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Abstract 
The influence of boundaries on the dynamics of a compositional plume is studied using a simple 
model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical 
walls with a finite distance apart. The problem is governed by four dimensionless parameters: The 
Grashoff number, R, which is a measure of the difference in concentration of light material of the 
plume to its surrounding fluid, the Prandtl number, σ, which is the ratio of viscosity, ν, to thermal 
diffusivity, κ, the thickness of the plume, 2x0, and the distance, d, between the two vertical walls 
relative to the salt-finger length scale. The influence of the boundary on the fluxes of material, heat, 
and buoyancy is examined to find that the buoyancy flux possesses a local maximum for moderate 
to small thicknesses of the plume when they lie close to the wall. This has the effect of introducing 
a region of instability for thin plumes near the wall with an asymptotically larger growth rate. In 
addition, the presence of the boundary suppresses the three-dimensional instabilities present in 
the unbounded domain and allows only two-dimensional instabilities for moderate to small dis-
tances between the bounding walls. 
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1. Introduction 
Studies on the dynamics of fluid alloys are relevant to industrial (e.g., Rees and Worster [1] and references 
therein), environmental (e.g., Wells et al. [2] and references therein) and geophysical (e.g., Loper [3], Moffatt 
[4], Al-Lawatiaet al. [5]), applications. Consequently, there has been considerable interest in studying the vari-
ous aspects of the dynamics of fluid alloys. 

In industrial applications, one of the problems the iron casting industry faces is the appearance of freckles in 
iron bars causing their weakness. When iron ore is poured into molds or designs, air trapped at the bottom of the 
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design rises in the form of thin filaments into the liquid iron. When the iron solidifies, these filaments form 
trapped air pockets that appear as very thin black strips along the outer surface of the iron bar and lead to a 
weakness in the iron bar. The experimental work of Copley et al. [6] showed the appearance of plumes rising as 
thin filaments from a mushy layer. This work was extended by a number of authors (see, e.g. Huppert [7], Chen 
and Chen [8], Tait and Jaupart [9], Jellinek et al. [10], Classen et al. [11], Aussillous et al. [12], Pol et al. [13]). 
It has been observed that the behaviour of plumes emanating from mushy layers depends on whether they are 
near the walls of the container or not (see, e.g., Hellawell et al. [14]). 

Theoretical studies of a compositional plume rising in a fluid of infinite extent have shown that the plume is 
unstable (see, e.g., Eltayeb and Loper [15]) even for small Grashoff numbers. Moreover, this is found to be true 
even if the plume is subject to rotation or in the presence of a magnetic field even if another plume is also 
present [5] [16]-[18].  

The main purpose of this study is to examine the influence of boundaries on the dynamics of compositional 
plumes. For this purpose, we introduce boundaries to the model discussed by Eltayeb and Loper [16]. This is a 
simple model that neglects material diffusion, which is known to be small, compared to viscous and thermal 
diffusion [15]. A finite column of compositionally buoyant fluid contained between two vertical interfaces, re-
ferred to as a Cartesian plume, is rising in a fluid bounded by two parallel walls enclosing the plume (see Figure 1). 
The neglect of material diffusion allows us to adopt a function of concentration of light material that is simple 
with the consequence that an analytical solution is obtained. This allows us to examine the dynamics of the 
plume in a bounded region in the whole parameter space and thus get some insight into the influence of the 
boundaries on the dynamics of a plume.  

In Section 2, we formulate the problem, which involves four dimensionless parameters: the Grashoff number, 
R , which measures the ratio of the buoyancy force to the viscous force, the Prandtl number, σ , which meas-
ures the ratio of viscosity force to the thermal diffusivity, defined by  

, ,ULR νσ
ν κ

= =                                     (1) 

where U  and L  are characteristic velocity and length-scale, respectively (see Equations (9) and (10) below), 
and ν  and κ  are kinematic viscosity and thermal diffusivity, respectively, and the thickness of the plume, 

02x , and the distance between the two bounding walls, d , made dimensionless using the length scale L .  
In Section 3, we use a top-hat profile of the concentration of light material to obtain a solution representing a 

plume of thickness 02x , rising between two rigid sidewalls a distance, d , apart. We discuss the influence of 
the presence of the sidewalls on the basic state flow and temperature as well as the associated fluxes of material, 
heat, and buoyancy. It is found that the presence of the boundaries increases the amplitude of the basic state ver-
tical velocity of the plume flow. The fluxes of material, heat and buoyancy are presented as contours in the 
( )0 2,x a  plane, where 2a  is a measure of the distance between plume and the nearest sidewall.  

In Section 4, we examine the stability of the plume. This poses an eigenvalue problem for the growth rate Ω  
of the perturbations. In the absence of the walls, the plume is always unstable for small values of the Grashoff 
number, R , and the instability takes the form of one of two uncoupled modes, depending on the values of the 
dimensionless parameters: a varicose (V) mode, in which the two interfaces of the plume are out-of-phase or a 
sinuous (S) mode, in which case the two interfaces are in-phase. When the walls are introduced, the same two 
modes persist but are modified by the presence of the walls. We refer to them below as the modified varicose 
(MV) and modified sinuous (MS) modes. The stability results are discussed in Section 5. In particular, it will be 
shown that the influence of the sidewalls is quite complicated. While it tends to stabilise the plume if it is equi-
distant from the two sidewalls, it can destabilise the plume if it is nearer to one sidewall than to the other. Some 
concluding remarks are made in Section 6.  

2. Formulation of the Problem 
We consider a two-component incompressible fluid in which the concentration of the solvent component (light 
material) is C  and the temperature is T . The two fluids have the same kinematic viscosity, ν , and thermal 
diffusivity, κ . The system is governed by the equations of motion, mass, heat, concentration of the light ma-
terial, and state. These equations are  

( ) 2 ˆ,r rp g
t

ρ ρ ν ρ∂ + ⋅∇ = − + − ∂ 

u u u u z∇ ∇                        (2) 
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0,⋅ =u∇                                        (3) 

2 ,T T T
t

κ∂
+ ⋅∇ = ∇

∂
u                                  (4) 

0,C C
t

∂
+ ⋅∇ =

∂
u                                     (5) 

( ) ( )1 ,r r
r

T T C Cρ α β
ρ

= − − − −                               (6) 

where u  is the velocity vector, p  the pressure, g the uniform acceleration of gravity, ẑ  is the upward unit 
vector, t the time, α  the coefficient of thermal expansion, β  the coefficient of compositional expansion, ρ  
the density, ( ), ,r r rT Cρ  reference values, and we have assumed that the fluid is Boussinesq. The Equations 
(2)-(6) allow a hydrostatic balance governed by 

2

2

d d
0, 0, 0, .

d d
h h

h h r
p T

g C C
z z

ρ+ = = = =u                          (7) 

Motivated by the experimental work on plumes rising from mushy layers, we take a temperature profile  
,h rT z Tγ= +                                     (8) 

where γ  is a positive constant and z  is the vertical coordinate measured vertically upwards, so that the tem-
perature increases with height making the fluid stably stratified thermally and any instabilities will be due to 
transport of material.  

