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Abstract 
 
In recent years, several matrix-valued subdivisions have been proposed for triangular meshes. The ma-
trix-valued subdivisions can simulate and extend the traditional scalar-valued subdivision, such as loop and 

3  subdivision. In this paper, we study how to construct the matrix-valued subdivision wavelets, and pro-
pose the novel biorthogonal wavelet based on matrix-valued subdivisions on multiresolution triangular 
meshes. The new wavelets transform not only inherits the advantages of subdivision, but also offers more 
resolutions of complex models. Based on the matrix-valued wavelets proposed, we further optimize the 
wavelets transform for interactive modeling and visualization applications, and develop the efficient interpo-
latory loop subdivision wavelets transform. The transform simplifies the computation, and reduces the mem-
ory usage of matrix-valued wavelets transform. Our experiments showed that the novel wavelets transform is 
sufficiently stable, and performs well for noise reduction and fitting quality especially for multiresolution 
semi-regular triangular meshes. 
 
Keywords: Lifting Scheme, Subdivision Wavelets, Matrix-Valued Subdivision 

1. Introduction 

The development of graphics applications and virtual re- 
ality demand complex models often with millions of ver-
tices, which need large resources to process and also 
transmission through the networks. Since the subdivision 
based wavelets can efficiently represent highly detailed 
geometric models in resolutions, they are widely used in 
geometry compression and multiresolution editing. In ad- 
dition, subdivision wavelets can be further customized to 
possess some desired properties, such as stability, ortho-
gonalization and vanishing moment, using the lifting 
scheme. Since the lifting steps can be converted into lo-
cal in-place operations in wavelet transform, if they are 
locally conducted, the reconstruction and decomposition 
of the resulting wavelets are not necessary to allocate 
auxiliary memory or solve a global system of linear equa-
tions. The fast wavelet transform based on the lifting 
scheme is usually simple, and can be performed in linear 
time.  

Subdivision wavelets can be constructed based on sub- 
division schemes. Since the wavelets based on approxi- 
mate subdivision have good shape preserve ability, effi-
cient subdivision wavelets are constructed based on the 

approximate subdivision. In some applications, such as 
reversed engineering of scattered data and study of point 
clouds, where control points are data points, surface in-
terpolation is an important requirement. In this paper, we 
propose an efficient wavelets construction for the matrix- 
valued interpolatory loop subdivision, for triangular me- 
shes based on the lifting scheme. The resulting biortho-
gonal wavelet inherits the attractive advantage of having 
the most resolution levels of interpolatory loop refine-
ment. As the analysis and synthesis transforms of the re- 
sulting wavelet are composed of only local lifting opera-
tions, they can be performed very efficiently in linear 
time using fully in-place calculations. In the rest of the 
paper, we first briefly review other work most related to 
our approach in Section 2. We introduce the background 
of matrix-valued subdivision, in particular the matrix- 
valued interpolatory loop subdivision in Section 3. We 
describe the lifted wavelets based on the matrix-valued 
subdivision in Section 4, and the algorithm to optimize 
the matrix-valued wavelets transform for multiresolution 
modeling/rendering applications in Section 5. The expe-
rimental results for the interpolatory wavelet analysis and 
their performance evaluation are given in Section 6. Fi-
nally, the summary of our work is given in Section 7. 
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2. Related Work 

