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Abstract 
Along with the increasing need for rescue robots in disasters such as earthquakes and tsunami, 
there is an urgent need to develop robotics software for learning and adapting to any environment. 
A reinforcement learning (RL) system that improves agents’ policies for dynamic environments by 
using a mixture model of Bayesian networks has been proposed, and is effective in quickly adapt- 
ing to a changing environment. However, the increase in computational complexity requires the 
use of a high-performance computer for simulated experiments and in the case of limited calcula- 
tion resources, it becomes necessary to control the computational complexity. In this study, we 
used an RL profit-sharing method for the agent to learn its policy, and introduced a mixture prob- 
ability into the RL system to recognize changes in the environment and appropriately improve the 
agent’s policy to adjust to a changing environment. We also introduced a clustering distribution 
that enables a smaller, suitable selection, while maintaining a variety of mixture probability ele- 
ments in order to reduce the computational complexity and simultaneously maintain the system’s 
performance. Using our proposed system, the agent successfully learned the policy and efficiently 
adjusted to the changing environment. Finally, control of the computational complexity was ef- 
fective, and the decline in effectiveness of the policy improvement was controlled by using our 
proposed system. 

 
Keywords 
Reinforcement Learning; Profit-Sharing Method; Mixture Probability; Clustering 

 
 

1. Introduction 
Reinforcement learning (RL) is an area of machine learning within the computer science domain, and many RL 
methods have recently been proposed and applied to a variety of problems [1-3], where agents learn the policies 
to maximize the total number of rewards decided according to specific rules. In the process whereby agents obtain 
rewards, data consisting of state-action pairs is generated. The agents’ policies are effectively improved by a 
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supervised learning mechanism using the sequential expression of the stored data series and rewards. 
Normally, RL agents initialize the policies when they are placed in a new environment and the learning 

process starts afresh each time. Effective adjustment to an unknown environment becomes possible by using sta- 
tistical methods, such as a Bayesian network model [4,5], mixture probability and clustering distribution [6], etc., 
which consist of observational data on multiple environments that the agents have learned in the past [7,8]. 
However, the use of a mixture model of Bayesian networks increases the system’s calculation time. Also, when 
there are limited processing resources, it becomes necessary to control the computational complexity. On the 
other hand, by using mixture probability and clustering distribution, even though the computational complexity 
was controlled and the system’s performance simultaneously maintained, the experiments were only conducted 
on fixed obstacle environments. Therefore, examination of the computational complexity load and the adapta- 
tion performance in dynamic and 3D environments is required. 

In this paper, we describe a mixture probability consisting of the integration of observational data on envi- 
ronments that an agent learned in the past within the framework of RL, which provides initial knowledge to the 
agent and enables efficient adjustment to a changing environment. We also describe a novel clustering method 
that makes it possible to select fewer mixture probability elements for a significant reduction in the computa- 
tional complexity while retaining the system’s performance. 

The paper is organized as follows. Section 2 briefly explains the profit-sharing method, the mixture probabil- 
ity, the clustering distribution, and the flow system. The experimental setup and procedure as well as the pre- 
sentation of results are described in Section 3. Finally, Section 4 summarizes the key points and mentions our 
future work. 

2. Preparation 
The RL method makes it possible for agents to learn new behaviors for profit-sharing, mixture probability, and 
clustering, which are the three principal components of the proposed system. This section describes the three 
principal components and the flow system. 

2.1. Profit-Sharing 
Profit-sharing is an RL method that is used as a policy learning mechanism in our proposed system. RL agents 
learn their own policies through “rewards” received from an environment. 

The policy is given by the following function: 

:w S A R× →                                           (1) 

where S and 𝐴𝐴denote a set of state and action, respectively. Pair ( )( ), ,s a s S a A∀ ∈ ∀ ∈  is referred to as a rule. 
( ),w s a  is used as the weight of the rule ( ( ),w s a is positive in this paper).When state 0s  is observed, a rule is 

selected in proportion to the weight of rule ( )0 0,w s a . The agent selects a single rule corresponding to given 
state 0s  using the following probability: 

( ) ( )
( )

0 0
0 0
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                             (2) 

The agent stores the sequence of all rules that were selected until the agent reaches the target as an episode. 

( ) ( ){ }1 1, , , ,L LL s a s a= …                                  (3) 

where L  is the length of the episode. When the agent selects rule ( ),L Ls a  and requires reward r, the weight 
of each rule in the episode is reinforced as in Figure 1 by 

( ) ( ), , L i
i i i iw s a w s a rγ −← +                               (4) 

where (( )0,1]γ ∈  is the “learning rate”. In this paper, the following nonfixed reward is used: 

( )0r r t n= + −                                          (5) 
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Figure 1. Reward sharing. 

 
where 0r  is the initial reward, t  is the action number limit in one trial and n  is the real action number until 
the agent reaches the target. We expect that the agent can choose a more suitable rule to reach the target in a 
dynamic environment by using this nonfixed reward. 

2.2. Mixture Probability 
Mixture probability is a mechanism for recognizing changes in the environment and consequently improving the 
agent’s policy to adjust to those changes. 

