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Abstract 
 
In this paper, three new hybrid nonlinear conjugate gradient methods are presented, which produce sufficient 
descent search direction at every iteration. This property is independent of any line search or the convexity of 
the objective function used. Under suitable conditions, we prove that the proposed methods converge glo-
bally for general nonconvex functions. The numerical results show that all these three new hybrid methods 
are efficient for the given test problems. 
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1. Introduction 
 
In this paper, we consider the unconstrained optimization 
problem: 

 min , nf x x R             (1.1) 

where : nf R R  is continuously differentiable and 
the gradient of f  at x  is denoted by  g x . 

Due to its simplicity and its very low memory re-
quirement, the conjugate gradient (CG) method plays a 
very important role for solving (1.1). Especially, when 
the scale is large, the CG method is very efficient. Let 

0
nx R  be the initial guess of the solution of problem 

(1.1). A nonlinear conjugate gradient method is usually 
designed by the iterative form 

1 , 0,1, ,k k k kx x d k            (1.2) 

where kx is the current iterate point, 0k   is a step-
length which is determined by some line search, and kd  
is the search direction defined by 

1

, if 0,

, if 0,
k

k
k k k

g k
d

g d k 

 
   

      (1.3) 

where kg  denotes  kg x , and k  is a scalar. There 
are some well-known formulas for k , which are given 
as follows: 
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d y
 

 

  [4]; 
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,
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PRP k k
k

k

g y
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

  [5,6]; 

1

1 1

,
T

LS k k
k T

k k

g y

d g
 

 

   [7]; 

where 1 1k k ky g g    and   stands for the Eucli-
dean norm of vectors.  

Although the methods above are equivalent [8,9] when 
f  is a strictly convex quadratic function and k  is 

calculated by the exact line search, their behaviors for 
general objective functions may be far different. Gener-
ally, in the convergence analysis of conjugate gradient 
methods, one hopes the inexact line search such as the 
Wolfe conditions, the strong Wolfe conditions or the 
strong *Wolfe conditions,which are showed respectively 
as follows: 

1) The Wolfe line search is to find k  such that 
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with
1

0 ,
2

  and 1.    

2) The strong Wolfe line search is to find k such that 

   
 

,

,

T
k k k k k k k

T T
k k k k k k

f x d f x g d

d g x d d g
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     (1.5) 

with 
1

0 ,
2

  and 1.    

3) The strong *Wolfe line search is to find k  such 
that 

   
 

,

0,

T
k k k k k k k

T T
k k k k k k

f x d f x g d

d g d g x d

 

 

   


  
     (1.6) 

with
1

0 ,
2

  and 1.    

For general functions, Zoutendjk [10] and Al-Baali 
[11] had proved the global convergence of the FR me-
thod with different line searches. And Powell [12] gave a 
counter example which showed that there exist noncon-
vex functions such that the PRP method may cycle and 
does not approach any stationary point even with exact 
line search.Although one would be satisfied with its 
global convergence, the FR method performs much 
worse than the PRP (HS, LS) method in real computa-
tions. In other words, in practical computation, the PRP 
method, the HS method, and the LS method are generally 
believed to be the most efficient conjugate gradient me-
thods since these methods essentially perform a restart if 
a bad direction occurs. A similar case happens to the DY 
method and the CD method. That is to say the conver-
gences of the CD , DY and FR methods are established 
[1-3], however their numerical results are not so well. 
Resently, some good results on the nonlinear conjugate 
gradient method are given. Combining the good numeri-
cal performance of the PRP and HS methods and the nice 
global convergence properties of the FR and DY me-
thods, recently, [13] and [14] proposed some hybrid me-
thods which we call the H1 method and the H2 method, 
respectively, that is, 

  1 max 0, min , ,H PRP FR
k k k        (1.7) 

  2 max 0,min , .H HS DY
k k k        (1.8) 

Gilbert and Nocedal [15] extended H1 to the case that 

  max ,min , .FR PRP FR
k k k k      

Numerical performances show that the H1 and the H2 
methods are better than the PRP method [13,14,16]. 