Wavelets based on subdivision surfaces have been pro-
posed for geometry mesh processing for years. Louns-
bery et al. [1] presented a new type of wavelets based on 
subdivision, generally on the surface of arbitrary topolo-
gy. By generalizing the uniform subdivision in topology 
to a new irregular subdivision scheme, Valette and Prost 
[2,3] extended the work of Lounsbery and proposed a 
wavelet-based multiresolution analysis, to be applied di- 
rectly to irregular meshes whose connectivity is unchan- 
ged in the wavelet analysis. Samavati et al. [4] showed 
how to use least-squares data fitting to reverse subdivi-
sion rules and constructed the wavelets by straightfor-
ward matrix observations. Samavati et al. [5] constructed 
multiresolution surfaces of arbitrary topologies by local-
ly reversing the Doo-Sabin subdivision scheme. Since 
the lifting scheme proposed by Swelden [6] can generate 
new biorthogonal wavelets from the classic wavelets and 
lazy wavelets, it is an important tool to construct subdi-
vision wavelets. Based on lifting scheme, Schroder and 
Sweldens showed how to construct lifting wavelets on 
the sphere with customized properties [7]. Using local 
lifting operations performed on polygonal meshes, Ber-
tram et al. [8,9] gave a new construction of lifted bior-
thogonal wavelets on surfaces of arbitrary two manifold 
topology, and introduced the generalized B-spline subdi-
vision-surface wavelets. 

Using local lifting and the discrete inner production, 
Bertram [10] constructed a biorthogonal wavelet on the 
Loop subdivision. Li et al. [11] proposed unlifted Loop 
subdivision wavelet by optimizing free parameters in the 
extended subdivisions. Wang et al. [12] developed an 
effective wavelet construction based on general Catmull- 
Clark subdivisions and the resulted wavelets have better 
fitting quality than the previous Catmull-Clark like sub-
division wavelets. They also constructed several new bi- 
orthogonal wavelets based on 3 subdivision over trian- 
gular meshes, and approximate and interpolatory 2 sub- 
division over quadrilateral meshes [13-15]. Zhang et al. 
presented a biorthogonal wavelet approach based on dual 
Doo-Sabin subdivision with the aid of the barycenter of 
the V-faces corresponding to old vertices [16]. The initial 
work on computing matrixvalued subdivision wavelets is 
presented by Zhao et al. in [17]. 

Chui and Jiang proposed a new approach to construct 
subdivision schemes, called matrix-valued subdivision 
[18,19]. Different with the scalar-valued subdivision, the 
dilation coefficients is not a number, but a matrix. He 
constructed the matrix-valued loop subdivision and 3  
subdivision on the triangular mesh and Catmull-Clark 
subdivision on quadrilateral mesh. The data processed by 
the matrix-valued subdivision is a row vector including 
geometry information and other parameters for shape 

control. For matrix-valued subdivisions, versions of in-
terpolatory subdivisions were introduced particularly for 
the purpose of Hermite interpolation. These considera-
tions, however, are too restrictive to be useful for the 
construction of interpolatory matrix-valued templates in 
general. The most general extension of interpolatory loop 
and 3 surface subdivisions, from scalar to matrix con-
siderations and without any restriction, for constructing 
symmetric interpolatory matrix-valued templates is for-
mulated in [20]. 
 
3. Matrix-Valued Subdivision 
 
I computer graphics, surface subdivision schemes are de- 
signed to generate visually continuous and smooth sur-
faces from some initial triangulations in the 3D domains 
iteratorly. For each iterative step, the subdivision has two 
simple operations: generating a new set of vertices, and 
connecting the vertices for new triangulation of higher 
resolution. The former is decided by the topological rule, 
which determines how the new vertices connect to the 
existing vertices. And the later is decided by the local 
averaging rule, which is designed to generate the new 
vertices by taking some weighted averages of the posi-
tions of the neighboring vertices. Local averaging rules 
can be designed by considering the refinement equation:  

    2

k

x = 2 ,kp x k Rx   -  

Here,  x  is called a refinable function, and the fi-
nite sequence kp  called its corresponding refinement 
sequence or subdivision mask. For a control net with 
control points m

kv , the subdivision mask kp  provides 
the local averaging rule: 

-2= p , = 0,1,m+1 m
j k j k

k

v v m   

where, for each = 1, 2,m  , the set m
kv  denotes the set 

of vertices obtained after taking m iterations. The smoo- 
thness of the limiting 3-D subdivision surfaces is derived 
from the smoothness and polynomial preservation prop-
erties of the refinable basis function.  

