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Abstract 
Fixed size without replacement sampling designs with probability functions that are linear or qu-
adratic functions of the sampling indicators are defined and studied. Generality, simplicity, re-
markable properties, and also somewhat restricted flexibility characterize these designs. It is 
shown that the families of linear and quadratic designs are closed with respect to sample com-
plements and with respect to conditioning on sampling outcomes for specific units. Relations be-
tween inclusion probabilities and parameters of the probability functions are derived and sam-
pling procedures are given. 
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1. Introduction 
In the first part of the paper, we consider the most general fixed size without replacement sampling design with 
a probability function that is linear in the sampling inclusion indicators—the linear sampling design. The linear 
design, being an unequal probability design, is remarkable due to simple explicit relations between inclusion 
probabilities and parameters of the probability function. This enables sampling with desired inclusion probabili-
ties, design-unbiased estimation and variance estimation. As special cases, the design covers the classical Mid-
zuno [1] and the complementary Midzuno (see [2]) designs. It is shown that the linear design can be seen as a 
mixture of the two types of Midzuno designs. It is also shown that the family of linear designs is closed with re-
spect to conditioning on sampling outcomes. This property, as well as the mixture representation, offers easy 
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methods for sampling from the linear design. The family is also closed with respect to sample complements, i.e. 
the complement of a sample from a linear design is a sample from another linear design. 

In the second part of the paper, the fixed size without replacement design with quadratic probability func-
tion—the quadratic sampling design—is defined and studied. It is the natural extension of the linear design. A 
classical design by Sinha [3] is a special case of the quadratic design. His design aimed at sampling with pre-
scribed second-order inclusion probabilities. Together with Sinha’s design, two other special quadratic designs 
are studied more closely. These three designs are easy to use for sampling. There are explicit expressions for the 
second-order inclusion probabilities of Sinha’s design. In the general case, the formulas are more complicated. 
A lemma is proved which relates the second-order inclusion probabilities and the parameters of the quadratic 
design. Like the family of linear designs, the family of quadratic designs is closed with respect to sample com-
plements and with respect to conditioning on sampling outcomes. The last property makes list-sequential sam-
pling from these designs efficient. 

The linear and the quadratic designs are simple but somewhat restricted when the aim is sampling with pre-
scribed first- or second-order inclusion probabilities. They cannot be used for all such probabilities. In the final 
section of the paper, possible extensions are mentioned. 

2. Linear Sampling Designs 
We treat without replacement (WOR) sampling designs of size n from a population of size N. Let  

( )1 2, , , NI I I= I  be the binary random sampling inclusion vector. A sampling design is given by its probability 
function ( ) ( )Pr .p = =x I x  Let { }{ }10,1 ;  ,N N

n kkS x n
=

= ∈ = =∑x x  i.e. nS  is the set of all possible 
“samples” x  of size n. 

 
Definition 1. A sampling design of size ( )1 1n n N≤ ≤ −  is called linear if there are real constants 

1 2, , , Nc c c  such that ( ) 1 , .N
k k nkp c x S

=
∝ ∈∑x x  

 
Of course, equal cks give SRSWOR. Below it is always assumed that the cks are normalized to have sum 1.  

Then ( ) 1 ,N
k kkp C c x

=
= ∑x  where 

1
1 .

1
N

C
n
− 

=  − 
 In fact, 

( )
1 1

1 1
1 .

1 1n n

N N

k k k
S k S k

N N
p C c x C c C

n n∈ = ∈ =

− −   
= = = =   − −   
∑ ∑ ∑ ∑
x x

x  

The inclusion probabilities ( )π Pr 1i iI= =  of the linear design are given by 

( ) 11 .
1i i i

nc c
N

π −
= + −

−
                                 (1) 

Indeed, since 1 1,N
kk c

=
=∑  

( ) ( )
1

1 2
1 .