The joint distribution [9] ( ),P s a , consisting of the episode observed while learning an agent’s policy, is 
probabilistic knowledge about the environment. Furthermore, the policy acquired by the agent is improved by 
using the mixture probability of ( )1, ,iP i m= …  obtained in multiple known environments. The mixing distri- 
bution is given by the following function: 

( ) ( )
1

, ,
m

mix i i
i

P s a P s aβ
=

= ∑                                 (6) 

where m denotes the number of joint distributions, and iβ  is the mixing parameter 1, 0i i
i
β β 

= ≥ 
 
∑ . By ad-  

justing the environment subject to this mixing parameter, we expect appropriate improvement of the policy on 
the unknown dynamic environment. 

In this paper, we use the following Hellinger distance [10] function to fix the mixing parameter: 

( ) ( ) ( )
1

2 21 1
2 2,H i i

x
D P Q P x Q x

   = −     
∑                         (7) 

where HD  is the distance between iP  and Q , and HD  is set to 0 when iP  and Q  are the same. iP  is 
joint distributions obtained in m  different environments that an agent has learned in the past, Q  is the sample 
distribution obtained from the successful trial of τ  times in an unknown environment, and x  is the total 
number of rules. Given that ( ), 2H iD P Q ≤  is established, the mixing parameter can be fixed by the follow- 
ing function: 

( )
( )1

2 ,

2 ,
H i

i m
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D P Q

D P Q
β

=

−
=
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                               (8) 

However, when ( )1 2 , 0m
H jj D P Q

=
 − = ∑ , 1

i m
β = , and when all distributions are equal, the mixing para-  

meter is evenly allotted. 

2.3. Clustering Distributions 
In this study, we used the group average method as opposed to the clustering method. The distance between the 
clusters can be determined by the following function: 
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where ;i jn n  are the number of joint distributions contained in iCl  and jCl , respectively. In this study, we 
used the Hellinger distance function ( ),H i jD P P . After completing the clustering, element iP  having the 
minimum ( ),H iD P Q  will be selected as the mixture probability element from each cluster. 

As shown in Figure 2, we expect that the computational complexity of the system can be controlled and it 
will be possible to maintain the effectiveness of policy learning by selecting only the suitable joint distributions 
as the mixture probability elements based on this clustering method. 

2.4. Flow System 
The system framework is shown in Figure 3. A case involving the application of mixture probability to improve 
the agent’s policy is explained in the following procedure: 

Step 1 Learn the policy in m  environments by using the profit-sharing method to make the joint distribu- 
tions ( )1, ,iP i m= = …  

Step 2 Cluster𝑚𝑚 distributions into n  clusters 
Step 3 Calculate the Hellinger distance HD  of distributions iP  and sample distribution Q  
Step 4 Select the element having the minimum ( ),H iD P Q  from each cluster 
Step 5 Calculate the mixing parameter iβ  
Step 6 Calculate the mixture probability mixP  
Step 7 Update the weight of all rules by using the following function: 

( ) ( ) ( ) ( ), , , ,new old old
mixw s a w s a w s a P s a→ + ×  

And then continue learning the updated weight by using the profit-sharing method. 

3. Experiment 
We performed an experiment to demonstrate the agent navigation problem and to illustrate the applied im- 
provement in the RL agent’s policy through the modification of parameters of the profit-sharing method and us- 
ing the mixture probability scheme. The purpose of this experiment was to evaluate the adjustment performance 
in the unknown dynamic environment by applying the policy improvement, and to evaluate its effectiveness by 
using mixture probability. 

3.1. Experimental Setup 
The aim in the agent navigation problem is to arrive at the target from the default position of the environment 
where the agent is placed. In the experiment, the reward is obtained when the agent reaches the target by avoid- 
ing the obstacle in the environment, as shown in Figure 4. 

The types of state and action are shown in Table 1 and Table 2, respectively. Table 1 shows the output ac- 
tions of an agent in 8 directions and Table 2 shows 256 types of the total input states coming from the combina- 
tion of existing obstacles in 8 directions. The 8 directions are the top left, top, top right, left, right, bottom left, 
bottom, and bottom right. The agent has 2048 (8 actions × 512 states) rules in total that result from a combina- 
tion of input states and output actions. The size of agent, target, and environment are 1 × 1, 5 × 5, and 50 × 50,  

 

 
Figure 2. Element selection. 
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Figure 3. System framework. 

 

 
Figure 4. Environment of agent navigation problem. 

 
Table 1. Types of action. 

Direction of action  Value 

  ↑    0 1 2 

←   A  →   3  A  4 

  ↓    5 6 7 

 
Table 2. Some types of state. 

Position of obstacle and value 

   
… 

 
… 

 

0 1 2  111  255 
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respectively. Some of the known environments that became mixture probability elements, and the unknown dy- 
namic environments ( ), ,A B CE E E  used to evaluate the policy improvement are shown in Figure 5 and Figure 
6, respectively. 

3.2. Experimental Procedure 
The agent learns the policy by using the profit-sharing method. A trial is considered to be successful if an agent 
reaches the target at least once out of 300 action attempts. The action is selected by randomization and that ac- 
tion continues until the state is changed. 

