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Abstract 
In order to get the exact traveling wave solutions to nonlinear partial differential equation, the 
complete discrimination system for polynomial and direct integral method are applied to the con-
sidered equation. All single traveling wave solutions to the equation can be obtained. As an exam-
ple, we give the solutions to (3 + 1)-dimensional breaking soliton equation.  
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1. Introduction 
For the past decades, to deal with nonlinear partial differential equations (PDEs), many methods have been de-
veloped. These methods have been widely applied to many PDEs to obtain the exact solutions. Recently, a me-
thod named the complete discrimination system for polynomial method has been proposed by Liu [1]-[5]. By 
Liu’s method, we can obtain the classification of single traveling wave solutions to some PDEs. For the PDE 
being considered, we take the traveling wave transformation and integrate it. The PDE can be directly reduced to 
ordinary differential equation (ODE) which can be turned into the integral form as follows:  

( )
( )0

d ,
n

u
p u

ξ ξ± − = ∫                                  (1) 

where ( )np u  is a n-th order polynomial. By Liu’s method, we can obtain the classification of all solutions to 
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the Equation (1).  
In this paper, we take into account (3 + 1)-dimensional breaking soliton equation, and it reads as  

0.xxt xxx yz xxy xz xy xxz xx xyz xxxyzu au u bu u cu u du u eu+ + + + + =                        (2) 

where a, b, c, d and e are arbitrary constants.  
Equation (2) was originally proposed by Lin [6] to study the Virasoro-type symmetry algebra. Li [7] got some 

solitary wave solutions and periodic wave solutions of Equation (2) by using a simple transformation relation 
and solving the ordinary differential equation. Shi [8] gave some exact solutions of Equation (2) by turning it 
into KdV equation though introducing a simple transformation, and so on.  

2. Classification 
For Equation (2), we take the traveling wave transformation ( )1 1 1 2 3,u u k x k y k z ltξ ξ= = + + + , and can obtain 
the corresponding reduced ODE as follow  

( )2 3 3
1 1 2 3 1 2 3 0.k lu a b c d k k k u u ek k k u′′′ ′′ ′′′ ′′′′′+ + + + + =                       (3) 

Integrating Equation (3) with respect to 1ξ  once , we simplify it and yield 

( )2
1

1 2 3

.
2

l a b c du u u C
ek k k e

+ + +′′ ′′ ′′′′+ + =                          (4) 

where 1C  is an integral constant. 
Let 

.u v′′ =                                         (5) 
Then we have 

2
1

1 2 3

.
2

l a b c dv v v C
ek k k e

+ + + ′′+ + =                             (6) 

Or equivalently 

( ) 2
1

1 2 3

.
2

a b c dlv C v v
ek k k e

+ + +
′′ = − −                            (7) 

Integrating the Equation (7) once with respect to 1ξ , we get 

( )2 2 3
0 1

1 2 3

2 .
3

l a b c dv C C v v v
ek k k e

+ + +′ = + − −                         (8) 

where 0C  is an integral constant. For purpose of use the complete discrimination system for the third order 
polynomial, we have the following solving process. 

Let 
1 1
3 3

1, .
3 3

a b c d a b c dw v
e e

ξ ξ+ + + + + +   = − = −   
   

                      (9) 

Then Equation (8) becomes 

( )2 3 2
2 1 0 .w w d w d w d′ = + + +                              (10) 

where 
2
3

2
1 2 3 3
l a b c dd

ek k k e

−+ + + = − − 
 

, 
1
3

1 12
3

a b c dd C
e

−+ + + = − 
 

, 0 0d C=  and w  is a function of ξ . 

The integral form of Equation (8) is 

( )0 3 2
2 1 0

d .w

w d w d w d
ξ ξ± − =

+ + +
∫                           (11) 
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Denote 

( ) 3 2
2 1 0 .F w w d w d w d= + + +                                 (12) 

( )
23 2321 32 2

0 1 2 1 1
2

27 4 , .
27 3 3

d dd dd d d D d
 

∆ = − + − − − = − 
 

                     (13) 

According to the complete discrimination system, we give the corresponding single traveling wave solutions to 
Equation (2). 

Case 1. ( )10, 0 0D F w∆ = < ⋅ =  has a double real root and a simple real root. Then we have 

( ) ( ) ( )2
1 2 1 2, .F w w wλ λ λ λ= − − ≠                              (14) 

When 2w λ> , the solutions to Equation (8) are as follows 

( ) ( ) ( )
1 1
3 31 22

1 1 2 1 0 2 1 2tanh , ;
3 2 3

a b c d a b c dv
e e

λ λ
λ λ ξ ξ λ λ λ

−   −+ + + + + +     = − − − − + >           

   (15) 

( ) ( ) ( )
1 1
3 31 22

2 1 2 1 0 2 1 2coth , ;
3 2 3

a b c d a b c dv
e e

λ λ
λ λ ξ ξ λ λ λ

−   −+ + + + + +     = − − − − + >           

   (16) 