1 2n n

N

i i k i k i i
S k S

N N
x p C c x x C c c

n n
π

∈ = ∈

 − −    
= = = + −    − −    
∑ ∑ ∑
x x

x  

Since 0 1,iπ≤ ≤  (1) shows that we must have 
1 1.i

n c
N n
−

− ≤ ≤
−

 The ic s can be expressed in terms of the iπ s 

as 
1 1 .

1i i
N nc
N n N

π− − = − − − 
                                (2) 

By similar algebra, the second-order inclusion probabilities ( )Pr 1ij i jI Iπ = =  are given by 

( ) ( ) ( )( )
( )( )

1 21 1 , ,
1 1 2ij i j i j

n nn c c c c i j
N N N

π
− −−

= + + − − ≠
− − −

 

and hence 



L. Bondesson et al. 
 

 
180 

1 , ,
2 1ij i j

n n i j
N N

π π π−  = + − ≠ − − 
                         (3) 

i.e. the ijπ s are linear in the first-order inclusion probabilities. 
Without restriction we may assume that the cks are given in increasing order. Obviously, in order to get 
( ) 0,p ≥x  it is then necessary and sufficient that 1 0.n

kk c
=

≥∑  We obtain the following theorem. 
 

Theorem 1. Let 1 20 1Nπ π π≤ ≤ ≤ ≤ ≤  be given numbers with sum n. Then there is a linear sampling  

design with these numbers as inclusion probabilities if and only if 
1

1 1 .
1

n
kk

n
n N

π
=

−
≥

−∑
 

 

Proof. By the relation (2), we see that 1 1

1 10 .
1

n n
k kk k

nc
n N

π
= =

−
≥ ⇔ ≥

−∑ ∑    

To sample from a linear sampling design, we may use the well-known acceptance-rejection (AR) technique.  

A constant A such that ( ) ( )1
N

k k SRSk

N
p C c x Ap A

n=

 
= ≤ =  

 
∑x x  for all nS∈x  is first found. Assuming that 

the cks are in increasing order, it suffices to put 
1 .N

kk N n

NA c
n = − +

= ∑  Then we generate a tentative sample x ac-  

cording to SRSWOR of size n and a random number ( )0,1 .U U  The sample is accepted as a sample from 
the linear design if 

( )
1 1 1

1

.
N N N

k k k k k kk k k
N

SRS kk N n

C c x c x c xNU
Ap n A c

= = =

= − +

≤ = =∑ ∑ ∑
∑x

 

The full procedure is repeated until a sample is accepted. The acceptance rate equals 1 1 .N N
k k kk k N nc cπ

= = − +∑ ∑  
To be seen later on, also other sampling techniques exist. 

There are two special linear sampling designs: the Midzuno design and the complementary Midzuno design.  
The Midzuno design has the probability function ( ) 1 , ,N

M k k nkp a x S
=

∝ ∈∑x x  with 1 1N
kk a

=
=∑  and 

0ka ≥  for all k. Apparently it is a linear design. We may sample from the design by selecting one unit accord-
ing to the probabilities ka  and then 1n −  further units according to SRSWOR from the remaining 1N −  
ones. The design was introduced in [1] (considering the ka s as proportional to auxiliary variables). Tillé ([4], p. 
117) generalizes it and gives many further references concerning the design. Brewer and Hanif ([5], p. 25) re-
mark that the inequalities on the inclusion probabilities are restrictive. 

The complementary Midzuno design (see [2]) has the probability function 

( ) ( )
1

1

1
1 , ,

N

cM k k n
k

N
p b x S

n

−

=

− 
= − ∈ 
 

∑x x  

with 1 1N
kk b

=
=∑  and 0kb ≥  for all .k  This design is considered in [6] with the kb s proportional to auxiliary 

variables. We may sample from the design by removing one unit according to the probabilities kb  and sample 
n  units by SRSWOR among the remaining 1N −  ones. For the complementary Midzuno design, we then get  

( )1 .
1i i

n b
N

π = −
−

 The formula for the second-order inclusion probabilities coincides with (3). Since 

( ) ( )1

1 1
1 , ,

N N

k k k k n
k k

b x n b x S−

= =

− = − ∈∑ ∑ x  

we also see that the complementary Midzuno design is a linear design with coefficients 1
k k

nc b
N n n

 = − −  
  

with sum 1. If 1kb n≤  for all k, it is even a Midzuno design and hence the two designs overlap each other. 
 