The purpose of the experiment is to learn the policy in unknown dynamic environments ,A BE E  and CE  in 
three cases (fixed obstacle, periodic dynamic and nonperiodic dynamic environments), by employing only the 
profit-sharing method and the mixture probability scheme (elements are m and n); the evaluation is based on the 
success rate of 2000 trials. The experimental parameters are shown in Table 3. 

3.3. Results and Discussion 
The success rate of policy improvement in ,A BE E  and CE  by using mixture probability and clustering in 
 

 
Figure 5. Some of the known environments. 

 

 
Figure 6. Unknown environments. 

 
Table 3. Experimental parameters. 

Variable Value Variable Value 

t  300 τ  20 

γ  0.8 0w  10.0 

0r  nonfixed n  10, 15, 20 

0r  100 m  30 
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fixed-obstacle cases, and the processing time from Step 3 (system flow) to the experiment conclusion are shown 
in Figure 7 and Table 4, respectively. 

Figure 7 shows that the success rate by using mixture probability is clearly higher than when using only the 
profit-sharing method in all environments. Even the success rate by using only 10 elements is also higher than 
that using only the profit-sharing method, but is still lower compared to the results using 15 and 20 elements in 

AE  and BE . Hence, we can say that the influence on policy improvement by reducing the number of elements 
is apparent in some environments. 
 

 
Figure 7. Transition of success rate (fixed-obstacle). 

 
Table 4. Processing time. 

 
Element number and processing time (s) 

30 20 15 10 

AE  19.622 15.537 12.240 9.356 

BE  22.107 17.963 14.578 10.125 

CE  18.250 14.641 11.894 9.087 
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We can confirm that the success rate is higher when using more mixture probability elements in any environ- 
ment. The success rate using all 30 elements was the highest, but that obtained using 15 elements was almost the 
same as that using all the elements in this result. 

Furthermore, from the results in Table 4, we can confirm that by reducing the number of elements, the 
processing time was reduced considerably. 

From these results, it can be seen that the immediate success rate obtained by policy improvement is higher 
than that obtained by only the profit-sharing method in all environments, and the higher success rate continues 
until the experiments end. Furthermore, the decline in effectiveness can be controlled even if the number of 
mixture probability elements is reduced by half based on the use of clustering. 

The results of policy improvement by using 15 elements of mixture probabilities in three cases are shown in 
Figure 8, and the results of five sets of experiments in periodic and nonperiodic dynamic movement in AE  and 

BE  are shown in Figure 9, respectively. 
 

 
Figure 8. Transition of success rate (3 cases). 
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Figure 9. Five sets of experiments on AE  and BE . 

 
Figure 8 shows that the success rate in AE  and BE  in the case of periodic dynamic movement was slightly 

lower in the early period compared with the fixed obstacle case, but there was almost no difference finally. 
However, the success rate in the case of periodic dynamic movement was conversely higher in CE . On the oth- 
er hand, in the case of nonperiodic dynamic movement, even the success rate in CE  was higher compared with 
the fixed obstacle case, but the results in AE  and BE  were quite low and unstable compared with the other 
cases, as shown in Figure 9. 

From these results, we can deduce that the agent successfully learns the policy in the periodic dynamic 
movement environment and can more easily reach the target when the obstacle moves out from the trajectory as 
in CE . On the contrary, when the obstacle moves into the trajectory, it will be more difficult for the agent to 
reach the target. 

4. Conclusions 
Humans can visually judge a new environment and easily select the appropriate rule to reach the target. How- 
ever, this is not so for robots. A robot cannot judge a new environment by sight, and so it is necessary to select 
various rules to make a robot reach the target. In addition, to be more efficient, the robot needs to learn the poli- 
cy by using knowledge obtained from prior target arrivals. In this paper, we used the joint distributions ( ),P s a  
as the knowledge and the sample distribution Q to find the degree of similarity between the unknown and each 
known environment. We then used this as the basis to update the initial knowledge as being very useful for the 
agent to learn the policy in a changing environment. Even if obtaining the sample distribution is time consuming, 
it is still worthwhile if the agent can efficiently learn the policy in an unknown dynamic environment. 

Also, by using the clustering method to collect similar elements and then selecting just one suitable joint dis- 
tribution as the mixture probability elements from each cluster, we can avoid using similar elements to maintain 
a variety of elements when we reduce their number. 
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From the results of the computer experiment as an example application in the agent navigation problem, we 
can confirm the following: 
• The policy improvement in unknown dynamic environments is effective. 
• The decline in effectiveness of the policy improvement can be controlled by using the clustering method. 

We conclude that the improvement of stability and speed in policy learning, and the control of computational 
complexity are effective by using our proposed system. 

Examination of the computational complexity load and adaptation performance in a dynamic 3D environment 
is necessary. Improvement of the RL policy is also required by using mixture probability with a positive and 
negative weight value for making the system adaptable to unknown environments that are not similar to any 
known environments. Finally, a new reward process is needed as well as a new mixing parameter for the agent 
to adjust to a changing environment more efficiently and to be able to work well in 3Denvironments in future 
work. 
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