We now cast the Equations (2)-(6) into dimensionless form. It is found that in order to maintain the effects of 
temperature variations and compositional variations, we use the salt-finger length scale defined by 

1
4

,  L
g

νκ
αγ
 

=  
 

                                      (9) 

and a velocity unit with the definition 
1
2gU C κβ

ανγ
 

=  
 
 ,                                    (10) 

so that the ensuing motions are driven by the plume flow transporting the light material, C , upwards. Here C  
is the maximum amplitude of the concentration of light material. We further choose Cβ α , L U  and  

( )1 43
r C gρ β ν κ αγ  as units of temperature, time and pressure, respectively, and express the equations in di- 

mensionless form as  

( ) ( )2 ˆ,r r
zR p T T C C

t Cβ
 ∂ + ⋅∇ = − + + + − + −  ∂   

u u u u z∇ ∇                 (11) 

0,⋅ =u∇                                     (12) 

2 ,TR T T
t

σ ∂ + ⋅ = ∂ 
u ∇ ∇                              (13) 

0.C C
t

∂
+ ⋅ =

∂
u ∇                                  (14) 

Here the dimensionless parameters R  and σ  are the Grashoff and Prandtl numbers defined in Equation (1) 
above. 

We define a Cartesian coordinate system ( ), ,O x y z in which Oz  is vertically upwards and Ox , Oy  are 
horizontal with the x -axis normal to the bounding walls (see Figure 1). A column of fluid of finite thickness, 

02x , rising vertically upwards in a fluid of different concentration and bounded on either side by vertical walls, 
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Figure 1. The geometry of the problem showing the profile of the basic state concentration of light material 
representing a plume of width, 02x , and concentration, 1, rising vertically in a fluid of width, d , and 
concentration, 0. Two vertical planes bound the plume on either side such that the center of the plume is a 
distance 1a  from the wall on the right and 2a  from the wall on the left.                             

 
a distance d  apart. We choose the origin such that the plume interfaces are situated at 0x x= ±  and the walls 
at 2x a= −  and 1x a= . The region is unbounded in the y  and z  directions. In comparison with the plumes 
observed in experiments on mushy layers (see, e.g., Huppert [7]), our model is different in that it is unbounded 
in the y  and z  directions. We feel that both assumptions can be adopted for the following reasons: First, the 
studies in [16] [17] showed good agreement between the stability results of the circular cylindrical plume and 
the Cartesian plume. Secondly, experimental work on mushy layers and the formation of plumes shows that 
fully developed plumes rise to heights 200 times their thickness [14], and we can approximate the situation for a 
fully developed plume by considering it infinite in the vertical direction. 

We can now take the flow variables to have the form 

( ) ( ) ( )†ˆ, , , , , , ,x y z t w x z x y z tε= + +0u u                            (15) 

( ) ( ) ( )†, , , , , , ,rC x y z t C C x C x y z tε= + +                           (16) 

( ) ( ) ( )†, , , , , , ,hp x y z t p p x p x y z tε= + +                           (17) 

( ) ( ) ( )†, , , , , , ,hT x y z t T T x T x y z tε= + +                           (18) 

such that the variables with subscript h  represent hydrostatic balance and given (in dimensionless form) by 
( )

,r
h r

z z
T T

Rσ
−

= +                                     (19) 

( ) ( )2

.
2

r r
h r

z z z z
p p

RC σβ
− −

= − +


                              (20) 

The variables with an “overbar” are basic state variables dependent only on the horizontal coordinate x , be-
cause the horizontal variations of the vertical plume flow caused by the difference in composition between the 
plume and the surrounding fluid imposes a horizontal variation of temperature.The variables with a “dagger” in-
dicate a perturbation of small amplitude ( )1ε  . 

Substituting the expressions (15)-(18) into the system (11) - (14), the terms independent of ε  give the basic 



K. S. Al-Mashrafi, I. A. Eltayeb 
 

 
87 

state equations, which depend on x  only 
2

2

d dˆ ˆ 0,
d d
p w C T
x x

 
− + + + = 

 
x z                             (21) 

( )
2

2

d .
d

T w x
x

=                                    (22) 

These equations are discussed in section 3 below. 
The order ε  terms in the equations provide the linearised perturbation equations as follows  

( )
†

† † † 2ˆ ˆR w w p
t

 ∂
+ ⋅∇ + ⋅∇ = −∇ +∇ ∂ 

u z u u z †u ( )† † ˆT C+ + z                 (23) 

† 0,⋅ =u∇                                       (24) 
† †

† † 2 ?ˆ. ,T TR w T T
t z

σ
 ∂ ∂

+ + + ⋅ = ∇ ∂ ∂ 
u u z∇                        (25) 

† †
† 0.C Cw C

t z
∂ ∂

+ + ⋅ =
∂ ∂

u ∇                              (26) 

The perturbation equations are solved in Section 4 below. 

3. The Basic State  
Equation (14) is automatically satisfied for the basic state and we are free to choose a concentration function 
( )C x . Since we are extending the study by Eltayeb and Loper [16], we will adopt their choice of ( )C x . Thus 

( ) 0

2 0 0 1

1,           
.