Remark 1. Let 1 20 1Nπ π π≤ ≤ ≤ ≤ ≤  have sum n, i.e. 1 .N

kk nπ
=

=∑  Then, by (2), these numbers are in-

clusion probabilities for a Midzuno design iff (a) 1
1 .
1

n
N

π −
≥

−
 Obviously (a) implies the less restrictive inequa-
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lity in Theorem 1. The iπ s are inclusion probabilities of a complementary Midzuno design iff (b) .
1N

n
N

π ≤
−

 

Of course, also (b) implies the inequality in Theorem 1. In fact, assuming the contrary that 
1

1 1 ,
1

n
kk

n
n N

π
=

−
<

−∑  

we get by (b) that 
( ) ( )

1

1
,

1 1
N

kk

n n N n n
n

N N
π

=

− −
< + =

− −∑  which is a contradiction as the sample size is n. 

 
The family of linear designs can be considered as closed with respect to sample complements. More precisely, 

the complement of any sample of size n  from a linear design, is a sample of size N n−  from another linear 
design. This follows from the relation 

( )
1 1

1 1 , .
N N

k k k k n
k k

c x c x S
N n= =

 = − − ∈ − 
∑ ∑ x  

Another interesting property of the family of linear designs is that it is closed with respect to conditioning on 
the sampling outcomes for specific units. For instance, if we know that unit 1 is selected (i.e. 1 1x = ), then the 
probability function for the remaining size 1n −  sampling among 1N −  units is still linear. In fact, given that  

1 0π >  and that 1 1 1,I x= =  we have by (1) that 1
1 .nc

N n
−

> −
−

 The conditional probability function of 

( )2 2 3, , , NI I I=I   is then given by 

( )2 2 1 1 2
2 21

1 1Pr , 1.
1

N N

k k k k
k k

c x c c c x n
nπ = =

   = ∝ + ∝ + = −   −  
∑ ∑I x x  

The new coefficients 1 , 2,
1k

cc k
n

+ ≥
−

 have sum 1 1 1
11 1 0
1 1

N N nc c c
n n
− −

− + = + >
− −

 by the inequality for 1c  

above. Normalizing them, we get coefficients 
( )

( )
11

1

1
1

k
k

n c c
c

N n c n
− +

=
− + −

 with sum 1. If it is known that unit 1 is 

not selected ( 1 0x =  and 1 11, 1cπ < < ), the new coefficients are simply given by 0
2 , 2.N

k k iic c c k
=

= ≥∑  
It follows that samples from a linear design can easily be generated list-sequentially. The first unit in the 

population is sampled with probability ( )1 1 1
11 .
1

nc c
N

π −
= + −

−
 If it is selected, then the second unit is sampled 

with probability ( )1 1
2 2

21 .
2

nc c
N
−

+ −
−

 Else the second unit is sampled with probability ( )0 0
2 2

11
2

nc c
N
−

+ −
−

 etc. 

3. A Mixture Result 
A linear design can also be called a mixed Midzuno design because of the following theorem. 

 
Theorem 2. A linear sampling design ( ) 1 , ,N

k k nkp c x S
=

∝ ∈∑x x  where 1 1,N
kk c

=
=∑  is a mixture of a Mid-  

zuno design and a complementary Midzuno design. It is a Midzuno design if 0kc ≥  for all k and it is a com-
plementary one if ( )1kc N n≤ −  for all k. 
 