Matrix-valued subdivision derives local averaging rules 
for the subdivision; and the refinement equation is natu-
rally modified to be: 

    2

k

x = A ,kp x k Rx   -

 
where A is the dilation matrix, the refinable function f  
is extended to an r-dimensional vector valued refinable 
function  0 -1= , , r   (called refinable function vec-
tor). And refinement sequence of r-dimensional square 
matrices kp  are the subdivision mask. For some finite 
mask to be constructed, A is a 2 2´  matrix with integ-
er entries such that det 3 or 4| A |=  . Examples of such 
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matrices A are:  

0 1 2

1 2 2 1 2 0
= , = 2 =

2 1 1
,

2 0 2
A A I

     
     
     

-

- - -
 

The local averaging rule is then given by: 
+1

-
k

= ,  = 0,1,m m
j k j Akv v p m   

where 1,= , ,m m m
k k n,kv v v    is a “row-vector” whose thl  

component m
l,kv  is a parameter relative to the point in 3D 

domain, for = 1, ,l n . The first component m
l,kv  is 

used as the geometry coordinates of the vertices of the 
triangulation resulting from the thm  iterative step. m

l,kv , 
= 2, ,l n  can provide the parameters for shape control 

of the smooth subdivision surfaces, if necessary.  
For matrix-valued loop subdivision scheme [18], the 

matrix-valued refinable function vector is  0 1= ,   , 

where 0f is showed as Bezier net
 
in Figure 1 and  1 x  

  -1
0 1

T
= j A x . The dilation matrix is 22I . The matrix- 

valued subdivision provides a free parameter (shape con-
trol parameter), for adjusting shapes of surface geometry. 
So if we set the control parameters to be zero at each 
iterative step, the matrix-valued loop subdivision can 
generate the surface identical to the surface generated by 
loop subdivision scheme. 

By selecting the function vector as: 
T

0 1 1

1
+ ,

2
   
  
    

where 

0 0=   

     
     

1 1 0 0 0

0 0 0

1,1 1,0 0, 1

1, 1 1,0 0,1

    

  

   

  

 - - -

-
   

 

 
Figure 1. The Bezier net of basis function 0 . 

Jiang et al. [20] extended the matrix-valued loop sub-
division scheme to the interpolatory loop subdivision 
scheme. The refinement stencils for ordinary points are 
showed in the first row of Figure 2, where 

31 1 7 13
1

72 36 72 728 , ,
13 7 7 11

0
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G J K
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The refinement stencils for extraordinary points are 
showed in the second row of Figure 2, where 

3 3
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The value of s should be chosen between 0 and 
36

31
 

and the values of x2 and α  depend on s. In this paper, 

we choose
36

=
31

s , 2

1
=

4
x -  and 

64
=

29
α  in theory 

analysis and experiments. 
 

 

 
Figure 2. The refinement stencils of interpolatory loop sub-
division. The first row shows the masks for the ordinary 
points, and the second row shows the masks for extraordi-
nary points. 
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4. Biorthogonal Wavelets 
 
4.1. Lazy Wavelet Transform 
 
From the subdivision theory, we know that the subdivi-
sion can generate a series of smooth meshes from the ini- 
tial mesh. For given mesh nC  and fixed subdivision 
masks ,P  we can get a new mesh +1nC , which has 
more points than nC . It can be described as: 

1n+ nC = PC  

By reversing the process, the meshes generated by the 
subdivision can also be easily decomposed to the simpler 
ones. But for an arbitrary mesh, which may be not gen-
erated by the subdivision, there will be some redundancy 
that cannot be decomposed after reversed subdivision. 
Supposing the given mesh is nC , we can describe the 
mesh as: 

1 1n n- n-C = PC +QD  

where 1nC   is the points in coarser level, Q is the de-
composition masks, and 1n-D  are the redundancy in 
level 1n   (wavelets). How to optimize the decomposi-
tion algorithm and reduce the redundancy is the key 
problem we will consider in this section. 