0,          ,
x x

C x
a x x x x a

 ≤= 
− ≤ < − < ≤

                       (27) 

Consider the basic state Equations (21) and (22). Define  
( ) ( ) ( )i .F x T x w x= −                                (28) 

Then 
2

2

d0, i i .
d

Fp F C
x

= − =                                (29) 

The Equation (29) is subject to the boundary conditions 

0

1 2

d(i) ,    continuous across  
.d

(ii) 0  at  ,

FF x x
x

F x a a

= ± 

= = − 

                       (30) 

The solution is  

( )
( ) ( )
( ) ( ) ( )

( ) ( )

1 2 2 0

1 2 0 0 0

2 1 0 1

sinh sinh ;                                   

sinh sinh cosh 1;  ,

sinh sinh ;                                      

A ka k x a a x x

F x A ka k x a k x x x x x

A ka k x a x x a

− + − ≤ < −    = − + + + − − ≤ ≤     


− < ≤   

       (31)

 
where A  and k  are defined by  

( )
( ) ( )0

1 2

2sinh 1, 1 i , .
sinh 2

kx
A k d a a

kd
= = + = +                       (32) 

A sample of the profiles of the solutions ( )T x  and ( )w x  is plotted for different values of the plume 
thickness 02x , the distance 2a  and 10d =  in Figure 2. The profiles are symmetric when the plume is si-
tuated half-way between the sidewalls. The oscillatory nature of the velocity profile introduces negative flow  



K. S. Al-Mashrafi, I. A. Eltayeb 
 

 
88 

 

Figure 2. The profiles of the basic state velocity, ( )w x , and temperature, ( )T x , for different values of plume thickness, 

02x , and distance, 2a , from the wall on the left when 10d = . (a) and (c) refer to w  and T , respectively, when the 

plume is positioned half-way between the two sidewalls and the labels i, ii, iii correspond to 0 0.5,2,4.5x = , respectively. (b) 

and (d) refer to w  and T  when 2 2a =  and the labels iv, v, vi correspond to 0 0.5,1,1.8x = , respectively. Note that 
when the plume is wide, the flow is oscillatory within the plume and it slows down in the middle of the plume, while the 
flow of the plume is enhanced in the center of the plume when the plume approaches the wall.                          
 
(i.e., downwards flow) within the plume when it is wide, and this has an effect on the net transport of material 
by the plume. The wide plume is also associated with a temperature profile that is almost uniform in the main 
body of the plume. If the position of the plume moves towards a sidewall, symmetry is broken. Here the down-
ward flow outside the plume is partially suppressed in the narrow region between the plume and the nearest wall 
and strengthened on the far side. Such behavior will lead to the modification of the modes of instability in the 
absence of the sidewalls. 

The basic state solution is associated with fluxes of heat, HF , material, mF , and buoyancy, BF , which are  

non-dimensionalised using the units ( )1 42 2 3 7 3C gβ κ να γ , ( )1 42 3 3 3C gβ κ να γ  and ( )1 42 2 3 3C gβ ακ νγ ,  

respectively. They are given by 

( ) ( ) ( ) ( )
1 1

2 2

1 1d , d , .
2 2

a a

H m B H m
a a

F w x T x x F w x C x x F F F
− −

= = = +∫ ∫                (33) 

(cf. [15]). The integration is straightforward and leads to  

( ) ( ) ( ) ( )0 1 2 0
1 1Im 2 sinh sinh sinh sinh 2 ,
2mF A kx ka ka kx

k
  = −   

             (34) 

( )
( )

( )
2

0
1 1 2 32

sinh1 1Im sinh ,
4 sinhH H H H

kx
F F A ka F F

k kd

   = − + +  
    

                (35) 

where 1HF , 2HF  and 3HF  are given by  

( ) ( ) ( ){ } ( ) ( ) ( ){ }2 2
1 1 0 2 0 2 2 0 1 0 1sinh sinh 2 2 sinh sinh 2 2HF ka k x a k x a ka k x a k x a   = + − + − − − −       (36) 
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( ) ( ) ( ) ( )2 0 2 0 2 2 0 0 2 0
1 32cosh cosh 3 cosh 2 sinh ,
2 2HF k x a k x a k a x kx k a x       = + − + − − − −             (37) 

( ) ( )0
3 0

sinh 4
2sinh 2 .

4H

kx
F kx= −                             (38) 

The fluxes are presented in the ( )2 0,a x  plane in Figure 3. The presence of the sidewalls has complicated the 
behavior of the fluxes as compared to the case of infinite surrounding fluid. For a fixed position of the plume 
(i.e., fixed 2a ) relative to the wall, gradual increase in the thickness of the plume is associated with an increase 
in the downward heat flux. For plumes of thickness less than about 2, the heat flux is almost a constant as the 
plume moves towards a sidewall. For plumes with larger thickness, the heat flux increases as the wall is ap-
proached. The upward material flux behaves similarly if the distance from the wall is less than about 4.5. For 
larger distances from the sidewalls, the material flux increases as 0x  increases from zero reaching a maximum 
before it decreases to a minimum and starts to increase again to a larger value as 0x  approaches 2a  and the 
plume interface approaches a sidewall. The buoyancy flux, which is the net system flux, possesses two local 
maxima and a minimum. The local maximum with the largest value is situated on the boundary at 0 1.3x = , 
while the other one is situated half-way between the two sidewalls and about the same value of 0x . The mini-
mum occurs for 0 3.7x =  and lies half-way between the sidewalls. The buoyancy flux per unit area, illustrated 
in (d), has the same general behavior as the buoyancy flux but the positions of the two local maxima and mini-
mum are different. 

4. Solution of the Eigenvalue Problem 
In this section, we solve the eigenvalue problem posed by the perturbation Equations (23)-(26) and the relevant 
boundary conditions to obtain expressions for the growth rate. Our interest lies in the instability produced by the 
buoyant fluid in the plume. We assume that the interface at the plane 0x x=  is given a small harmonic distur-
bance of the form  

( )( )0 exp i . .,x x t my nz c cε= + Ω + − +                           (39) 

where m  and n  are the horizontal and vertical wavenumbers, . .c c refers to the complex conjugate, and Ω is 
a complex constant, which can be expressed as   

i .r iΩ = Ω + Ω                                    (40) 

rΩ  and iΩ  will be referred to as the real and imaginary parts of Ω . The stability of the plume is determined 
by the sign of rΩ . If it is negative for all possible values of the wavenumbers m  and n , then the plume is 
stable, but the system is rendered unstable if any pair ( ),m n  of wavenumbers gives a positive value of rΩ . If 
the preferred mode occurs for m , n  both non-zero, it is referred to as a 3-dimensional mode but if any one of 
them vanishes it is 2-dimensional. If the maximum value of rΩ  vanishes, the plume is neutrally stable.  

The disturbance (39) will propagate into the system, and affect the second interface and the variables of the 
system to produce the perturbations. The disturbance at the interface 0x x= −  can be written in the form 

( )( )0 1 exp i . .,x x t my nz c cεη= − + Ω + − +                        (41) 

where 1η  is the amplitude of the displacement of the interface at 0x x= − , and will be determined by the solu-
tion. 