The components of the mixture are not unique. The very last statement in the theorem follows from the  

re-writing ( )1 1

1 1 , .N N
k k k k nk kc x c x S

N n= =

 = − − ∈ − 
∑ ∑ x  The full proof of the theorem is somewhat technical  

and is given in an appendix. The proof yields the following procedure for finding suitable components of the 
mixture. It is assumed that the design is not a pure Midzuno design and that the units in the population are or-
dered such that 1 2 10 ,m m Nc c c c c+≤ ≤ ≤ < ≤ ≤ ≤   where 1 m n≤ <  (since 1 0n

kk c
=

≥∑ ). 
Procedure: 
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Let .mν =  While 1 1

1 ,kkc c
n

ν
ν ν+ =

< −
− ∑  let 1.ν ν= +  

(As 1 0,n
kk c

=
≥∑  the final ν  is less than .n ) 

Then put 
1 kk

N n c
n

νβ
ν =

−
= −

− ∑ , 1α β= − , and .n
N n

γ β=
−

 

Finally, let the parameters for the components be defined by 

0, 1,2, , 1 , 1, 2, ,
and

, 1, ,
0, 1, , .

k

k k
k

k c
k

a b n
c k N

k Nn

ν
ν

γγ α ν
ν

=  − = = =  − = +   = +  









 

The first component, the Midzuno one, is used with probability α  and the second component, the comple-
mentary Midzuno one, is used with probability .β  

 

Example 1. Let 8N = , 6n = , and 1 1 1 1 1 1 7 1, , , , , , , .
4 10 20 10 5 4 20 2

 = − − −  
c  Obviously 3.m =  It is not 

possible to use 3ν =  since 3
4 1

1 1 8 .
10 3 60kkc c

n =
= < − =

− ∑  The procedure gives us 4,ν =  3 ,
10

β =  7
10

α =  

and 9
10

γ =  and 1 1 2 10,0,0,0, , , ,
14 7 7 2

 =   
a  and 4 5 2 1, , , ,0,0,0,0 .

9 18 9 18
 =   

b  However, since  

1 1 ,
2kc

N n
≤ =

−
 the design is also a pure complementary Midzuno design with 1

k k
N nb c

n n
−

= −  and hence 

1 1 11 2 1 1 1, , , , , , ,0 .
4 5 60 15 10 12 20
 =   

b
 

 
Theorem 2 implies another simple way of generating samples from the linear design. First it is decided by a 

random choice whether a Midzuno or a complementary Midzuno design should be used. Then one of these de-
signs is applied. In Tillé’s ([4], pp. 99-104) terminology, we can see this technique as a special splitting tech-
nique which after two steps ends with SRSWOR. 

4. Quadratic Sampling Designs 
There is a natural extension of the linear designs. In this section we look at fixed size designs with quadratic 
probability functions. We could use ordinary quadratic forms. However, it is more appropriate to sum over sets  

of size 2 than over pairs with ordered elements. Below { },i j∑  means a sum over the 
2
N 

 
 

 sets { },i j , j i≠ . 

 
Definition 2. A sampling design of size ( )2 2n n N≤ ≤ −  is called quadratic if there are real constants ijd  

with ji ijd d=  and { }, 1iji j d =∑  such that ( ) { }, , .ij i j ni jp d x x S∝ ∈∑x x  
 

In particular, if 2n =  then ijd  is the probability to select the sample { }, .i j  The normalization constant  

can be shown to be equal to the reciprocal of 
2
2

N
n
− 

 − 
. It can also be shown that the parameters ( )ijd  are un-  

iquely determined by the design. To get ( ) 0p ≥x  for all ,nS∈x  it is necessary and sufficient that 
{ }, 0iji j A d

⊆
≥∑  for all subsets A of { }1,2, , N  of size n. This means that the possible parameters ( )ijd  form  

a convex set in ,M  where .
2
N

M  
=  
 

 However, this set is rather complicated if n is not very small. 