As we all know, the FR , DY and CD methods are 
descent methods, but their descent properties depend on 
the line search such as the strong Wolfe line search (1.5). 
Similar to the descent three terms PRP method in [17], 
Zhang et al. [18,19] proposed a modified FR method 
which we call the MFR method, that is, 

1
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1
12

:

            1 .

T
FR k k

k k k k kT
k k

T
FR FRk k
k k k k

k

g d
MFR d g d g

d g

g d
g d

g



 




 




   

 
    
 
 

 (1.9) 

And [18] also gave an equivalent form to the MFR 
method. Similarly, Zhang [19] also proposed a modified 
DY method called the MDY method, that is, 
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 (1.10) 

It is easy to see that the MFR and MDY methods have 
an important property that the search directions satisfy  

2
,T

k k kg d g  which depends neither on the line search 

used nor on the convexity of the objective function; 
moreover these two methods reduce to the FR method 
and the DY method respectively with exact line search. 

[18] has explored the convergence and efficiency of 
the MFR method for nonconvex functions with the 
Wolfe line search or Armijo line search. Based on the 
idea of the H1 and the H2 methods, recently, Zhang- 

Zhou [20] replaced FR
k  in (1.9) and DY

k  in (1.10) 

with H1
k in (1.7) and H2

k  in (1.8), respectively, and 

proposed two new hybrid PRP–FR and HS–DY methods 
called the NH1 method and the NH2 method, respec-
tively, that is, 

H1 H11
12

N 1: 1
T
k k

k k k k k

k

g d
H d g d

g
 



 
    
 
 

 (1.11) 

H2 H21
12

N 2 : 1
T
k k

k k k k k

k

g d
H d g d

g
 



 
    
 
 

 (1.12) 

Obviously, these two new hybrid methods still satisfy 

    
2

,T
k k kg d g             (1.13) 

which shows that they are descent and independent of 
any line search used. [20] proved the global convergence 
of these two methods and also showed their efficiency in 
real computations. 

Similarly,based on the idea of the methods all above, 
we consider the CD method, and propose three new hy-
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brid conjugate gradient(CG) methods which we call the 
H3 method, the MCD method and the NH3 method, re-
spectively, that is 

  33 : max 0, min ,H LS CD
k k kH          (1.14) 

1
1

1 1

1
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:

   1

T
CD k k

k k k k kT
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 (1.16) 

From these three methods above, it is not difficult to 
see that the MCD and the NH3 methods also sat-  

isfy 
2

,T
k k kg d g   which shows that they are suffi-

cient descent methods. In the next section, the new algo-
rithms are given. The global convergence of the pro-
posed methods are proved in Section 3. We give the nu-
merical experiments in Section 4, and in Section 5, the 
conclusion is presented. 

2. Algorithm 

2.1. Algorithm 1 (The H3 Algorithm) 

Step 0: Choose an initial point 0 ,nx R 0 1,   

1
0 ,

2
  and 1.    Set 0 0 , : 0.d g k    

Step 1: If ,kg  then stop; Otherwise go to the next 

step. 
Step 2: Compute step size k  by strong *Wolfe line 

search rule (1.6). 
Step 3: Let 1 .k k k kx x d   If 1 ,kg    then stop. 

Step 4: Calculate the search direction  
3

1 1 1 .H
k k k kd g d      

Step 5: Set : 1,k k  and go to Step 2. 

2.2. Algorithm 2 (The MCD (Or the NH3)  
Algorithm) 

Step 0: Choose an initial point 0 ,nx R 0 1,   

1
0 ,

2
  and 1.    Set 0 0 , : 0.d g k    

Step 1: If ,kg  then stop; otherwise go to the next 
step. 

Step 2: Compute step size k  by Wolfe line search 

rule (1.4). 