The perturbation variables produced by the disturbance (39) can be expressed in the form 

{ } { } ( )( )† † † †, , , i , , , , , i exp i . .,C T p nu nmv w C T np t my nz c c= − − Ω + − +u          (42) 
where the factors in− , nm  and in−  are introduced in the variables u , v  and p , respectively, for convenience. 

Substituting the variables (42) into (23)-(26), we obtain the following ordinary differential equations in x  
2 0,Du m v w− + =                                   (43) 

,u Dp R u∆ − = Ω                                   (44) 

,v p R v∆ − = Ω                                     (45) 

( )2 i ,w T C n p R w nuDw∆ + + + = Ω −                          (46) 
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Figure 3. The contours of the basic state fluxes of the top-hat bounded plume in the ( )2 0,a x  plane; (a) material flux, mF , 

(b) heat flux, HF , (c) buoyancy flux, BF  and (d) buoyancy flux per unit area ( )0BF x  when 10d = . Note that the heat 

and material fluxes are larger at the sidewall, the buoyancy flux has a maximum value of 0.215, when ( ) ( )2 0, 1.22,1.22a x ≈  

and the buoyancy flux per unit area has a maximum 0.212 at ( ) ( )2 0, 1,1a x ≈ , and both maxima lie on the sidewall. The 
fluxes are shown for half the interval because they are symmetric about the middle plane between the sidewalls.            
 

( )i ,T w R T nuDTσ∆ − = Ω −                                (47) 

0.CΩ =                                       (48) 
Here we have used 

( )2 2 2 2 2d, , , i .
d

b m n D D b nw x
x

= + ≡ ∆ ≡ − Ω = Ω−                    (49) 

The boundary conditions across the interfaces are (see, Eltayeb and Loper [16]) 

0, , , , , , , are continuous across ,u v w T p C Dv DT x x=±                 (50) 

( ) ( ) ( ) ( )0 0 0 0 11, ,Dw x Dw x Dw x Dw x η+ − + −− = − − − − =                    (51) 

( ) ( ) ( ) ( )0 0 0 0 1i i , i i .nu x nw x nu x nw x η − = Ω− − − = Ω− −                  (52) 

1 20  at  , .u v w x a x a= = = = = −                          (53) 

In addition, the sidewalls are maintained at the hydrostatic temperature so that 

1 20  at  , .T x a x a= = = −                               (54) 
Equation (48) gives  

( ) 0.C x =                                     (55) 
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It was found that it is useful to derive the following three equations. First, differentiate (45) once and subtract 
(44) to get  

i , ,R nvDw Dv uς ς ς ∆ = − +Ω = −                            (56) 

Where ς  is related to the vertical component of vorticity. Secondly, differentiate (43) once and subtract (44) 
to obtain  

( )2 2n u m D w p R uς= − + − Ω .                           (57) 

Thirdly, apply the operator ∆  to (43) and use (44)-(46) to find  
2i .p T RnuDw∆ − =                                 (58) 

The previous studies on a compositional plume showed that the plume flow is unstable for small value of 
Grashoff number [15]-[17]. This dimensionless number measures the strength of the plume, resulting from the 
maximum amplitude of the basic concentration. It transpires that instability is also present for small values of 
R  here too. We then write 

( ) ( ) 1

0 1
, , , , , , , ,r r

r r
r r

f x y z t f x y z t R R
∞ ∞

−

= =

= Ω = Ω∑ ∑                    (59) 

where ( ), , ,f x y z t  indicates any of the perturbation variables u , v , w , p  and T .  
Substituting the expressions (59) into the system (43)-(47), (56)-(58) and the associated boundary conditions 

(50)-(54), and equating the coefficients of ( )0,1, 2,rR r =   to zero, we get systems of ordinary differential 
equations which can be solved successively to find an expression for the growth rate. The two systems obtained 
for 0R  (referred to as Problem 0) and 1R  (referred to as problem 1) are sufficient to determine the stability of 
the interfaces, to leading order. It is found that the instability is present only in part of the parameter space, and 
it is necessary to consider the next order of the growth rate governed by Problem 1. 

4.1. Problem 0 
The coefficients of 0R  in the system (45)-(47), (57)-(58) then consist of the equations 

0 0 0,v p∆ − =                                     (60) 
2

0 0 0 0,w T n p∆ + + =                                  (61) 

0 0 0,T w∆ − =                                     (62) 

0 0 0p T∆ − =                                     (63) 

( )2
0 0 0n u D w p= − + ,                                (64) 

noting that (56) and the appropriate conditions imply that 0 0ς =  everywhere. Taking note of (64), the boun-
dary conditions can then be expressed as 

( )0 0 0 0 0 1 20  at  , ,D w p v w T x a x a+ = = = = = = −                      (65) 

( )0 0 0 0 0 0 0 0 0, , , , , , are continuous across ,v w T p Dv DT D w p x x+ = ±            (66) 

( ) ( ) ( ) ( )0 0 0 0 1i i , i i .nu x nw x nu x nw x η − = Ω− − − = Ω− −                  (67) 

( ) ( ) ( ) ( )0 0 1 0 0 0 1 0 1i i , i i .nu x nw x nu x nw x η − = Ω − − − = Ω − −                 (68) 

We operate on Equation (61) with ∆ , and use equations (62) and (63) to get 
3 2

0 0 0 0.w w n w∆ + ∆ + =                                 (69) 

The solution of the system (60)-(64) subject to the boundary conditions (65)-(67) is given by  

( ) ( ) ( ) ( ){ }( ) { } ( ) ( ) ( ) ( )
3

3 2
0 0 0 0

1
, , , 1, , , cosh sinh ,i i i i i i

j j j j j j j
j

v w T p x A x B xµ µ µ λ λ
=

 = + ∑        (70) 
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( ) ( ) ( ) ( ) ( ) ( )
3

0
1

sinh cosh ,i i i
j j j j j

j
u x A x B xλ λ λ

=

 = + ∑                     (71) 

where the superscript “i” in the solution refers to the region of the problem defined by 

2 0

0 0

0 1

1;   
2;  ,
3;    

a x x
i x x x

x x a

− ≤ < −
= − ≤ ≤
 < ≤

                               (72) 

(see Figure 1) and ( )1,2,3j jµ =  are the roots of the cubic equation 
3 2 0,j j nµ µ+ + =                                   (73) 

with jλ  given by  
2 .j j bλ µ= +                                     (74) 