For 2 2,n N≤ ≤ −  a linear design can also be seen as a quadratic design, because ( ) ;1 i i jj j in x x x
≠

− =∑ , 
nS∈x . There are three natural quadratic designs with their basic parameters symmetric and nonnegative: 
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(a) ( ) { }, ,  .a ij i j ni jp a x x S∝ ∈∑x x  

(b) ( ) { } ( )( ), 1 1 ,  .b ij i j ni jp b x x S∝ − − ∈∑x x  

(c) ( ) { }
( ) ( )

,

1 1
,  .

2
i j j i

c ij ni j

x x x x
p c S

− + −
∝ ∈∑x x  

Assuming that { }, 1,iji j a =∑  { }, 1,iji j b =∑  and { }, 1,iji j c =∑  we readily find that for the three cases the 

normalization constants are the reciprocals of 
2

,
2

N
n
− 

 − 
 

2
,

N
n
− 

 
 

 and 
2

,
1

N
n
− 

 − 
 respectively. It is not clear  

that the designs (b) and (c) are quadratic according to Definition 2 but it will be obvious later on. It will also 
follow that the complement of a sample from a quadratic design of size n can be seen as a sample from a qua-
dratic design of size .N n−  

The design (a) corresponds to selecting one pair of units according to the probabilities ija  and then 2n −  
further ones by SRSWOR. The design (b) was considered by Sinha in [3]. Remove one pair of units according to 
the probabilities ijb  with sum 1 and then choose n units by SRSWOR among the remaining ones. The design (c) 
corresponds to selecting one pair according to the probabilities ijc  and then keeping one of the units for the 
sample and removing the other one. Then 1n −  units are selected by SRSWOR among the 2N −  non-se- 
lected units. 

 
Remark 2. An extension of the design (c) would be to let ( ) ( ), 1 , ,c ij i j ni jp c x x S∝ − ∈∑x x  with 0ijc ≥  

and 0iic =  but not necessarily .ij jic c=  In this case the units i and j have different roles. In the symmetric 
case the new parameters ijc  equal the previous ones multiplied by 1/2. This extension is not considered further 
here. 

Using the facts that for ,nS∈x  ( ) ;1 ,i i jj j in x x x
≠

− =∑  and { },2 i ji j

n
x x 

= 
 

∑  and  

{ }
( )

{ }, , ;
, where ,

1
i j

ij i j i j i ij
i j i j j j i

B B
b x x x x B b

n ≠

+
+ = =

−∑ ∑ ∑  

it is not difficult to see that also the designs (b) and (c) are indeed quadratic designs according to Definition 2 
with parameters ijd  that are not necessarily nonnegative. More explicitly we have, with  

{ }1 ,2 2,N
i iji i jB B b

=
= = =∑ ∑  

{ }
( )( )

{ } ( ), ,
1 1 ,

1 1
i j

ij i j ij i j
i j i j

B B Bb x x b x x
n n n

 +
− − = − +  − − 

∑ ∑  

{ }

( ) ( )
{ } ( ), , ;

1 1
,  where  .

2 2 1
i j j i i j

ij ij i j i ij
i j i j j j i

x x x x C C
c c x x C c

n ≠

− + − + 
= − =  − 

∑ ∑ ∑  

One can then realize that ( ) { }, ,b
b ij i ji jp d x x∝∑x  where 

( )
( )( ) ( ) { },

1
 and  1.

1 1 1
i jb b

ij ij ij
i j

B Bn n Bd b d
N n N n n n n

+ −
= − + =  − − − − − 

∑                  (4) 

Further 

( )
{ } ( ) { }, ,

1,   where  and  1.
2 1

i jc c c
c ij i j ij ij ij

i j i j

C Cnp d x x d c d
N n n

+ −
∝ = − =  − − 
∑ ∑x  

Given parameters ijd  with sum 1 we may solve the equations b
ij ijd d=  for possible nonnegative solutions 

ijb  and the equations c
ij ijd d=  for possible nonnegative solutions .ijc  In fact, we have 

( )( )
( ) ( )( )

1
,

1 1 1
i j

ij ij

D DN n N n Db d
n n N n N n N n

+ − − −
= − +  − − − − − − 

                (5) 
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where ;i ijj j iD d
≠

= ∑  and 1 2.N
iiD D

=
= =∑  This result is a consequence of formula (4) but with the sample of 

size n  replaced by its complement of size .N n−  Somewhat more complicated calculations show that, at 
least if 2 ,n N≠  

( )( ) ( ) ( )( )
.

