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Abstract 
Logistic regression models for binary response problems are present in a wide variety of industri-
al, biological, social and medical experiments; therefore, optimum designs are a valuable tool for 
experimenters, leading to estimators of parameters with minimum variance. Our interest in this 
contribution is to provide explicit formulae for the D-optimal designs as a function of the unknown 
parameters for the logistic model ( ) ( )( )( )log , 1 ,x x x qη θ η θ α β δ− = + +  where q  is an indicator 

variable. We have considered an experiment based on the dose-response to a fly insecticide in 
which males and females respond in different ways, proposed in Atkinson et al. (1995) [1]. To find 
the D-optimal designs, this problem has been reduced to a canonical form. 
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1. Introduction 
There are many natural phenomena or external factors to which males and females respond differently; this 
feature happens in most live species and has received several book length treatments. The interest of the present 
work focuses on a particular insect specie: flies. The experiment consists of supplying a dose of insecticide on 
and analysing its effectiveness. The characterization of this process is the impossibility of identifying the gender 
of the flies before and during the treatment application. The behaviour is studied on the total population and, due 
to the experimental differences on the response, it is considered that sex is distributed according to binomial  

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.55078
http://dx.doi.org/10.4236/am.2014.55078
http://www.scirp.org
mailto:Irene.GarciaCamacha@uclm.es
mailto:Raul.MMartin@uclm.es
http://creativecommons.org/licenses/by/4.0/


I. G. C. Gutiérrez, R. M. Martín 
 

 
825 

with success probability 
1
2

. The theory of optimal design is used to calculate the optimal dose levels with a  

determinate probability of death. 
To model the experiment, the logistic model for binary data was chosen. Denoting η  as the probability of 

death, x  as the logarithm of dose (in micrograms per millilitre) and y  as the number of deaths, it must be: 

( ) ( ) * *e| 1, with , , ,
1 e

x q

x qy x Bi x a x b
α β δ

α β δη η θ
+ +

+ += ≤ ≤
+


 

where q  is a factor with values 0 for males and 1 for females and being ( ), ,θ α β δ=  the unknown parameters  
vector. This model can be linearized by the logarithm of the probability ratio: ( )( )log 1 x qη η α β δ µ− = + + =   

Atkinson et al. (1995) [1]. A wide range of dichotomous response-mechanisms can be expressed in terms of the 
previous model. 

2. Optimum Design 
The main objective of optimal experimental design is to select where and how many trials are necessary to be 
collected in order to achieve an optimal estimation of the model parameters. The observations will be taken into  
experimental region, χ , which will be in most cases a closed interval of the real line, * *,a b   . On χ  it is  

defined an approximated design as  

1 2

1 2

,n

n

x x x
p p p

ξ
 

=  
 





 

where ip  denotes a probability measure with support on 1, , nx x . The number of support points is 
guaranteed to be finite, or at least it is possible to find one finite equivalent, as consequence of Caratheodory’s 
theorem. Due to the continuity of probability measure chosen, it may occur not to obtain an exact number of 
trials for each dose level. However, the theory assures us that when the number of observations is sizeable, the 
integer approximation of the values is enough good. 

To proceed with this type of problems, a certain functional from the called Fisher information matrix is 
required to achieve its maximum value. According to the considered model, it is built the information matrix to 
a single observation x  on an insect of known sex as  

( ) ( ), , , ,i j
i j

M x x µ µθ ω θ
θ θ
∂ ∂

=
∂ ∂

 

being ( ) ( ) ( ), , 1x xω θ λ θ η η= = −  the variance used in fitting a generalized model by weighted least squares  
(McCullagh and Nelder, 1989 [2]). Nevertheless, the matrix just defined does not take into account the 
differences on the response previously mentioned. In spite of the experimental limitations about the lack of sex 
knowledge, it is possible to modify the above matrix to consider this uncertainly as it is shown: 

( ) ( ) ( )

2

2 2

1 1 0
, 0.5 , 0.5 , 0 .