The constants ( )i
jA  and ( )i

jB  for ( ), 1, 2,3i j =  are given by  

( ) ( )
( ) ( ){ } ( ){ }21

0 1 1 0 1

sinh
sinh sinh ,

sinh
j j

j j j
j

F a
A x a x a

d

λ
λ η λ

λ

−
 = − + +                (75) 

( )

( ) ( ) ( ){ } ( ) ( ){ }2
2 0 1 1 1 0 2sinh sinh sinh sinh ,

sinh
j

j j j j j
j

F
A a x a a x a

d
λ λ η λ λ

λ

−
 = − − −           (76) 

( ) ( )
( ) ( ){ } ( ){ }13

0 2 1 0 2

sinh
sinh sinh ,

sinh
j j

j j j
j

F a
A x a x a

d

λ
λ η λ

λ
 = + + −                  (77) 

( ) ( )
( ) ( ){ } ( ){ }21

0 1 1 0 1

cosh
sinh sinh ,

sinh
j j

j j j
j

F a
B x a x a

d

λ
λ η λ

λ

−
 = − + +                  (78) 

( )

( ) ( ) ( ){ } ( ) ( ){ }2
2 0 1 1 1 0 2cosh sinh cosh sinh ,

sinh
j

j j j j j
j

F
B a x a a x a

d
λ λ η λ λ

λ

−
 = − + −         (79) 

( ) ( )
( ) ( ){ } ( ){ }13

0 2 1 0 2

cosh
sinh sinh ,

sinh
j j

j j j
j

F a
B x a x a

d

λ
λ η λ

λ

−
 = + + −                 (80) 

with 

( )
2

2
.

2 3
j

j
j j

F
n

µ

λ µ
=

+
                                  (81) 

The application of the boundary conditions (68) gives an expression for the growth rate 1Ω  and the dis-
placement of the interface 1η . This leads to 

( ) ( )2
1 1 1 2i i 0,n S n SΩ + Ω + =                               (82) 

( ) ( )1
1 0

,
i

j

j

N
n w x M

η −

+

−
=

Ω − − +
                               (83) 

in which  

( ) ( )1 0 0 ,j jS N M w x w x+ += + − − −                             (84) 

( ){ } ( ){ }2 0 0 ,j j j jS N w x M w x N M+ + − −= − − − −                        (85) 
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( ) ( ){ } ( ){ }
3

0 1 0 2
1

sinh cosh ,
sinh

j j
j j j

j j

F
N x a x a

d

λ
λ λ

λ±
=

−
= − ±∑                    (86) 

( ) ( ){ } ( ){ }
3

0 2 0 1
1

sinh cosh .
sinh

j j
j j j

j j

F
M x a x a

d

λ
λ λ

λ±
=

−
= − ±∑                    (87) 

Thus 

( ) 2
1 1 1 2

i , 4 .
2 p p
n S D D S SΩ = − ± = −                            (88) 

The properties of the roots of the cubic Equation (73) render jN ± , jM ±  real and hence the discriminant 
pD  is real. It follows that 1Ω  is imaginary if 0pD ≥  and complex when 0pD < . In the absence of the si-

dewalls, the two modes are such that the two interfaces of the plume are either in-phase giving a sinuous (S) so-
lution or out-of-phase giving a varicose (V) solution. In both cases, 1Ω  is imaginary and the disturbances are 
neutral at this level of approximation of the growth rate. The introduction of the boundaries has destroyed the 
symmetry unless the plumes are situated halfway between the sidewalls. 

It is informative to establish the relationship between the modes of the bounded plume defined by (88) and 
those of the unbounded one particularly that we expect the modes of the bounded plume to reduce to sinuous 
and varicose when the plume is positioned half-way between the two sidewalls. We take the limit 1 2,a a →∞ , 
and find that 

( )
23

1 22
1

10, , as  , ,
2 2 3

j j
j j

j j

E
N N a a

n

µ

µ+ −
=

→ → →∞
+

∑                       (89) 

( )
23

1 22
1

10, , as  , ,
2 2 3

j j
j j

j j

E
M M a a

n

µ

µ+ −
=

→ → →∞
+

∑                       (90) 

( ) ( )( ) ( )

2
232

1 0 2 0 1 22
1

12 , ,  as   , ,
2 2 3

j j

j j

E
S w x S w x a a

n

µ

µ=

 
 → − → − →∞
 + 
∑              (91) 

and 

( )

2
23

1 22
1

, as   , ,
2 3

j j
p

j j

E
D a a

n

µ

µ=

 
 → →∞
 + 
∑                         (92) 

where jE  is defined by 

( )0exp 2 .j jE xλ= −                                    (93) 

Substituting these expressions into the Equation (88) for 1Ω , we get  

( ) ( )
23

1 0 1 1 22
1

1i , 1,   as   , .
2 2 3

j j

j j

E
n w x a a

n

µ
η

µ=

  Ω → ± → →∞ 
+  

∑ 
             (94) 

The growth rate (94) is the same as the growth rate of the Cartesian plume obtained in Eltayeb and Loper [16] 
and the values of the displacement 1η  shows that the phase of the interface at 0x x= −  is either out-of-phase 
(varicose mode) with 1η = −  or in-phase (sinuous mode) with 1η = . It thus follows that the upper sign in (88) 
refers to a modification of the varicose mode, which we shall refer to as the modified varicose mode (MV) while 
the other will be denoted by the modified sinuous (MS) mode. The growth rate will be denoted by ( )kΩ , where 

,k MV MS=  for the modified varicose and sinuous modes, respectively. 

4.2. Problem 1 
The coefficients of 1R  in the perturbation Equations (44)-(47), (56)-(58) give the set  
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1 ,uu M∆ =                                       (95) 

1 1 ,Vv p M∆ − =                                     (96) 
2

1 1 1 ,ww T n p M∆ + + =                                  (97) 

1 1 ,TT w M∆ − =                                     (98) 

1 1 ,pp T M∆ − =                                     (99) 

( )2 2
1 1 1 1 1 0 ,n u m D w p uς= − + −Ω                           (100) 

( )2
1 0 0i ,  m w n v Dwς∆ = − −                               (101) 

in which 

( ) ( )
( )
( )

1 1 0 1 0

1 0 0 0

1 0 0

i , i ,

i i , 2i ,

i i . 

u v

w p

T

M Dp nw u M nw v

M nw w nu Dw M nu Dw

M nw T n u DTσ σ

= + Ω − = Ω −

= Ω − − =

= Ω − −

                    (102) 

The associated boundary conditions are  

( )1 1 1 1 1 1 20  at  , ,  v w T D p w x a x a= = = + = = = −                   (103) 