For the interpolatory subdivision, each point in 1nC   
is identical to the one in nC . So it is natural to consider 
the “distance” between the edge points generated by sub- 
division and relative points in 1nC   as the redundancy.  

So, we group the points of mesh at level n into 2 sets: 
the points nV , which are the vertices of triangles of 
mesh at level n-1 and the edge points nE , which are 
generated from the edge of mesh at level n 1- . Sup-
pose nΦ  is the basis function of subdivision scheme 
and Φn

v  is the basis function relative to the point of nV , 
Φn

e  is the basis function relative to the point of nE . 
The surface generated by subdivision can be described 
as: 

= Φ + Φn n n n n
v eS V E  

For a given surface T , which is not generated by sub- 
division, just as Figure 3 showed, we can group the 
points of given surface into 2 sets: V  (yellow points) 
 

 

Figure 3. The points of given surface are grouped into two 
sets. 

and E  (red points). We have: 

= Φ + Φn
v eT V E   

We consider V  is the set of vertices of 1nC   and 
sub-divide V  and get the set of edge points E. Then: 

 n n n n
v e eT = VΦ + E Φ = S + E E Φ -         (1)  

From the subdivision theory, we know that: 
1 1n n- n-S = V Φ                           (2)  

From both (1) and (2), we get: 

 1 1n n- n- n n
eS = V Φ + E E Φ-               (3)  

By this way, we have constructed a wavelet, which is 
called “lazy wavelet”, to decompose the mesh from nC  
to 1nC  .  

Thought the lazy wavelet can be used to decompose 
the meshes, in most cases, the lazy wavelet analysis is 
unstable, which means the shape of result meshes may be 
affected greatly by little errors after several times decom- 
position. The reason of instability is that the wavelet fun- 
ction n

e  of lazy wavelet and scaling function 1n   are 
not sure to be orthogonal. In fact the 1n   is the linear 
combination of n

e  and n
v . So we need to perform ad- 

ditional operations for the lazy wavelet transform to in-
crease the orthogonality of wavelet function and scaling 
function. We construct a new wavelet ψ  by accumula- 
ting the scaling functions 1n   around the edge point to 
the corresponding lazy wavelet n

e . To improve the or-
thogonality of wavelet transform, the new wavelet ψ  
should be orthogonalized with the scaling functions 
around it.  

1 1and 0.
n

n n- n-
e i i i

i=0

ψ = + w   ψ , =         (4)
 

 
4.2. Lifting Scheme 

 
The weights iw  for lifting can be got by solving (4) if 
we know the inner product of lazy wavelet. There are se- 
veral ways to define the inner product of wavelets. Most 
widely used one in classical wavelets is the continuous 
inner product which is often defined as: 

  
   ˆ

ˆ

1
,

xIδ
δIV M

ψ ψ x j x dx
ares




    

where  V M  is the set of triangular faces of mesh M . 
From the view of mathematic theory, it is clear and con-
vincible. But it is hard to be computed; sometimes it 
cannot be computed as the numeric value, especially for 
the basis function of subdivision.  

Since the scaling function and wavelet function have 
been given in previous sub section, we adopt the conti-
nuous inner product for our wavelet. The basis function 
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of matrix-valued subdivision is often represented as a 
Bezier net on triangular mesh. Figure 1 showed the 
Bezier net of 0 , which is a basis function of matrix-va- 
lued interpolatory loop subdivision. From the Bezier net 
of basis function, we can write the mathematic represen-
tation of basis function. Here, since we only want to cal-
culate the inner product, which is an integral. We can 
partition the triangle into thousands of blocks, multiply 
  and ψ  at each block, then sum the results. It is more 
convenient to compute numeric value. 

Though the computation of continuous inner product 
is more complex than the discrete inner product, the inner 
product can be precomputed as the computation is inva-
riant of the geometry mesh. So it won’t reduce the effici- 
ency of wavelet transform. 

