, ,
a b a b a b

ab ab aba b a b a b

D E g
D E g

x t x t x t

    
  
     

   (28) 

Note that, the cubic spline sheme (27) is of  
 2 2 4O k kh h   accuracy for the approximate solution 

of Equation (26). However, the scheme (27) fails to 
compute at l = 1 when the coefficients   ,D x x   
   2E x x etc. In order to get a meaningful cubic 

spline scheme of  2 2 4O k kh h   accuracy in com-
pact operator form, we need the following approxima-
tions: 

 
2

3
1 00 10 202l

hD D hD D O h           (29a) 

 
2

3
1 00 10 202l

hE E hE E O h            (29b) 

 
2

3
1 00 10 202

j
l

hg g hg g O h             (29c) 

where 

   00 10 202 3

00 10

2
, , ,

, , etc.

l
l l l

j j
l xl

D D D D
x x x

g g g g

   
   

 

 

Now, by the help of the approximations (5)-(10c) and 
(29a)-(29c), neglecting high order terms, we can re-write 
the scheme (27) as a two-level implicit cubic spline 
scheme in operator compact form 

 
 

 

2 1
0 1 2

2
0 1 2

2

2

1 1 N, 0,1,2,

j
x x x l

j
x x x l

R R R u

S S S u g

l j

  

  

   
     
 




     (30) 

where 

  

 

 

 

 

 
 

2
2

0 00 20 10 00 00 10

2

1 00 10 00 00

2
2 00 20 10 00 00

2

0 10 0

2

0 10 0

1 1

1 1

2 00 2

2 00 2

12 ,
24

,
2

12 2 ,
4

1 ,
12

1 ,
12

1 1 6 ,
12
1 1 6 ,

12
1 ,

12 2

1 ,
12 2

hP E h E D E D E

hP E D D D

hP D h D E D E

hR D P

hS D P

R P

S P

hR D P

hS D P

g













 

 







     

  

     

  

  

  

  

 

 

   2
00 20 10 00 00 1012 ,

12
k g h g D g D g       

 

and 

 1 1
2 2

1
2x l l l

u u u
 

   and  1 1
2 2

x l l l
u u u

 
   

are averaging and central difference operators with re-
spect to x-direction etc. The cubic spline scheme (30) has 
a local truncation error of  2 2 4O k kh h   and is free 
from the terms  1 1l  , and hence, it can be solved for l 
= 1(1)N in the region 0 < x < 1, t > 0. 

Now consider the linear singular parabolic equation 

 
2

2 2
, , 0 1, 0

u u u
u g r t r t

r r tr r

   
      

 
  (31) 

For 1   and 2, the equation above represents the 
parabolic equation in cylindrical and spherical coordi-
nates respectively. Replacing the variable x by r and 

substituting  001, lD r   
  2

10 00 ,lD r E   
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 3
20 102 ,lD r E     4

20 6 lE r  etc. in Equation 

(30), we can get a two level implicit cubic spline scheme 

of  2 2 4O k kh h   for the solution of linear singular 

parabolic Equation (31). 
Now, consider the linear diffusion-convection para-

bolic equation 
2

2
, 0 1, 0

u u u
x t

t xx
   

    
 

       (32) 

The constant terms 0   and 0   are called the dif-
fusivity and convective terms, respectively. For 0    , 
the problem is said to be convection dominated problem. 
Substituting  

10 20 00 10 20 00 10 20, 0D D D E E E g g g          
in the formula (30), we obtain a two-level implicit cubic 
spline scheme 

   

   

2

2

2

1

2

11 1 6 1
12 3

1  1 6 2
12

11 1 6 1
12 3

1  1 6 2
12

x
x

j
x x x l

x
x

j
x x x l

R

R u

R

R u

 

  

 

  



   
     

     

 


   
      

     

 


       (33) 

where  2xR h   represents the cell-Reynolds 
number. The scheme (33) is of  2 4O k h  and consis-
tent with the differential Equation (32). Further note that, 
the scheme (33) is identical with the scheme discussed 
by Jain et al [20]. It has been shown that, the scheme (33) 
is unconditionally stable and using this scheme computa-
tional result for the solution of Equation (32) is reported 
in [20]. 

5. Numerical Results 

In order to demonstrate the application of the proposed 
cubic spline method, we have solved the following four 

problems whose analytical solutions are known to us. 
The right-hand side homogeneous functions, initial and 
boundary conditions can be obtained using the exact so-
lution as a test procedure. We have also compared the 
proposed cubic spline method with the corresponding 
finite difference method of  2 2 4O k kh h   discussed 
in [20-22]. We have solved the system of linear differ-
ence equations using a tri-diagonal solver and the system 
of non-linear difference equations by Newton-Raphson 
method (see Kelly [23], and Hageman and Young [24]). 
All computations were performed using double length 
arithmetic. 