( )1 1 1 1 1 1 1 1 1 0, , , , , , ,   are continuous across  ,  v w T p Dv DT Dw D p w x x+ = ±           (104) 

( ) ( )2 1 0 2 1 1 0i , inu x nu xηΩ = − Ω = − − .                        (105) 

The equations and boundary conditions (95)-(105) are solved in the Appendix A. They lead to the growth rate 
2Ω  given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 21 22 23 24

i ˆ ,k k k k k k kf g
nη

 Ω = − Ω +Ω +Ω +Ω + 
 

                    (106) 

where ( )kfη  is given by  

( )
( )( )2

1

1 ,
1

k

k
fη

η
=

+
                                 (107) 

and k  takes the symbols MV  or MS . The expressions ( )
21
kΩ , ( )

22
kΩ , ( )

23
kΩ , ( )

24
kΩ  and ( )ˆ kg  are given by  

( ) ( ) ( ) ( ) ( ) ( )
1

2

21 1 0 0
1i d ,

a
k k k k k k

a

nu G w H x
n−

 Ω = − Ω − 
 ∫                      (108) 

( )
( )

( ) ( ){ } ( )
1

2

3
1

22 0 0
1

i
d ,

ak
k k k k

j j j
j a

C w T H x
n

σµ
= −

Ω
Ω = +∑ ∫                      (109) 

( ) ( ) ( ) ( ){ } ( ) ( )( )
1

2

2
23 0 0 d ,

a
k k k k k k

a

u n wG H Dw ww H x
−

Ω = − + +∫               (110) 

( ) ( ) ( ) ( ){ } ( ){ } ( )
1

2

3
2

24 0 0 0
1

2 1 d ,
a

k k k k k
j j j j j

j a

C H w w T Dw DT u xσµ µ σµ
= −

 Ω = − − + + + − ∑ ∫         (111) 

( ) ( ) ( ) ( ) ( )2 1ˆ ,k k kg g a g a= − +                              (112) 

in which ( )kG , ( )kH , ( )k
jH , jC , ( ) ( )2

kg a−  and ( ) ( )1
kg a  are given in the Appendix.  

It is noteworthy that because of the properties of the cubic Equation (73) for µ , the zeroth order variables are 
all real. For wavenumbers for which the zeroth order solution is neutrally stable, 1Ω  is purely imaginary and 
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the non-homogeneity of the equations of problem 1 are all imaginary. It then follows that the variables with 
subscript 1 are all imaginary. When we employ this result into the expression for 2Ω , we find that 2Ω  is real, 
and consequently it will determine the stability of the plume outside the unstable regions of the zeroth order.  

5. Discussions of the Results 
The growth rates given by the expressions (88) and (106) were computed in the parameter space 
( )0 2, , , ,x a m nσ . For a given set of the parameters 0 2, ,x a σ , the growth rate is maximized over m  and n . 

The maximum value, cΩ , of ( )Re Ω  and the corresponding wavenumbers ,c cm n  and the vertical wave  
speed ( )( )Imc c cU n= Ω  define the preferred mode of instability for that set of parameters.  

First we consider Equation (88). This growth rate at this level of approximation is independent of σ . As we 
mentioned previously, the stability of the plume at the leading order of approximation depends on pD . In 
Figure 4 we show the isolines of pD  in the wavenumber plane for some representative values of 0x  and 2a . 
It is found that pD  is negative for small values of 0x  and 2 0a x−  indicating that instability at zeroth order is 
possible only if the plume is very thin and is close to the wall. Indeed, the maximisation of the growth rate (88) 
when 0pD <  shows that instability is possible only for values of 2 0a x−  not exceeding 0.25 and the unstable 
modes are two-dimensional and propagate vertically upwards (Figure 5). In the calculations, the discrimnant 
and the growth rate are scaled up by 210  as adopted by previous authors, in order to facilitate comparison with 
the results in the absence of boundaries. 

Computations of the growth rate (106) showed that the plume is always unstable at a growth rate of ( )O R . 
The maximum growth rate at any particular point in the parameter space ( )0 2, ,x a σ  can belong to the MS or 
the MV mode depending in a complicated way on the relative magnitudes of the parameters. As any one para-
meter is varied keeping the other two fixed, the preferred mode of one type can change to the other mode when 
the parameter reaches a certain value. Moreover, variations of a parameter can also lead to a mode of particular 
type (i.e., MS or MV) changing from two-dimensional to three-dimensional, or the reverse, when the parameter 
increases through a certain value. This is due to the fact that the expression (106) can possess more than one lo-
cal maximum and as the parameter is increased, the larger of the two maxima decreases and the smaller increas-
es until a value is reached when the smaller one overtakes the originally larger one and becomes preferred. 
Figure 6 illustrates such behaviour for a sample of the parameters. 

In Figure 7 we illustrate the dependence of the preferred mode of instability on the Prandtl number, σ , in a 
way that allows comparison with the limiting case of no sidewalls. For small values of the Prandtl number the 
MS mode is preferred while the MV mode is preferred for large Prandtl numbers. This agrees well with the case 
of no sidewalls [16]. The value, 0σ  of the Prandtl number at which the mode changes from MS to MV depends 
on the distance between the plume and the nearest wall. As the sidewall gets closer, 0σ  increases indicating 
that the presence of the boundaries tends to suppress the MV mode. The presence of the boundaries also tends to 
stabilise the plume as the growth rate is reduced in magnitude with the decrease in d . It is noteworthy that 
whatever the values of d  or σ , the MS mode is three-dimensional and the MV is two-dimensional when the 
plume is equidistant from the sidewalls. 

Figure 8 illustrates the dependence of the preferred mode parameters on the thickness of the plume when it 
takes different positions relative to the sidewalls. We can observe that 1) when the plume is close to a sidewall, 
the preferred mode is two-dimensional (with 0cm = ), 2) for moderate to large values of 2a , the preferred 
mode is of the MS type when the plume is thin but changes to MV and then back to MS as it approaches the 
wall, 3) in all cases the growth rate increases from its value for small thickness to a maximum before it decreas-
es to a small value as the plume increases and approaches the sidewall. We should point out here that when the 
plume is very close to a sidewall, the region enclosed between the plume and wall may be so thin that diffusion 
may not be negligible. The inclusion of diffusion in this particular case was examined in detail both on the mod-
ification to the profile (27) of the basic concentration and on the equation (26) of the perturbations. While the 
basic state variables ( ) ( ),w x T x  are almost identical, the stability is slightly influenced by the presence of 
diffusion. 

