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Abstract 

Several classes of permutation polynomials of the form ( ) ( )
kp tx x + δ + L x−  over finite fields are 

presented in this paper, which is a further investigation on a recent work of Li et al. 
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1. Introduction 
Let p  be a prime and np

F  denote a finite field with np  elements. A polynomial ( ) [ ]np
f x F x∈  is called a 

permutation polynomial over np
F  if it induces a one-to-one map from np

F  to itself. Permutation polynomials 
were first studied by Hermite [1] for the case of finite prime fields and by Dickson [4] for arbitrary finite fields. 
Permutation polynomials have been studied extensively and have important applications in coding theory, cryp- 
tography, combinatorics, and design theory [3-6]. In the recent years, there has been significant progress in find- 
ing new permutation polynomials [7-12]. 

The determination of permutation polynomials is not an easy problem. An important class of permutation po- 
lynomials is of the form 

( ) ( ),
kp tx x L xδ− + +                                 (1) 

where ,k t  are integers, np
Fδ ∈  and ( )L x  is a linearized polynomial. In [13], Helleseth and Zinoviev de- 

rived new identities on Kloosterman sums by making use of this kind of permutation polynomials. Followed by 
the research of Helleseth and Zinoviev, many researchers began to study such class of permutation polynomials 
and numerical results were obtained [14-18]. 

In this paper, inspired by permutation polynomials obtained by Zha and Hu in [18]} and Li et al. in [19], we  

investigate several new classes of permutation polynomials of the form (1) with 1
2

n
rpt p−

= + , where p  is  

an odd prime and r  is a nonnegative integer. 
This paper is organized as follows. In Section 2, we present several classes of permutation polynomials over

3nF , which are not covered by [18,19], and over np
F . We conclude the paper in Section 3. 

http://www.scirp.org/journal/jcc
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2. Permutation Polynomials over 
3nF  

In this section, we study the permutation polynomials of the form (1) with 1
2

n
rpt p−

= +  over 
3nF . These  

permutation polynomials are not covered by [18,19]. 
The trace function from np

F  to its subfield kp
F , where |k n , is defined by 

2
( )

k k n kn p p p
kTr x x x x x

−
= + + + + . 

Let α  be a primitive element of np
F , define 2

0D α=< > , and 1 0D Dα= . Then 0 1{0}np
F D D= ∪ ∪ . Ob- 

viously, when ix D∈ , we have that 
1 ( 1)

2 2 ( 1)
n np p i

ix α
− −

= = −  for 0,1i = . 
When 0,1i = , Li et al. in [19] investigates the permutation polynomials with the form of 

3 1 33 32( )
n

ikk k
x x x xδ

−
+

− + + + . 

The following theorem shows that it is also a permutation polynomial when 2i = . 
Theorem 1 Let 3n k= , where k  is a positive integer, and 

3nFδ ∈  with ( ) 0n
kTr δ = . Then 

23 1 33 32( )
n

kk k
x x x xδ

−
+

− + + +  is a permutation polynomial over 3nF . 

Proof For any 
3nb F∈ , it is sufficient to prove the 

Equation 

23 1 33 32( )
n

k
k k

x x x x bδ
−
+

− + + + =                           (2) 

has exactly one solution over 3nF . 
If x  is a solution of the Equation (2), then we consider three cases in the following. 
1) Case A: 3 0

k
x x δ− + = . By (2), we have 3k

x x b+ = . Then the two Equations lead to x b δ= − − . Hence 
3 3 3k k k

x x b bδ δ δ− + = − + − − . 
2) Case B: 3

0
k

x x Dδ− + ∈ . By (2), we have 
2 23 3 3k k k

x x x b δ− + − = − .                                   (3) 
Raising the 3k th power on the both sides of Equation (3), we have 

23 3 3 .
k k k

x x x b δ− + − = −                                     (4) 
By Equations (3) and (4), we have 

23 3k k
x b b δ δ= + − − . Hence 

2 23 3 3 3 .
k k k k

x x b bδ δ δ δ− + = − + − +  
By ( ) 0n

kTr δ = , 
23 3 3 .

k k k
x x b bδ δ− + = − +  

3) Case C: 3
1

k
x x Dδ− + ∈ . By (2), we have 

2 23 3 3k k k
x x b δ+ = + . Raising the 3k th and 23 k th power on  

the both sides of the above Equation, respectively, we have 
23 3k k

x x b δ+ = +  and 
23 3 3k k k

x x b δ+ = + . By the  
three Equations, we have 

2 23 3 3 3k k k k
x b b b δ δ δ= − − − − + . So 

23 3 3k k k
x x b bδ δ− + = + − . 

Let 
23 3k k

b bδ= + − , then 
23 3k k

x x δ− + =  in Case B. 
If Case A happens, namely, 3 3 0

k k
b b δ δ− + − − = , then 

2 23 3 3 3 0
k k k k

b bδ δ δ δ= + − = + + = . Hence only  

one case will happen in the above three cases. So 
23 1 33 32( )

n
kk k

x x x x bδ
−
+

− + + + =  has exactly one solution 

over 
3kF , that is to say, 

23 1 33 32( )
n

kk k
x x x xδ

−
+

− + + +  is a permutation polynomial over 
3nF . The theorem 

holds. 
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The following theorems give several new classes of permutation polynomials which are not covered by 
[18,19]. 