The lifting template depends on what we need, if we 
want the wavelet transform more efficiency, we can select 
a small template. In general, it ensures the orthogonality 
of wavelets if we choose the lifting template which can 
cover the support of wavelet function. Figure 4 shows 
the lifting template covers 10 points. 
 
5. Efficient Wavelets Transform 
 
5.1. Ordinary Points Treatment 
 
In previous section, we have constructed a biorthogonal 
wavelet in theory. While, directly computing the wavelet 
analysis via the matrix-valued wavelets will cost a lot of 
computation. Here we develop an algorithm to compute 
fast matrix-valued subdivision wavelets for purpose of 
mesh simplification. The base idea of this algorithm fol-
lows the steps: 1) constructing fast algorithm for lazy 
wavelet analysis by reversing subdivision; 2) lifting the 
lazy wavelet with the weights introduced in previous sec- 
tion. 

The most important step to construct efficient subdivi-
sion wavelets is the first one. The general method to con-
struct the lazy wavelet needs to reform the subdivision  
 

 
Figure 4. Constructing a wavelet as linear combination of a 
lazy wavelet ψ and the scaling functions i  (i = 0,…,9). 

rules and make it satisfy 2 constrains: 1) the reformed 
subdivision should be equal to the original subdivision 
when the wavelet coefficients are zero; 2) thereformed 
subdivision could be directly reversed, which enables us 
to decompose the mesh to the version of lower resolution 
efficiently. But, in comparison with the scalar-valued 
subdivision, this reforming is very hard to be applied in 
matrix-valued subdivision wavelets in vector space. De-
spite of the affection of the elements of vector to each 
other, the larger size of stencil to generate edge point e 
(comparing to the vertex v) make it hardly to be calcu-
lated without solving a global system. Since our research 
focus on the application on the mesh simplification and 
the geometry coordinates of vertex are most important 
results of wavelet analysis, we can simplify the subdivi-
sion by setting the initial vector as , 0vé ùë û , where v  is 
the geometry coordinates of vertex and the rest element 
of vector are zero. The matrix-valued subdivision can be 
reformed as: 

     

       

   

6

=1

2 4

1 i 3

8 10

5 9

, ,0 ,0 *

0 0

0 0

x i
i

x i i
i= =

i i
i= i=

v v = v * G+ v L

e ,e = e, + v ,0 * K + v , * J

+ v , * M + v , * N

 

 



 

 

  (5) 

where the meaning of subscribe i are the same as they are 
shown in Figure 2. From the definition of matrix 
G,J,K,L,M,N  and (4), we can get: 

v = v  
6

1

3 1

8 16x i
i=

v = v v -              (6) 

2 4 8 10

=1 =3 =5 =9

31 7 1 1
= + +

72 72 144 72i i i i
i i i i

e e v v v v    - -  

2 4 8 10

=1 =3 =5 =9

1 1 1 1
= + + +

72 36 288 144x x i i i i
i i i i

e e v v v v    -  

If e  and xe  are initialized as zero, the expression of 

reformed rules (6) equals to original rules (5).  
Since we focus on the geometry coordinates of points, 

which are the first elements, we don't care about the rest 
elements in mesh simplification and in most case; we 
even don't know the values of rest ones. We can get each 
v  directly from the fist step of (6), and e  can calcu-
lated from the third step of (6): 

v = v                                       (7) 
2 4 8 10

=1 =3 =5 =9

31 7 1 1
= + +

72 72 144 72i i i i
i i i i

e e v v v v    - -  

This rule can be reverted efficiently. The first and 
third step of subdivision and their reverted version form 
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a lazy wavelet, where e  is the wavelet coefficient and 
v  is the coefficient of scaling function. From the defini-
tion, it is can be considered as a simplified version of 
lazy wavelet defined by (3) in previous sub section, 
which effects when the data vector are , 0vé ùë û at lower 
resolution and only compute the first element of vector. 
It is enough for the mesh simplification because in this 
situation, we only know the geometry coordinates of 
points, which is the first element of vector. Based on this 
lazy wavelet, we can develop the efficient biorthogonal 
wavelet decomposition algorithm for mesh simplification 
by performing lifting operation introduced in previous 
section after lazy wavelet analysis (7): 

=1

=
n

i i
i

v v w e-  

where n  is the size of lifting template, ie  is the coef-
ficients relative to the wavelet function in lifting tem-
plate, iw  is the lifting weights introduced in previous 
sub section. 