Step 3: Let 1 .k k k kx x d    If 1 ,kg   , then stop. 

Step 4: Calculate the search direction 1kd   by (1.15) 
(or (1.16)). 

Step 5: Set : 1,k k   and go to Step 2. 

3. The Global Convergence 

Assumption A 
1) The level set     0

nx R f x f x    is bounded, 
where 0 ,nx R is a given point. 

2) In an open convex set N  that contains  , f  is 
continuously differentiable and its gradient g is Lipschitz 
continuous, namely, there exists a constant 0L   such 
that  

      , , .g x g y L x y x y N         (3.1) 

Since   kf x is decreasing, it is clear that the se-

quence kx generated by Algorithm 1 and Algorithm 2 is 

contained in  . In addition, we can get from Assump-
tion A that there exists a constant B and 1 0,  such that  

  1, , .x B g x x          (3.2) 

In the latter part of the paper, we always suppose that 
the conditions in Assumption A hold. Then there is an 
useful lemma, which was originally given in [10,21]. 

Lemma 3.1 Let kx be generated by (1.2) and kd is a 
descent direction. If k  is determined by the Wolfe line 
search (1.4), then we have 

 2

2
0

.
T
k k

k k

g d

d





           (3.3) 

From Lemma 3.1 and (1.13) that for the MCD and 
NH3 methods with the Wolfe line search,we can easily 
obtain the following condition 

4

2
0

.k

k k

g

d





             (3.4) 

We now establish the global convergence theorem for 
Algorithm 1 and Algorithm 2 . 

3.1. The Global Convergence of the H3 Method 

For simlpicity, here, we list the Theorem 2.3 in [14] as 
the following Lemma 3.2 without proof. 

Lemma 3.2 Suppose that 0x is an initial point, Con-
sider the method (1.2) and (1.3), where k  is computed 
by the Wolfe line search(1.4), and k is such that 

 ,1 ,kr c  where 1
, 0.

1
k

k DY
k

r c
 




  


 

Then if 0kg  for all 0,k  we have that  
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0, 0.T
k kg d k    

Further, the method converges in the sense that 

liminf 0.k
k

g


  

From the Lemma 3.2 above, similar to Corollary 2.4 in 
[14], we give the global convergence of the H3 me-
thod(Algorithm 1). 

Theorem 3.3 Suppose that 0x is an initial point, Con-
sider the Algorithm1, then we have either 0kg  for 
some 0,k   or liminf 0.k

k
g


  

Proof From the second inequality of (1.6) and the de-  
finitions of 3 ,H CD

k k  and ,DY
k it follows that 

30 .H CD DY
k k k      

Therefore the statement follows lemma 3.2.   

3.2. The Global Convergence of the MCD  
Method 

Now, we establish the global convergence theorem for 
the MCD method. 

Theorem 3.4 Let  kx be generated by the MCD me-

thod (Algorithm 2, where kd  satisfies (1.15)), then we 

have 
liminf 0.k

k
g


            (3.5) 

Proof Suppose by contradiction that the desired con-
clusion is not true, that is to say, there exists a con-
stant 0  such that 

, 0.kg k              (3.6) 

Set 1
2

1 ,
T

CD k k
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g d
h
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   and then we have  
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1 .CD T
k k k k k kg d h g g    From (1.15) and (1.13), it 

follows that  
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Dividing both sides of (3.7) by  2T
k kg d , we get, from 

(1.13) and the definition of CD
k , that 
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The last inequality implies 
4

2
2

0 0

1
,k

k kk

g

kd


 

 
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which contradicts (3.4). The proof is then completed.   

3.3. The Global Convergence of the NH3  
Method 

The same as the Theorem 3.4, we can establish the fol-
lowing global convergence theorem for the NH3 method. 