In contrast with the unbounded plume where instability is ( )O R  everywhere in the parameter space, the in-
stability of the bounded Cartesian plume has instabilities with growth rates of ( )1O  and ( )O R . The region in 
the parameter space where there is instability with the larger growth rate (i.e., ( )1O ), is small and depends on 
the distance between the walls. In Figure 9, the regime diagram for the two instabilities is shown when 10d = .  
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Figure 4. The contours of the discriminant, pD , in the ( ),m n  plane when 0 0.2, 10x d= =  for two 

different values of 2a : (a) 2 0.3a =  and (b) 2 2a = . pD  here is scaled by 210  for ease of presentation. 
Note that a region of negative values of the discriminant appears when the plume is close to the wall as in 
(a), which indicates instability of the plume at zero order.                                        

 

 

Figure 5. The preferred mode of instability with growth rate of order ( )1O  as a function of the distance 

from the sidewall, 2 0a x− , for four different values of 0x ; ( )i  = 0.1, ( )ii  = 0.2, ( )iii  = 0.3 and ( )iv  
= 0.4, when 10d = . Note the dependence of the magnitude of the growth rate on the thickness of the 
plume and its distance from the wall.                                                                 

 
This instability with growth rate ( )1O  occurs only if the plume is relatively thin (of thickness not more than 
about half the salt-finger length scale) and its distance from the sidewall does not exceed about 0.25. We also 
note that when the plume is very close to the wall the growth rate becomes smaller. 

The preferred mode is associated with plume interfaces that are determined by (39) and (41). The amplitude at  
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Figure 6. Contours of the growth rate of the modes MV, as in (a) and (c), and MS, as in (b) and (d), in 
situations when the preferred mode changes from one type to another. Here 0 2x = , 10σ = , and 10d = , 
and 2 3a =  for (a), (b) and 2 5a =  for (c), (d). (a), (c) refer to the MV mode and (b) , (d) refer to the MS 
mode. Note that the MS mode is preferred for 2 3a =  and the MV mode is preferred when 2 5a = .        

 

 
Figure 7. Illustration of the influence of the sidewalls on the stability of the Cartesian plume. The preferred 
mode as a function of Prandtl number, σ , when 0 2x =  and the plume is situated halfway between the 
sidewalls (i.e., 1 2a a= ). The curves i and ii refer to two different distances between the sidewalls: i) 

10d = , and ii) 20d = . The solid curve refers to the MS mode while the broken one refers to the MV 
mode. Note the decrease in the growth rate as the distance d  between the sidewalls is reduced. The 
presence of the boundaries also decreases the range of σ  for which the MS mode is preferred.            
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Figure 8. The preferred mode parameters as a function of 0x  for 7σ =  and 10d =  for three different 

values of 2a : (i) 1, (ii) 3, (iii) 5. The solid curve refers to the MS mode while the broken one refers to the 

MV mode. The modes are two-dimensional except in the case of thin plumes when 2 3a = . Note the 
complicated behaviour of the preferred mode as the thickness of the plume changes at different positions 
relative to the boundaries.                                                                    

 

 
Figure 9. The regime diagram of the bounded Cartesian plume in the plane 0 2 0,x a x−  for fixed 10d = . 

In (a), the regions labelled 1U  and 2U  refer to instabilities with growth rate ( )1O  and ( )O R , 

respectively. The area O  is outside the domain since cannot exceeds. Subfigure (b) shows a magnification 
of thearea for 2 0 0.25a x− ≤  and 0 0.6x ≤  of figure (a).                     

 
0x x=  is fixed at the value 1 while the amplitude at the interface at 0x x=  is determined by 1η , which is  
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Figure 10. A sample of the profiles of the interfaces of the unstable mode for two 
values of the pair ( )0 2,x a  when 10d = . The profiles are magnified for clarity by 

the same factor ( )0.1ε = . (a) 0 0.1x = , 2 0.2a = , 2.08,  0c cn m= =  and (b) 

0 0.5x = , 2 0.6a = , 0.63,   0c cn m= = . Note that the interface pro- files are very 
close at regular intervals.                                                   

 
determined by the parameters of the preferred mode for any prescribed values of 0 2, , ,x a dσ . In Figure 10 we 
give samples of the profiles of the interfaces relating to some preferred modes. It is noteworthy that the interfac- 
es are very close at regular points across the length of the plume and this may indicate a tendency to break into 
blobs. 

6. Conclusions 
The dynamics of a plume of buoyant fluid, in the form of a channel of finite width, rising in a less buoyant fluid 
contained between two parallel sidewalls, a distance d  apart, has been investigated. It is found that: 

1) The plume is associated with a vertical flow that is balanced by a down flow on either side of the plume, 
and the flow inside the plume can develop a reverse (downward) flow around the center of the plume if the 
plume is wide enough. 

2) The flow and concomitant temperature transport material upwards and heat downwards in such a way that 
the net upward buoyancy flux is positive, and possesses two local maxima and a minimum. 

3) The instability of the interfaces has the following main properties:  
a) The instability can take one of two modes, which are modifications of the sinuous and varicose modes of 

the plume in the absence of sidewalls but here modified by the lack of symmetry due to the different positions of 
the plume relative to the sidewalls, 

b) If the plume is close to a sidewall, the instability has a growth rate ( )1O  on the convective time scale, 
provided 0x  does not exceed a certain value, 

c) For plumes away from the sidewalls, the instability has a growth rate of ( )O R , 
d) The presence of the boundaries tend to stabilise the plume when it is equidistant from the sidewalls and the 

growth rate of the unstable mode is reduced as the sidewalls approach the plume, 
e) When the Prandtl number is small, the modified sinuous (MS) mode is preferred while the modified vari-

cose (MV) mode is preferred for large values of the Prandtl number, 
f) The preferred MS mode is generally 3-dimensional while the MV mode is generally 2-diemnsional, 
g) The profiles of the unstable plume indicate that the instability might lead to the break-up of the plume into 
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blobs that rise to the top. 
4) The relatively large growth rates of the instability when the plume is close to a sidewall may be due to heat 

flux emitted by the boundary. 
The role of diffusion has been neglected in the present study because it is generally very small. However, it 

can be expected that it maybe potent when the plume is close to a sidewall. This has been analysed (but not in-
cluded here) and found to provide small correction. Diffusion may also be potent in thin boundary layers at the 
interfaces of the plume at 0x x= ± , where the concentration profile experiences a jump. This is expected to be 
analysed in a future study.  