1 1 0 0 0
M F

x x x
M x x x x x x x x

x
θ ω θ ω θ

   
   = +   

     

 

In this work, the function of the information matrix chosen is D-optimality criteria. This criterion minimizes  
the volume of the confidence ellipsoid of the parameters and it is given by ( ) ( ), ,D M Mφ ξ θ ξ θ=    or 

equivalently ( )log ,M ξ θ  which has the advantage of being a concave function. This optimality criterion has  

received much attention in the literature because of its direct interpretation (Silvey, 1980 [3]). 

3. Canonical Forms 
The use of canonical forms in the present paper greatly simplifies the process to obtain the optimal one. If the 
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problem is transformed through a suitable choice from χ  to Z , the dependence of the optimal design on the 
true value of θ  for given design space χ  will be replaced, in the transformed problem for arbitrary Z , 
which will vary with θ . Then, if we are able to solve the transformed problem, we have implicitly solved the 
original design problem (Ford et al. (1992) [4]). The invariance of the design criteria chosen by the trans- 
formation is an indispensable requirement for performing this canonical version of the problem. 

First, we consider the chosen model as a distribution function which is denoted by ( ) ( ), x F x qη θ α β δ= + + .  
Let’s suppose the insect sex is known. The following argument is valid for both males and females, so we will 
denote with the factor q an individual regardless of gender. Applying the change of variable z xα β= + , the 
original problem can be reformulated as  

( ) e, ,
1 e

z q

z qz
δ

δη θ
+

+
′ =

+
 

with * *a z bα β α β+ ≤ ≤ +  or * *a z bα β α β+ ≥ ≥ +  depending on β ’s sign. The information matrix can be  
built using the chain's rule for n  dose levels as below: 

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )

1

1 1

1

1
1 ,

tn
i i i

x
i i i

n n t
i i i i i i i

i i

p H x H x
M

F z q F z q

p z q x x q p v x v x
q

ξ
δ δ

ω δ

=

= =

=
+ − +

 
 = + = 
 
 

∑

∑ ∑
 

being  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )
, ,

t
i i i i i i

i
i i i

F z q z q F z q z q F z q z q
H x

z q z q z q
δ δ δ δ δ δ
δ α δ β δ δ

 ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + =  ∂ + ∂ ∂ + ∂ ∂ + ∂  
 

the partial-derivative vector from the chain's rule, f  the probability density function and  
( ) ( ) ( )1 t

i i iv x z q x qω δ= + . Note we have defined  

( ) ( )
( ) ( )( )

2

1
i

i
i i

f z q
z q

F z q F z q
δ

ω δ
δ δ

+
+ =

+ − +
 

abusing notation. The previous transformation can be expressed in matrix form as 

1 1 0 0 1 1
0 ,

0 0 1
z x B x
q q q

α β
      
      = =      
      
      

 

and defining, 
( ) ( )

( )
( ) ( )( )

( )
( ) ( )( )

1 0 0 1
0

1 0 0 1

1
,

1

i

i i

i

i i

g z Bv x

f z q
x

F z q F z q q

f z q
z

F z q F z q q

δ
α β

δ δ

δ

δ δ

=

  
+   =   

+ − +   
  
 

+  =  
+ − +  

 

 

the partial-derivative vector ( )v x  can be expressed in terms of z  through ( ) ( )1v x B g z−=  since B  is in-  
vertible for being 0β ≠ . Let us write the information matrix using the formula for change of basis as  

( ) ( )1
x zM B M Bξ ξ−=  (Fedorov, 1972 [5]). Since the D-optimal criterion does not vary by non-singular linear  
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transformations of the design space, the maximization problem of ( )xM ξ  determinant reduces to maximize 
( )zM ξ . Hereafter, it will only work with the information matrix depending on z  and then it will carry the 

inverse change out for solving the original problem without loss of concept. Note the parameter dependence has 
been considerably reduced: 

( ) ( ) ( ) ( ) ( )
1

1
1 .

n n t
z i i i i i i i

i i i
M p z q z z q p g z g z

q
ξ ω δ

= =

 
 = + = 
 
 

∑ ∑  

By adding uncertainty about sex, the information matrix to the design 1 2

1 2

n

n

z z z
p p p

ξ
 

=  
 





 with  

1 1n
ii p

=
=∑  for n  dose levels results  

( ) ( ) ( ) ( ) ( )
1

0.5
n t t

z i i i i iF M
i

M p g z g z g z h zξ
=

 = + ∑  

being,  

( )
( )
( )
( )

i

i i iF

i

z

g z z z

z

ω δ

ω δ

ω δ

 +
 
 = + 
  + 

 and ( )
( )
( ) .