2 1 2 1 1ij i j ij
N n D N nc D D d

N n n N n n n
− −

= + − −
− − − − −

                 (6) 

This gives us the following theorem. 
 
Theorem 3. A quadratic sampling design ( ) { }, , ,ij i j ni jp d x x S∝ ∈∑x x  with { }, 1iji j d =∑  is a design of 

type (a) iff 0.ijd ≥  It is design of type (b) (Sinha design) iff 

( )( )
0.

1 1
i j

ij

D D Dd
N n N n N n

+
− + ≥

− − − − −
 

It is a design of type (c) iff 

( ) ( )( )
1 0.

2 2i j ij
DD D d

N n N n N n
+ − − ≥

− − −
 

It can happen that a design is of all the three types simultaneously. For example, SRSWOR is such a design. 
 
Example 2. Let 5, 3N n= =  and let the design be defined by 

12 13 14 15 23 24 25 34 35 45
1 1 1 1 1 1, , , , , 0, .
6 12 12 6 4 6

d d d d d d d d d d= = = − = = = = = = =  

By (5) and (6), the corresponding b- and c-parameters are then given by 

12 13 14 15 23 24 25 34 35 45
1 5 1 1 1 1 1, , , , , 0, ,

18 36 12 6 12 9 6
b b b b b b b b b b= = = = = = = = = =  

12 13 14 15 23 24 25 34 35 45
1 1 5 1 1 1 1, , , , , 0, , .
6 4 12 6 4 3 6

c c c c c c c c c c= − = = = = = − = = = =  

Thus in this case the design is not of type (a) or (c) but of type (b). 
 

In the linear case we saw that a general linear design can be represented as a mixture of a Midzuno and a 
complementary Midzuno design. It would be desirable that a general quadratic design could be represented as a 
mixture of the three designs (a), (b), and (c) (or its extension). However, such a result is not likely to hold. 

For the design (b) the second-order inclusion probabilities ijπ  (which determine the first-order ones since 
( ) ;1 i ijj j in π π

≠
− =∑ ) are easy to find. We have 

( )
( )( ) { } { } { }, ; , ,

1
.

2 3ij kl
k l k l i j

n n
b

N N
π

=∅

−
=

− − ∑


 

It is also easy to find the b-parameters that correspond to ( )π .ij  In fact, 

( )( )
( ) ( )2 3 2 1.

1ij ij i j
N N Nb

n n n
π π π

− − −
= − + +

−
 

This result is due to Sinha [3] but more generally also a special case of Lemma 1 below. Sinha used his result 
to find a method to sample with prescribed second-order inclusion probabilities. However, for the method to 
work with nonnegative ,ijb  strong restrictions on the ijπ s are needed. 

 
Lemma 1. Let , ,ijq i j≠  be given numbers with .ij jiq q=  Then the equations 

{ } { } { }, ; , ,
, ,kl ij

k l k l i j
c q i j

=∅

= ≠∑


                                (7) 

in the unknowns , ,ij jic c i j= ≠  have the solution 
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( )( ) ; 1
,  where , .

3 2 3

N
i j

ij ij i ij i
j j i i

Q Q Qc q Q q Q Q
N N N ≠ =

+
= − + = =

− − − ∑ ∑                 (8) 

 

We only have to put ( )( )
( )
2 3

,
1ij ij

N N
q

n n
π

− −
=

−
 to get the earlier solution ( )ij ijb c=  from the lemma. The 

proof of Lemma 1 is given in the appendix. 
For a design given by ( ) { }, ,ij i ji jp d x x∝∑x  the formulas for the second-order inclusion probabilities πij  

are somewhat complicated. However, we can first find ijb  from formula (5) and then use the πij  formula 
above. The inverse procedure ( )b dπ → →  can also be used to find d-parameters corresponding to given 
second-order inclusion probabilities. The “mixed case” (c) can be handled in the same way. A computer pro-
gram makes these procedures simple to use. 