 
5.2. Extraordinary and Boundary Points  

Treatment 
 

The wavelet transform for the extraordinary points is 
similar to the ordinary points. Since we only focus on the 
geometry coordinates of points, we can only calculate the 
first element of vector. Then considering the data vector 

, 0vé ùë û , the subdivision can be reformed as: 

v = v  
2 4

=1 =3

31 1 31
= + + ( )

72 2 72i i
i i

e e s v s v  -               (8) 

where s can be chosen between 0 and 
31

36
. This expres- 

sion is equal to original subdivision if we set the e  as 
zero. So expression (8) and its inverse version can be 
considered as a lazy wavelet transform for the extraordi-
nary points.  

For the boundary points, there is no special treatment 
offered by the matrix-valued interpolatory subdivision. 
But we can consider they are special extraordinary points 

by setting the coefficient s  as 
31

36
. In this case, the 

expression (8) degenerates into a simpler expression: 

v = v  
2

=1

1
= +

2 i
i

e e v                           (9) 

It can be used to process the boundary points. So ex-
pression (9) and its inverse version can be considered as 
a lazy wavelet transform for the boundary points.  

Based on these lazy wavelets, we can construct the bi-
orthogonal matrix-valued wavelet on extraordinary points 

and boundary points via the lifting scheme. But, since the 
basis functions of these points cannot be explicit com-
puted in mathematics, we can deploy the discrete inner 
product, instead of the continuous inner product. The in- 
ner product is introduced by Bertram [10] and used by 
several efficient subdivision based lifting wavelets to 
simplify the computation. The idea of discrete inner pro- 
duct used in subdivision wavelets is based on the assum- 
ption that the scaling functions of finer resolution form 
an orthogonal basis without considering all correlation of 
finer level coefficients. With this assumption, the mutual 
inner product of wavelets and scaling functions is de-
fined as the sum of multiplications of corresponding co- 
efficients (geometry coordinates of points) at finer reso-
lution, and calculated directly from the subdivision tem-
plate. It is maybe not accurate, but works well in many 
works [10-15].  

Figure 5 shows the discrete mask of extraordinary  

masks, where 
31

=
72

α s  and 
1 3

=
1

2 72
sγ - . Based on  

these discrete masks we can construct the discrete inner 
product between extraordinary points (or boundary 
points) and ordinary points, and get the weights for lift-
ing operation. The final wavelet decomposition rules for 
extraordinary points can be got by performing lifting 
operation in addition to the lazy wavelet analysis: 

v = v  
2 4

i=1 i=3

31 1 31
= ( )

72 2 72i ie e s v s v      

=1

=
n

i i
i

v v w e
 

where n  is the size of lifting template, ie  is the coef-
ficients relative to the wavelet function in lifting tem-

plate, iw  is the lifting weights. If we set 
36

=
31

s  and 

select different lifting template, it can be used to process 
boundary points too.

 
6. Experimental Results 
 
In general, we can apply the different lifting template for  

 
Figure 5. The discrete masks of extraordinary points. 
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various purposes. In this paper we adopt the template 
showed in Figure 6, because it exactly covers the the 
points to generate edge point. The weights of lifting oper-
ations template can be precomputed, which greatly incr- 
ease the efficiency of transformation.  