Theorem 3.5 Let kx be generated by the NH3 me-
thod (Algorithm 2, where kd  satisfies (1.16) ), then we 
have 

liminf 0.k
x

g


            (3.8) 

Proof Suppose by contradiction that the desired con-
clusion is false, that is to say, there exists a con-
stant 0  such that 

  , 0.kg k              (3.9) 

Similar to (3.7), we get from (1.16) that 

 22 2 23 2
1 2 ,H T

k k k k k k k kd d h d g h g     (3.10) 

where  

3 1
2

1 .
T

H k k
k k

k

g d
h

g
    

Notice that 

            3 , 0.H CD
k k k            (3.11) 

Dividing both sides of (3.10) by  2T
k kg d , we get, 

from (3.11), (1.13) and the definition of 3 ,H
k  that 
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 

 

which contradicts (3.4). This finishes the proof.   

4. Numerical Experiments 

In this section, we carry out some numerical experiments. 
These three algorithms have been tested on some prob-
lems from [22]. The results are summarized in the fol-
lowing three tables: Table 1-3. For each test problem, 
No. is the number of the test problem in [22], 0x  is the 
initial point, kx  the final point, k  the number of times 
of iteration for each problem. 

These three tables show the performance of these three 
methods relative to the iterations, It is easily to see that, 
for each algorithm, are all very efficient, especially for 
the problems such as s201, s207, s240, s311. The results 
for each problem are accurate, and with less number of 
times of iteration. 

5. Conclusions 

We have proposed three new hybrid conjugate gradient 
(CG) methods, that are, the H3 method, the MCD me-  

Table 1. The detail information of numerical experiments 
for H3 algorithm. 

.No 0x kx kg k 

S201 (8,9) 
(5.0000000, 
6.0000000) 

7.08791050e-007 25 

S205 (1,1) 
(2.9999973, 
0.4999993) 

8.17619783e-007 188

S207 (–1.2,1) 
(0.9999993, 
0.9999983) 

7.08905387e-007 61 

S240 
(100,–1, 

2.5) 

(1.3367494e-007, 
–1.3367494e-009, 
3.3418736e-009) 

8.81057842e-007 29 

S311 (1, 1) 
(2.9999999, 
2.0000000) 

3.63497147e-007 20 

S314 (2,2) 
(1.8064954, 
1.3839575) 

9.83714228e-007 339

Table 2. The detail information of numerical experiments 
for MCD algorithm. 

.No 0x kx kg k

S201 (8,9) (5.0000001,5.9999999) 9.53649845e-007 34

S205 (1,1) (2.9999968,0.4999992) 9.97179740e-007 253

S207 (–1.2,1) (0.9999992,0.9999979) 8.41893782e-007 151

S240 (100,–1,2.5)

(–9.909208e-008, 

3.1120991e-008, 

2.660865e-008) 

8.37563602e-007 41

S311 (1,1) (2.9999999,2.0000000) 7.05200476e-007 24

S314 (2,2) (1.8064954,1.3839575) 9.94928488e-007 130

 
Table 3. The detail information of numerical experiments 
for NH3 algorithm. 

.No 0x kx kg k

S201 (8, 9) (5.0000001,5.9999999) 9.53649845e-007 34

S205 (1,1) (2.9999972,0.4999993) 9.89188900e-007 418

S207 (–1.2,1) (0.9999990,0.99999751) 9.59168006e-007 168

S240 (100,–1,2.5)

(-9.9092086e-008, 

3.1120991e-008, 

2.6608656e-008) 

8.37563602e-007 41

S311 (1,1) (2.9999999,2.0000000) 5.87169265e-007 25

S314 (2,2) (1.8064954,1.3839575) 9.82136064e-007 339

 
thod and the NH3 method, where the last two methods 
produce sufficient descent search direction at every itera-
tion. This property depends neither on the line search 
used nor on the convexity of the objective function. Un-
der suitable conditions, we proposed the global conver-
gence of these three new methods even for nonconvex 
minimization. And numerical experiments in section 4 
showed that the new three algorithms are all efficient for 
the given test problems. 
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