0

i

i i iM

z

g z z z

ω

ω

 
 
 =  
  
 

 

The above expression can be reformulated into a more general formula  

( ) ( ) ( )
2

1
0.5 ,

n t
z i i i

i
M p g z g zξ

=

= ∑                              (1) 

where the iz ’s are repeated to consider the information by each possibility about sex since their partial 
derivatives are different. The novelty of this paper is described in the previous lines. The simplified formulation 
of the information matrix will allow us to achieve analytical expressions for the optimal weights for several 
cases in the next section. 

4. Results 
The aim of our study is to select where and how many observations must be collected in order to reduce the 
volume of confidence ellipsoid of the parameters as possible. For this purpose, it is necessary to obtain an 
expression of the determinant of the information matrix which will be maximized later. To calculate the 
determinant to the information matrix written as (1), it is possible to apply the following formula to its explicit 
expression given by Ardanuy et al. (1999) [6]: 

( ) ( ) ( ) ( ){ }1
1

22

1
,

m j
m

n

z i i i i i k i
i i i

M p g z g z p p g zξ
= < <

= = ⋅∑ ∑


                  (2) 

being m  the number of parameters and ji  the elements of 2nS , the symmetrical group of 2n -order 
permutations. We focus the study to calculate optimal designs to a small size of observations, two and three 
design points. The reason for this choice is that the upper and lower bound for the number of point suffers a 
slight modification due to each trial has two reading. Then the system will be non-singular if there are at least  

1
2

m +
 point since m  is odd and the Caratheodory upper's bound will be halved with 

( )1
4

m m +
. The only  

possibilities are the considered in the present work.  

4.1. Two Points Design 
Using the formula (2), it is possible to obtain the following expression: 
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )
( )

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
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1 1 2

2
1 1 1 1 2 2

1 2

2

1 1 2

2
1 1 1 1 2 2

1

2

1 2 2

2
1 1 2 2 2 2

1 2

2

1 2 2

2
1 1 2 2 2 2

2

0.5 1

0

1

0 0

1

0

1

0 0

z

z z z

M p p z z z z z z

z z

z z z

p p z z z z z z

z

z z z

p p z z z z z z

z z

z z z

p p z z z z z z

z

ω δ ω ω δ

ξ ω δ ω ω δ

ω δ ω δ

ω δ ω ω

ω δ ω ω

ω δ

ω δ ω δ ω

ω δ ω δ ω

ω δ ω δ

ω ω δ ω

ω ω δ ω

ω δ

 + +
= − + +


+ +

+

+ − +

+

+ +

+ − + +

+ +

+ 
+ − +

+


( )( ) ( ) ( )

( ) ( )

22

22

0.5 1 1

0.5 1 1 ,

p p A B p p C D

p p E p p F






 = − + + − + 
 = − + − 

                (3)

 

where E  and F  are the squares of the determinants which result from combining the column matrices  
( ) ( ),i iF F

g z g z  with 1,2i =  and operating conveniently. An analytical expression to the optimal weights can  

be obtained calculating the critical points for the last expression: 

( )
( ) ( ) ( )

2 2
2 * 23 2 2 0 .

3
zM F E F EF EF E p E F p F p
p F E
ξ∂ − ± − + = − + − + = ⇒ = ∂ −

 

To compute the optimal points 1 2,z z  will be enough to replace *p  in the determinant expression and to use 
a maximization routine. Note the parameter dependence still persists due to non-linearity of the model. To avoid  
such dependence, Chernoff (1953) [7] suggests providing a prior guess for the parameters ( )0 0 0 0, ,θ α β δ= . In  
that sense, the achieved designs in the present work will be called locally D -optimal. The parameter estimates  
were obtained in Atkinson et al. (1995) [1]. The last step will be to calculate the value of the original variables  

through inverse change 
*

* 0

0

i
i

z
x

α
β
−

= . The obtained result is shown in Table 1.  