To be consistence with the optimized wavelet trans-
form algorithm, we adopt the full version of basis func-
tion instead of the box spline used in [17]. Table 1 shows 
precomputed lifting weights for ordinary points. With 
these weights, we test the proposed wavelet transform al- 
gorithm on the models. Figure 7 shows the result se-
quence of surfaces generated by the wavelet transform. 

For testing the stability of wavelet transform, we made 
a noise-filtering experiment, which is often used to ex-
amine the stability of approximate subdivision wavelets 
[10-15]. We first perturb all vertices of the mesh at high-
est resolution with white noise. The perturbed mesh is 
decomposed step by step using the wavelet analysis 5 
times. At each resolution, we subdivide the mesh to level 
5 (the highest resolution) again without considering the 
wavelet coefficients of any higher resolution. Thus, we 
get a sequence of low-pass filtered versions of the noisy 
mesh. We compare the low-pass filtered versions of noisy 
 

 
Figure 6. Multiresolution mesh models (horse, bunny, fe-
line): the 1st surfaces show the original models rendered 
with wireframe. Others are surfaces generated by perfor- 
ming wavelet analysis 0-5 times, and the last one shows the 
lowest-resolution model in wireframe rendering. 

Table 1. The precomputed weights of local lifting opera-
tions, when the valence n = 6. 

Ww2 w2w3 w3w4 w4w5 w5w6 

–0.17712 –0.17712 0.0238 0.0238 –0.0016

w6w7 w7w8 w8w9 w9w10 w1w11 

–0.0016 0.0249 0.0249 0.0249 0.0249 

 
mesh with the original unperturbed mesh by calculating 
the corresponding L2-norm errors. The results of experi-
ment are showed in Figure 7 and Figure 8. From these 
figures, we can find that that the error rates don’t increase 
much after few wavelet analysis operations. So the de-
composition is quite stable. 

For comparison with other wavelet transform, we made 
the same tests on approximate loop subdivision wavelet, 
developed by Bertram [10], and lazy interpolatory subdi-
vision wavelet. Since the lifting template of Bertram’s 
scheme only includes 4 points around the edge point. We 
use our template, including 10 points around the edge 
point, instead of original one. The more points in template 
make the wavelet function orthogonal to more scaling 
functions and the fitting quality of result should be better. 
All the results of noise-filter experimental results are 
showed in Figure 7 and Figure 8. These experimental 
results show that: compared with loop subdivision wave-
let and lazy interpolatory subdivision wavelet, the inter-
polatory subdivision wavelet has better performance in 
noise reduction. While, we should pay attention to the 
fact that, though the L2-norm error of loop wavelet analy-
sis is much more than interpolatory subdivision wavelet, 
the surfaces generated by loop subdivision wavelet trans-
form seem smoother than interpolatory subdivision wave- 
let transform after subdividing. It caused mainly by the 
awful ability of approximate subdivision to generate 
smooth surfaces. 

We also compared the fitting quality of meshes, which 
come from loop subdivision wavelet analysis and our 
interpolatory subdivision wavelet analysis individually. 

Figure 9 shows the results generated by computing 
wavelet analysis 4 times. The blue circles are used to 
mark the obvious difference between the results. Since 
the approximate subdivision averages both the vertices of 
triangle and edge points, the surfaces are smoother in 
general. But when performing surface decomposition, the 
change from eliminated points also affect the residual 
points and make the result surface bulge and may gener-
ate surface with ripples. The interpolation subdivision 
keeps the points of original surface, which fixes the basic 
shape of subdivision surface. Because the subdivision 
wavelets inherit the properties of subdivision, though the 
lifting operation changed the values of points for both 
wavelets, the affection to the interpolatory wavelet is less 
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(a)                                                 (b) 

 
(c)                                                   (d) 

Figure 7. The comparison of L2-norm errors by noise-filtering experiments on: (a) venus; (b) horse; (c) bunny; (d) feline. 