To sample from the general quadratic design, we could use an AR-technique by dominating ( )p x  by a 
multiple of ( ).SRSp x  However, it is probably simpler to use list-sequential sampling. In fact, given 1 1I x=  (0 
or 1), the probability function for the remaining sample of size n  or 1n −  is again quadratic, cf. Section 2. 
But we must recalculate parameters (coefficients) and calculate first-order inclusion probabilities. The first-order 
inclusion probability 1π  is given by (assuming that the d-sum is 1) 

{ }
1 1

; 2 , , 2

2 .
2l kl

l l k l l k

nd d
N

π
≥ > ≥

−
= +

−∑ ∑  

Given that 1 1I x=  with 1 0,x =  the new d-coefficients (with sum 1) are just 

{ }

0

, , 2

, , 2, .ij
ij

klk l l k

d
d i j i j

d
> ≥

= ≥ ≠
∑

 

If 1 1x =  and 2,n >  the new d-coefficients (with sum 1) are instead given by 

1 11 ,   , 2, .
2

i j
ij ij

d d
d d i j i j

n
+

∝ + ≥ ≠
−

 

For 2n =  the conditional design is a linear design with parameters proportional to 1 .id  

5. Additional Comments 
As recently becoming more common in sampling articles, we have used sampling indicators and focused on the 
probability function of these. The names linear design and quadratic design become very natural for this reason. 

There are several advantages of the linear design: there are simple relations between the parameters and the 
inclusion probabilities of first and second order. It is also easy to sample. Thus the design is easy to use and for 
the Horvitz-Thompson estimate of a population total, we can also readily find a variance estimate. The draw-
back of the design is its lack of sufficient flexibility: although much more general than SRSWOR, it is not able 
to cover all possible first-order inclusion probabilities. 

The quadratic design is more complicated than the linear one. By using a quadratic design, it is possible to 
sample with prescribed second-order inclusion probabilities. However, it cannot be used for all such possible in-
clusion probabilities and therefore this design is also not flexible enough. 

To get more flexibility, the linear and quadratic functions need to be complemented by binomial factors. To 
sample with prescribed first-order inclusion probabilities, we may generally use a probability function of the 
form 

( ) ( )1
11

1 , ,ii
N Nxx

i i k k n
ki

p p p c x S−

==

∝ − × ∈∑∏x x  

where the parameters are suitably chosen. At least three well-known designs are of this form (with nonnegative 
kc ): the conditional Poisson design, the Sampford design, and the Pareto design, cf. [7]. For these three cases, 

the linear function 1
N

k kk c x
=∑  is proportional to ( )1 1N

k kk b x
=

−∑  with nonnegative parameters .kb  
To sample with prescribed second-order inclusion probabilities, we may use a design with 
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( ) ( )
{ }

( )( )1

,1
1 1 1 , .ii

N xx
i i kl k l n

k li
p p p b x x S−

=

∝ − × − − ∈∑∏x x  

Letting i ip π=  (the desired first-order inclusion probabilities) and using Lemma 1, it is possible to calculate 
the suitable parameters klb  without much effort. Details will be presented in a planned forthcoming paper. This 
design is much more flexible than the quadratic design but it has not full flexibility. A fully flexible design uses 
a probability function of the form ( ) { }( ),exp , ,ij i j ni jp a x x S∝ ∈∑x x  but it is not easy to find the parameters 
[8]. 
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Appendix 
Here proofs are given of Theorem 2 and Lemma 1. 