( ) ( ) ( )
1 1
3 31 22

3 2 1 1 0 2 1 2sec , .
3 2 3

a b c d a b c dv
e e

λ λ
λ λ ξ ξ λ λ λ

−   −+ + + + + +     = − − − − + <           

    (17) 

The corresponding solutions to Equation (2) are 

( ) ( ) ( )
1
3 21 1 2

1 1 0 1 0 1 1 0 02 ln cosh ;
3 2

a b c du h h
e

λ λ λ
ξ ξ η ξ ξ ξ ξ

η

−  −+ + +   = − − − − + − +       
        (18) 

( ) ( ) ( )
1
3 21 1 2

2 1 0 1 0 1 1 0 02 ln sech ;
3 2

a b c du h h
e

λ λ λ
ξ ξ η ξ ξ ξ ξ

η

−  −+ + +   = − − − − + − +       
        (19) 

( ) ( ) ( )
1
3 21 1 2

3 1 0 1 0 1 1 0 02 ln cos .
3 2

a b c du h h
e

λ λ λ
ξ ξ η ξ ξ ξ ξ

η

−  −+ + +   = − − + − + − +       
         (20) 

Case 2. ( )10, 0 0D F w∆ = = ⋅ =  has a triple root. Then we have 

( ) 3.F w w=                                      (21) 

The corresponding solution to Equation (2) is 

( ) ( )4 1 0 1 1 0 0
12 ln .eu h h

a b c d
ξ ξ ξ ξ= − + − +

+ + +
                        (22) 

Case 3. ( )10, 0 0D F w∆ > < ⋅ =  has three different real roots. Then we have 

( ) ( )( )( )1 2 3 1 2 3, .F w w w wλ λ λ λ λ λ= − − − < <                        (23) 

When 1 2wλ λ< < , the corresponding solutions to Equation (2) is 

( ) ( ) ( ) ( )( ) ( )
1
3 23

5 1 0 1 1 0 1 1 1 0 1 1 0 02
1

1 , .
3 2

a b c du E m L h h
e m

λ
ξ ξ η ξ ξ ϕ η ξ ξ ξ ξ

η

−  + + +   = − − − − − − + − +       
  (24) 

When 3w λ> , the corresponding solutions to Equation (2) is 
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( ) ( )( )

( ) ( ) ( )( ) ( )

1
3 23 3 1

6 1 0 1 1 02
1

1 1 0 1 2 1 0 1 1 0 0

ln
3 2

, .

a b c du cn
e

E m L h h

λ λ λξ ξ η ξ ξ
η

η ξ ξ ϕ η ξ ξ ξ ξ

−  −+ + +  = − − − −    

− − + − + − +


                 (25) 

where 2 2 1

3 1

m λ λ
λ λ

−
=

−
. 

Case 4. ( )0 0F w∆ < ⋅ =  has only a real root. Then we have 

( ) ( )( )2 2
1 , 4 0.F w w w pw q p qλ= − + + − <                          (26) 

When 1w λ> , the corresponding solutions to Equation (2) is 

( )( ) ( )( ){
( ) ( )( )( )( ) } ( )

1
3

7 2 1 0 2 1 0

22
2 1 0 2 1 0 1 1 1 1 0 1 1 0 0

2 ln 1 2
3

.

a b c du cn L
e

E p q h h

η ξ ξ η ξ ξ

η ξ ξ η ξ ξ λ λ λ ξ ξ ξ ξ

−+ + +   = − + − + −    

− − − + + + − + − +

         (27) 

where 2

2

1 21
2

p

m
p q

λ

λ λ

 + 
= − 

+ +  
 

, 0 1,h h  are integral constants in Equations (18)-(20), (22), (24), (25) and 

(27). 
In Equations (24) (25) and (27), we give the expression of some signals as follow 

( )

1
31 2

1
33 1

1

1
1 32 4

2 1 1

,
2 3

,
2 3

3

a b c d
e

a b c d
e

a b c dp q
e

λ λ
η

λ λ
η

η λ λ

−

−

−

− + + + = − 
 

− + + + = − 
 

+ + + = + + − 
 

                         (28) 

( ) ( ) ( )( )2 2 2
1 00

d , , 1 sin d , sin , 1, 2i
i i iL s sdn s s E m m sn i

ϕ
ϕ ϕ ϕ ϕ η ξ ξ= = − = − =∫ ∫        (29) 

The solutions ( )1, ,7iu i =   are all possible exact traveling wave solutions to Equation (2). We can see it is 
easy to write the corresponding solutions to (3 + 1)-dimensional breaking soliton equation.  

3. Conclusion 
From the descriptions above, we use the complete discrimination system for polynomial and direct integral me-
thod to obtain all possible traveling wave solutions to (3 + 1)-dimensional breaking soliton equation. This me-
thod is direct and effective. With the same method, some of other equations can be dealt with. 
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