An attempt was made to compare the present results with experimental observations but we have not been 
able to identify a detailed experimental study on the influence of the boundaries on the plumes rising from 
mushy layers. However, the results obtained here agree with the general observations of Hell a well et al. [14]. 
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Appendix A: Derivation of the Expression for the Growth  
Rate of the Cartesian Plume 
Here we derive the solvability condition for the first order system (i.e., problem 1) in order to obtain an expres-
sion for the growth rate 2Ω . Elimination of all variables 1w  and 1T  from Equations (97)-(99) in favor of 1p  
gives 

3 2
1 1 1 ,totp p n p M∆ + ∆ + =                             (A.1) 

in which totM  is defined by 

( )2 1 .tot p T wM M M M= ∆ + + ∆ +                          (A.2) 

Next, we consider a function ( )G x  satisfying the homogeneous form of (95) 

00, ,G x x∆ = ≠ ±                                 (A.3) 

and satisfies the following conditions 

( ) ( )1 20, 0,G a G a= − =                              (A.4) 

0is continuous across ,G x x= ±                          (A.5) 

( ) ( ) ( ) ( )0 0 1 0 0, 1.DG x DG x DG x DG xη+ − + −− − − = − − = −                 (A.6) 

It then follows that 

( ) ( )

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

1 2 2 0

1 2 1 0 0 0

2 1 0 1

sinh ;                                      
1 sinh sinh ;  ,

sinh ;                                          

k
b

k k k
b

k
b

F b x a a x x

G x F b x a b x x x x x
b

F b x a x x a

η

− + − ≤ < −  
  = − + − + − ≤ ≤     

 − < ≤  

         (A.7) 

where ( )
1

k
bF  and ( )

2
k
bF  are given by  

( )

( )
( ) ( )( ) ( )( ){ }1 1 1 0 1 0

1 sinh sinh ,
sinh

k k
bF b a x b a x

bd
η−

= + + −              (A.8) 

( )

( )
( ) ( )( ) ( )( ){ }2 1 2 0 2 0

1 sinh sinh ,
sinh

k k
bF b a x b a x

bd
η−

= − + +              (A.9) 

and k  refers to the modes MS and MV. We now multiply Equation (95) by ( ) ( )kG x , integrate by parts from 
2x a= −  to 1x a= , and use the conditions for 1u , G  and 1p  at the interfaces and the boundaries to obtain 

( ) ( ) ( ) ( ) ( )
1

2

2 1 0i ,
a

k k k k k

a

nf p DG dx Mη
−

Ω = +∫                      (A.10) 

where ( )kfη  and ( )
0

kM  are defined by  

( )
( )( )

( ) ( ) ( )( ) ( ) ( )
1

2

0 1 02

1

1 , i i d .
1

a
k k k k k k

k a

f M nf nw u G xη η
η −

= = Ω −
+

∫             (A.11) 

Now we define a function ( ) ( )kH x  by  
( ) ( ) ( ) ( ) ,k kH x DG x=                           (A.12) 

and introduce the function 
( ) ( ) ( ) ( ) ( ) ( )

3

1

k k k
j j

j
S x H x C H x

=

= +∑                       (A.13) 

and note that  
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( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 2 2 0

1 2 1 0 0 0

2 1 0 1

cosh ;                                   

cosh cosh ; ,

cosh ;                                      

k
b

k k k
b

k
b

F b x a a x x

H x F b x a b x x x x x

F b x a x x a

η

− + − ≤ < −    = − + − + − ≤ ≤     


− < ≤   

            (A.14) 

and 

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 2 2 0

1 2 1 0 0 0

2 1 0 1

cosh ;                                    

cosh cosh ; ,
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k
j j

k k k
j j j j

k
j j

F x a a x x

H x F x a x x x x x

F x a x x a

λ

λ η λ

λ

  − + − ≤ < −     = − + − + − ≤ ≤    


 − < ≤  

           (A.15) 

2

2 ,
3 2j

j

nC
n µ
−

=
+

                              (A.16) 

where ( )
1

k
bF  and ( )

2
k
bF  are defined by (A.8) and (A.9), while ( )

1
k
jF  and ( )

2
k
jF  are similarly defined by  

( )

( )
( ) ( )( ) ( )( ){ }1 1 1 0 1 0

1 sinh sinh ,
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k k
j j j

j

F a x a x
d

η λ λ
λ
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( ) ( )( ) ( )( ){ }2 1 2 0 2 0

1 sinh sinh .
sinh

k k
j j j

j

F a x a x
d

η λ λ
λ

−
= − + +             (A.18) 

We multiply equation (A.1) by ( ) ( )kS x  and integrate from 2x a= −  to 1x a= , noting that ( ) ( )kH x  and  
( ) ( )k
jH x  satisfy the equations  

( ) ( ) ( )0, ,k k k
j j jH H Hµ∆ = ∆ =                           (A.19) 

and have the proprieties 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 20, 0,k k k k

j jDH a DH a DH a DH a= − = = − =             (A.20) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 01, 1,k k k k
j jH x H x H x H x+ − + −− = − − = −                (A.21) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 1 0 0 1, ,k k k k k k

j jH x H x H x H xη η+ − + −− − − = − − − − = −            (A.22) 

( ) ( )
0and are continuous across ,k k

jDH DH x x= ±                (A.23) 
to obtain the relation 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1

2 2 2

3
2 2
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ˆd d 1 d ,
a a a
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ja a a

n H p x H M M x C M M M H x gµ µ
=− − −

= + + + + + +∑∫ ∫ ∫   (A.24) 

where ( )ˆ kg  is defined in (112) and ( ) ( )1
kg a  and ( ) ( )2

kg a−  are given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
3

1 2 1 1 1 1
1
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j j j j

j
g a C F DT a p aµ µ
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3

2 1 1 2 1 2
1

.k k k k
j j j j

j
g a C F DT a p aµ µ

=

− = − − + −∑                (A.26) 

We now eliminate the integral involving 1p  between (A.10) and (A.24) to obtain an expression for ( )
2
kΩ  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( )

1 1

2 2

3
2

2
1

0

i d 1 d

i ˆ ,

a a
k k k k k k k k k

p w j j j p w j T
ja a

k k k

f H M M x C H M M M x
n

f g M
n

η

η

µ µ
=− −

 
Ω = + + + + + 

  

+ +

∑∫ ∫
    (A.27) 

which is the expression for the growth rate in terms of the zeroth order variables and the basic state only.  
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