 

Figure 8. The low-pass filter sequence of noisy meshes from level 5 to level 0: the first row shows the results by approximate 
loop subdivision wavelet; the second row shows the results by lazy interpolatory loop subdivision wavelet; the third row 
shows the results by lifted interpolator loop subdivision wavelet. 
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Figure 9. Multiresolution surfaces by loop subdivision wavelet analysis and interpolatory wavelet analysis. The 1st column 
shows the original models; the 2nd column shows the results decomposed by interpolatory subdivision wavelet analysis 4 
times; the 3rd column shows the results decomposed by loop subdivision wavelet analysis 4 times. Here, blue circles used to 
enlarge the viewing differences between them. As for loop subdivision, there are ripples in the surfaces generated by loop 
subdivision wavelets analysis after several times decomposing. The interpolatory subdivision wavelet analysis we propose 
plays better on avoiding these defects. 
 
than it to the approximate subdivision wavelets, accord-
ing to the results of experiments. So the interpolatory 
subdivision wavelet should have better shape preserve 
ability than the approximate subdivision wavelet in visu-
al appearance. This conforms to the fact that L2-norm 
error of the interpolatory subdivision wavelet is lower 
than the approximate subdivision wavelet. 

We tested the efficiency of wavelet transform by using 
a PC equipped with Intel Core(TM)2 Quad CPU Q8200 
at 2.33 HZ and 4 G memory. The results are listed in Ta- 
ble 2. Because the lifting operation is executed on each 
vertex and the time complexity of each operation is O(1), 
the time complexity of lifting operations of wavelet 
transform only depends on the number of vertices. Since 
it avoids solving a complex system, the proposed trans-
form performs efficiently for multiresolution surfaces, in 
both wavelet analysis and synthesis of mesh models. 
 
7. Summary 
 
In this paper, we propose the novel wavelet transform 
based on matrix-valued interpolatory loop subdivision for 
multiresolution triangular meshes. Since the matrixva-
lued subdivision is directly generated from the basis 
function vector, it is easy to be used to construct lazy 
wavelet. For better fitting quality, the additional lifting 
operations are applied to increase the orthogonality of wa- 

Table 2. The time cost of performing wavelet transform 5 
times. Curent rows show the time cost of algorithm in this 
paper and previous row show the time cost of algorithm in 
[17]. 

Analysis Horse 
(112642 pt)

Venus 
(198658 pt) 

Feline 
(258046 pt) 

Current 0.08550 sec. 0.13247 sec. 0.19051sec. 

Previous 0.11395 sec. 0.200944 sec. 0.258138 sec.

Synthesis Horse Venus Feline 

Current 0.07002 sec. 0.11976 sec. 0.18068 sec.

Previous 0.107769 sec. 0.189748 sec 0.245778 sec. 

 
velet. Further from our initial work [17], we have worked 
on the follo- wing major features: To speed up the wave-
lets transform, we work out and optimize the algorithm of 
interpolatory loop subdivision wavelets in detail. Our ap- 
proach can deal with the extraordinary points and boun-
dary points faithfully. We have designed the full version 
of basis function of interpolatory subdivision, instead of 
the simpler version. So the lifting weights can be used 
for the optimized wavelets transform we propose.  

By applying these methods, the final transform is effi-
cient, and has low memory usage because no additional 
memory used in the processing of points. The computa-
tion is fully in-place and efficient. The testing experi-
ments showed that the wavelets transform we develop is 
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stable, and has good performance on noise reduction and 
fitting quality. Our proposed wavelets transform can be 
applied in a wide range of applications, including 3D- 
model progressive transmission, data compression, mul-
tiresolution rendering, and interactive geometric editing. 
The construction method we develop is easy to be exten- 
ded to other matrix-valued interpolatory subdivision sch- 
emes for triangular and quadrilateral meshes. In the fu-
ture work, we will focus on how to eliminate the defect 
of interpolatory wavelet when generating simplified 
smooth surface. We will try to construct the transform 
that has the advantages of interpolatory and approximate 
subdivision wavelets for such applications.  
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