 
Proof of Theorem 2. Excluding the case that 0kc ≥  for all ,k  and then ordering the kc s as  

1 2 10 ,m m Nc c c c c+≤ ≤ ≤ < ≤ ≤ ≤   where 1 ,m n≤ <  we shall show that  

1 , 1, 2, , ,k k kc a b k N
n

α γ  = + − = 
 


                             (9) 

where 0ka ≥  and 1 1N
kk a

=
=∑  and 0kb ≥  and 1 1N

kk b
=

=∑  and 0α ≥ , 0γ > . Re-writing then 1
kb

n
γ  − 
 

 

as 1
k k

n b c
N n n

β β − = −  
  (with 1 1N

kk c
=

=∑  ), we have the desired mixture representation  

1 1 1
, 1.

N N N

k k k k k k
k k k

c x a x c xα β α β
= = =

= + + =∑ ∑ ∑   

We shall show that (9) can be achieved by putting for some ν  such that ,m nν≤ <  0ka =  and 
1 k

k
c

b
n γ

= −  for 1, ,k ν= 
 and 0kb =  and k ka c

n
γ α = − 

 
 for 1, , .k Nν= + 

 To get 1 1N
kk b

=
=∑  

and 0,γ >  we must have 1 0kk cν
=

<∑  and 
1 1 .kk c

n
ν νγ
=

 = − − 
 

∑  To get 0kb ≥  and 0,ka ≥  we must 

have  

1 1
1and .k kk kc c

c n c n
n n

ν ν

ν νγ γ
ν ν

= =
+≤ = − ≥ = −

− −
∑ ∑                     (10) 

(Then there is no problem to choose 0α ≥  such that 1 1.N
kk a

=
=∑ ) We start by trying .mν =  Since 0mc <  

and 1 0,m
kk c

=
<∑  the first inequality in (10) is certainly satisfied with strict inequality. If also the second one is 

satisfied, we can stop and use .mν =  Otherwise, the second inequality is not satisfied and then  

1
1 .

m
kk

m

c
c

n m
=

+ < −
−

∑  Equivalently 
1
1

1 1

m
kk

m

c
c

n m

+

=
+ < −

− −
∑  (and 1

1 0m
kk c+

=
<∑ ). If now 

1
1

2 ,
1

m
kk

m

c
c

n m

+

=
+ ≥ −

− −
∑  we can stop 

and put 1.mν = +  Otherwise 
1
1

2 .
1

m
kk

m

c
c

n m

+

=
+ < −

− −
∑  Equivalently 

2
1

2 .
2

m
kk

m

c
c

n m

+

=
+ < −

− −
∑  If now 

2
1

3 ,
2

m
kk

m

c
c

n m

+

=
+ ≥ −

− −
∑  

we can stop and put 2.mν = +  The procedure may continue until 
( )

1
11

1 1 .
1

n
nkk

n kk

c
c c

n n

−
−=

− =
< − = −

− −
∑ ∑  But 

1
1

n
n kkc c−

=
≥ −∑  (as ( ) 0p ≥x  for all nS∈x ) and we can then put 1nν = −  and stop. 


 

 
Proof of Lemma 1. Let ;i ijj j iC c

≠
= ∑  and 1 .N

iiC C
=

= ∑  Then (7) can be re-expressed as  

1 .
2 i j ij ijC C C c q− − + =  It follows that  

( ) ( ) ( ) ( )1 11 1 3 ,
2 2i i i i iQ N C N C C C C N C C = − − − − − + = − − 

 
 

and hence 
1 .
2 3

i
i

Q
C C

N
= −

−
 Thus 1 .

3 2
i j

ij ij

Q Q
c q C

N
+

= − +
−

 Summing then over i  and , ,j i j≠  we get 

( ) ( )11 1
3 2

Q QC Q N N N C
N
+

= − − + −
−

 and hence ( )( )( )1 2 3 .
2

C Q N N= − −  This shows that the solution 

must be of the form (8). It is not difficult to check that (8) also is a solution.   
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