4.2. Three Points Design 
It is known from other previous works that it can consider a symmetrical design for the present case. Let's us  

assume such design 1 2 3

1 2
z z z
p p p

ξ
 

=  − 
. Applying the determinant formula and proceeding analogously as  

(3), it is possible to achieve a tractable expression for the determinant and an analytical formula for the optimal 
weights in a way: 

( ) 2
2 * 33 2 0 ,

3
zM B B ACAp Bp C p
p A
ξ∂ − ± − = + + = ⇒ = ∂
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being A, B and C the squares of the determinants which result from applying the formula to its fast calculation 
grouped conveniently. Taking into account the previous considerations, the results are shown in Table 2. 

An advantage of working with approximate designs is that the optimality of a design can be easily checked. 
Kiefer and Wolffowitz (1960) [8] provided a main result for optimal experimental design theory: the general 
equivalence theorem. The central point of this theorem establishes a necessary condition to check whether a 
proposed design is D -optimal or not. It consists of verifying if the standardized variance of the prediction, 
which is known as sensitivity function and is defined as  

( ) ( ) ( ) ( )1, ,td x f x M f xξ ξ−=  

is equal to number of parameters in the support points of the design. However, for the present case it is not 
possible to apply directly the above formula due to lack of knowledge about gender. It requires to use an 
extension of the equivalence theorem motivated by Chaloner and Larntz (1989) [9]:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* 1 1, 0.5 0.5 ( ) .t t
M M M F F Fd x w x f x M f x w x f x M f x mξ ξ ξ− −= + ≤  

The results shown in Figure 1 allows us to validate the optimal designs proposed in this work. As we can 
observe from the figures, the points where the sensitivity function intersects the number-parameter line represent 
the optimal points obtained with the procedure described in this paper. 

5. Conclusions 
In this paper, it is proposed the use of canonical forms to solve a problem non-standard of optimal experimental 
designs laid out by Atkinson et al. (1995) [1] upon calculating the optimum dose of a fly insecticide. The main 
difficulty arises by adding uncertainty about gender since they differ in the response and the experiment only 
senses applied on the whole population. The witty transformation of the problem to a canonical version reduces 
the parameter dependence leading to analytical expression of the optimal weights. From these, we are able to 
compute D-optimal designs for several cases. In particular, it is constructed optimal designs for two and three 
dose levels. 

Regarding future work, we will try to take advantage of the transformation geometry, ( )G Z , for identifying  
 
               Table 1. Locally D-optimal designs for two points design.                  

0 1.804α = , 0 1.1757β = , 0 1γ = −    

*
ix  1.757−  0.018−  

*
ip  0.5 0.5 

 
               Table 2. Locally D-optimal designs for three points design.                 

0 1.804α = , 0 1.1757β =      

0 2.599γ = −  *
ix  1.347−  0.287−  0.772  

 *
ip  0.375  0.250  0.375  

0 3γ = −  *
ix  1.378−  0.173−  1.032  

 *
ip  0.339  0.322  0.339  

0 5γ = −  *
ix  1.349−  0.396  2.141  

 *
ip  0.316  0.368  0.316  
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(a)                                                          (b) 

  
(c)                                                          (d) 

Figure 1. Testing locally D-optimal designs ( 0 1.804α = , 0 1.1757β = ). (a) 2 points: 0 1γ = − ; (b) 3 points: 0 2.599γ = − ; (c) 3 

points: 0 3γ = − ; (d) 3 points: 0 5γ = − .                                                                        

 
the support point. It is known that these are the points of contact between G  and the smallest ellipsoid centred 
on the origin containing G  (Sibson, 1972 [10], Silvey and Tittetington, 1973 [11], Silvey, 1980 [3], and 
Torsney and Musrati, 1993 [12]). However, this procedure must be adapted non-trivially to add two readings by 
observation with their corresponding probabilities.  
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