Theorem 2 Let 3n k= , where k  is a positive integer, and 
3nFδ ∈  with ( ) 0n

kTr δ = . Then  
2

3 1 33 32( )
n

ikk k
x x x xδ

−
+

− + + +  is a permutation polynomial over 
3nF  for any 0,1i =  or 2. 

Proof For all 
3nb F∈ , it is sufficient to prove the Equation 

2
3 1 33 32( )

n
ikk k

x x x x bδ
−
+

− + + + =  has exactly one  

solution over 
3nF  for any 0,1i =  or 2. For 0,1i =  or 2, the proof is similar, so we only prove the permuta-

tion polynomial for 1i = , namely, 

2
3 1 33 32( )

n
kk k

x x x x bδ
−
+

− + + + =                                (5) 

If x  is a solution of the Equation (5), then we consider three cases in the following. 
1) Case A: 3 0

k
x x δ− + = . By (5), we have 

23 k
x x b+ = . Raising the 3k th power on both sides, we have 

3 3k k
x x b+ = . By 3 0

k
x x δ− + =  and 3 3k k

x x b+ = , we have 3k
x b δ= − − . Hence  

23 3 3 3k k k k
x x b bδ δ δ− + = − + − − . 

2) Case B: 3
0

k
x x Dδ− + ∈ . By (5), we have 

23 3 3k k k
x x x b δ− − + = − . Raising the 3k th power and 23 k th  

power on the both sides of the above Equation, respectively, then we have 
2 23 3 3 3k k k k

x x x b δ− − + = −  and 
2 23 3 3k k k

x x x b δ− − + = − . By the two Equations, we have 
2 23 3 3k k k

x b bδ δ= − + − . Hence  
3 3 3k k k

x x b bδ δ− + = − + . 
3) Case C: 3

1
k

x x Dδ− + ∈ . By (5), we have 3 3k k
x x b δ+ = + . Raising the 3k th power and 23 k th  

power on the both sides of the above Equation, respectively, then we have 
2 23 3 3 3k k k k

x x b δ+ = +  and 
2 23 3k k

x x b δ+ = + . 
By the three equations, we have 

2 23 3 3 3( ) ( )
k k k k

x b b bδ δ δ= − + − + + + . Hence 
2 23 3 3 3k k k k

x x b bδ δ− + = − + + . 
Let 3 3k k

b b δ= − + . Then 
2 23 3 3 3k k k k

b b δ− + + =  in Case C. 
If Case A occurs, namely, 

23 3 3 0
k k k

b b δ δ− + − − = , then we have 
23 3 0

k k
δ δ δ= + + = . Hence only one  

case will happen in the above three cases. Therefore, 
2

3 1 33 32( )
n

kk k
x x x x bδ

−
+

− + + + =  has exactly one solution 

over 
3nF , that is to say, 

2
3 1 33 32( )

n
kk k

x x x xδ
−
+

− + + +  is a permutation polynomial over 
3nF . The theorem holds. 

Theorem 3 Let 3n k= , where k  is a positive integer, and 
3nFδ ∈  with ( ) 0n

kTr δ = . Then  

2
3 1 33 3 32( )

n
ikk k k

x x x x xδ
−
+

− + + + −  is a permutation polynomial over 
3nF  for any 0,1i =  or 2 . 

Proof Since the proof is similar for any 0,1i =  or 2, we only prove the permutation polynomial when 1i = . 
For all 

3kb F∈ , it is sufficient to prove 

2
3 1 33 3 32( )

n
kk k k

x x x x x bδ
−
+

− + + + − =                           (6) 

has exactly one solution over 
3kF . If x  is a solution of the Equation (6), then we consider three cases in the 

following. 
1) Case A: 3 0

k
x x δ− + = . By (6), we have 

23 3k k
x x x b+ − = .  

By the two Equations, we have 
23 k

x b δ= + . 
So 3 3k k

x b δ= +  and 
2 23 3 3 3 3k k k k k

x x b bδ δ δ δ− + = + − − + . 
2) Case B: 3

0
k

x x Dδ− + ∈ . By (6), we have 
23 3k k

x x bδ+ = − . Let 3k
u bδ= − , then 3 3k k

x x u+ =  and 
2 23 3 3k k k

x x u+ = . By the three Equations, we have 
23 3k k

x u u u= − − . So 
23 3 3k k k

x x b bδ δ δ− + = − + − − . 

3) Case C: 3
1

k
x x Dδ− + ∈ . By (6), we have 3 3k k

x x b δ+ = − − . Let 3k
v b δ= − − , then 

23 3 3k k k
x x v+ =   

and 
2 23 3k k

x x v+ = . By the three Equations, we have 
23 3k k

x v v v= − + − . Hence  
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2 23 3 3 3k k k k
x x b bδ δ δ− + = − − − . 