Example 1: (Linear parabolic equation with singular 
coefficients) 

 
2

2 2

1 1
, , 0 1, 0

u u u
u g x t x t

x x tx x
   

      
 

 (34) 

The exact solution is given by u(x,t) = exp(-εt) sinh x. 
The root mean square (RMS) errors at t = 1.0 are tabu-
lated in Table 1 for 1.6   and small values of ε > 0. 

Example 2: The Equation (31) is solved whose exact 
solution is u(r,t)=exp(-t) cosh r. The RMS errors at t = 
1.0 are tabulated in Table 2 for α = 1 and 2 for a fixed 
value of 1.6  . 

Example 3: (Burgers’ Equation ) 

2

2
, 0 1, 0

u u u
u x t

t xx
   

    
 

      (35) 

The exact solution is given by 

 
 
 

2

2

2 π sin(π ) exp π
,

2 cos(π ) exp π

x t
u x t

x t

 






 
, where 1 0eR     

is termed as a Reynolds number. The RMS errors at t = 
1.0 are tabulated in Table 3 for different values of Re and 
for a fixed value of 1.6  . 

Example 4: (Non-linear Parabolic Equation ) 

 
2

2
, , 0 1, 0

u u u
u g x t x t

t xx
  

     
 

   (36) 

The exact solution is given by u(x,t)=exp(-t) sin( x ). 
The RMS errors at t = 1.0 are tabulated in Table 4 for 
various values of α for a fixed parameter value of 

1.6  . 
 

Table 1. Example 1: The RMS errors. 

 
h 

Cubic Spline Method of  2 2 4O k kh h   Finite Difference Method of  2 2 4O k kh h   

ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.1 ε = 0.01 ε = 0.001 

1/8 0.2442(-04) 0.5382(-03) 0.1637(-02) 0.1500(-03) 0.1254(-01) 0.7668(-01) 

1/16 0.2275(-05) 0.5141(-04) 0.3247(-03) 0.1303(-04) 0.1138(-02) 0.4214(-01) 

1/32 0.2064(-06) 0.4631(-05) 0.3683(-04) 0.1142(-05) 0.9893(-04) 0.1178(-01) 

1/64 0.1848(-07) 0.4122(-06) 0.3370(-05) 0.1005(-06) 0.8672(-05) 0.1455(-02) 



R. K. MOHANTY  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

16

Table 2. Example 2: The RMS errors. 

 
h 

Cubic Spline Method of  2 2 4O k kh h   Finite Difference Method of  2 2 4O k kh h   

α = 1 α = 2 α = 1 α = 2 

1/8 0.9604(-06) 0.1127(-05) 0.1054(-04) 0.1300(-04) 

1/16 0.6378(-07) 0.7064(-07) 0.6997(-06) 0.8172(-06) 

1/32 0.4107(-08) 0.4400(-08) 0.4511(-07) 0.5105(-07) 

1/64 0.2606(-09) 0.2740(-09) 0.2866(-08) 0.3187(-08) 

Table 3. Example 3: The RMS errors. 

h 
Cubic Spline Method of  2 2 4O k kh h   Finite Difference Method of  2 2 4O k kh h   

Re = 103 Re = 104 Re = 105 Re = 103 Re = 104 Re = 105 

1/8 0.6442(-07) 0.6822(-09) 0.6887(-11) 0.1467(-06) 0.1612(-08) 0.1628(-10) 

1/16 0.3278(-08) 0.4114(-10) 0.4274(-12) 0.8809(-08) 0.9820(-10) 0.9932(-12) 

1/32 0.1244(-09) 0.1613(-11) 0.1688(-13) 0.5318(-09) 0.5925(-11) 0.5994(-13) 

1/64 0.8884(-11) 0.9424(-13) 0.9870(-15) 0.3280(-10) 0.3494(-12) 0.3706(-14) 

Table 4. Example 4: The RMS errors. 

 
h 

Cubic Spline Method of  2 2 4O k kh h   Finite Difference Method of  2 2 4O k kh h   

α = 10 α = 20 α = 30 α = 10 Α = 20 Α = 30 

1/8 0.1218(-04) 0.4075(-04) 0.7665(-04) 0.1058(-03) 0.1872(-03) 0.2650(-03) 

1/16 0.7502(-06) 0.2534(-05) 0.4735(-05) 0.6469(-05) 0.1167(-04) 0.1673(-04) 

1/32 0.4639(-07) 0.1571(-06) 0.2937(-06) 0.3989(-06) 0.7233(-06) 0.1040(-05) 

1/64 0.2876(-08) 0.9761(-08) 0.1825(-07) 0.2471(-07) 0.4488(-07) 0.6465(-07) 

 

6. Final Remarks 

We presented a new cubic spline discretization strategy 
of  2 2 4O k kh h   for the solution of one-space di-
mensional quasi-linear parabolic partial differential equa-
tions. The proposed method with a little modification is 
applicable to singular parabolic problems. For singular 
problems, our numerical results show that the new cubic 
spline method may be advantageous compared with the 
corresponding finite difference method discussed in 
[20-22]. Numerical results for non-linear problems also 
show better as compared to the method discussed in 
[20-22], and numerical oscillation do not appear for high 
Reynolds number. 
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