Let 
23 3k k

b b δ δ= − + − − , then 
2 2 23 3 3 3k k k k

b b δ δ− − − =  in Case C. 
If Case A occurs, then we have 

23 3( ) 0
k k

δ δ δ= − + + = . Hence only one case will happen in the above three 

cases. Therefore, 
2

3 1 33 3 32( )
n

kk k k
x x x x x bδ

−
+

− + + + − =  has exactly one solution over 
3nF . The theorem holds. 

In the above section, we consider permutation polynomials over 
3nF . In the following, we investigate permu- 

tation polynomials over np
F  for an odd prime p . 

Theorem 4 Let 4n k= , where k  is a positive integer and p  be an odd prime. Then 
2 2

1
2( )
n

ikk k
p pp px x x xδ

−
+

− + + +  is a permutation polynomial over np
F  for any 0,1,2i =  or 3 . 

Proof For all np
b F∈ , it is sufficient to prove 

2 2
1

2( )
n

ikk k
p pp px x x x bδ

−
+

− + + + =  only have a solution over  

np
F  for any 0,1,2i =  or 3. 

Since the proof is similar for 0i =  or 2, we only consider 0i = . 
Similarly, the proof is also similar for 1i =  or 3, so we only consider 1i = . 

For 0i = , if x  is a solution of the equation 
2 2

1 1
2( )
n

k k
p

p px x x x bδ
−
+

− + + + = , then we consider three cases 
in the following. 

1) Case A 0 : 
2

0
kpx x δ− + = . Then we have 

2kpx x b+ = . Hence 
1 ( )
2

x b δ= + . Therefore,  

2 2 21 ( )
2

k k kp p px x b bδ δ δ− + = − + + . 

2) Case B 0 : 
2

0
kpx x Dδ− + ∈ . Then we have 

2 1 ( )
2

kpx b δ= −  and 
2 21 ( )

2
k kp px b δ= − . Hence 

2 2 21 ( )
2

k k kp p px x b bδ δ δ− + = − + + . 

3) Case C 0 : 
2

1
kpx x Dδ− + ∈ . Then we have 

1 ( )
2

x b δ= + . Hence 
2 2 21 ( )

2
k k kp p px x b bδ δ δ− + = − + + . 

Hence only one case will occur in the above three cases. Therefore, 
2 2

1 1
2( )
n

k k
p

p px x x x bδ
−
+

− + + + =  only 
have a solution over np

F . 

For 1i = , if x  is a solution of the equation 

2 2
1

2( )
n

kk k
p pp px x x x bδ

−
+

− + + + = , 

then we also consider three cases in the following. 

1) Case A 1 : 
2

0
kpx x δ− + = . Then we have 

2kpx x b+ = . Hence 
1 ( )
2

x b δ= + . Therefore, 

2 2 21 ( )
2

k k kp p px x b bδ δ δ− + = − + + . 

2) Case B 1 : 
2

0
kpx x Dδ− + ∈ . Then we have 

3 2
.

k k k kp p p px x x x b δ+ − + = −                                  (7) 
Let 

kpu b δ= − . Then raising the kp  th power, 2kp th power, and 3kp th power on the both sides for Equa- 
tion (7), respectively, we have 

3 2k k k kp p p px x x x u+ − + =                                     (8) 
3 2 2k k k kp p p px x x x u+ − + =                                     (9)  
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2 3 3k k k kp p p px x x x u+ − + =                                   (10) 
Adding (7) to (8), we have 

3
2 2 .

k kp px x u u+ = +                                       (11) 
Subtracting (10) from (9), we have 

3 2 3
2 2 .

k k kp p px x u u− = −                                    (12) 
Adding (11) to (12), we have 

2 3
4

k k kp p px u u u u= + + − . 
Hence 

2 31 ( )
4

k k kp p px u u u u= + + −  

and 
2 3 21 ( )

2
k k k kp p p px x b bδ δ δ− + = − + + . 

3) Case C 1 : 
2

1
kpx x Dδ− + ∈ . Then we have 

3 2
.

k k k kp p p px x x x b δ− − − = − −                              (13) 
Let 

kpv b δ= − − . Raising the kp th power, 2kp th power, and 3kp th power on the both sides of Equation 
(13), respectively, then we obtain 

3 2k k k kp p p px x x x v− − − =                                   (14) 
3 2 2k k k kp p p px x x x v− − − =                                  (15) 

2 3 3k k k kp p p px x x x v− − − =                                  (16) 
Subtracting (13) from (14), then we obtain 

3
2 2 .

k kp px x v v− = −                                       (17) 
Adding (15) to (16), then we have 

3 2 3
2 2 .

k k kp p px x v v− − = +                                   (18) 
Subtracting (18) from (17), then we obtain 

2 3
4

k k kp p px v v v v= − + − − . 
Hence 

2 31 ( )
4

k k kp p px v v v v= − + − −  

and 
2 3 21 ( )

2
k k k kp p p px x b bδ δ δ− + = − + + + . 

Let 
3 2k k kp p pb b δ δ= − + + . Then 

3 2 2k k k kp p p pb b δ δ− + + + =  in the Case C 1 . 

If Case A 1  occurs, then 
2 2

0
k kp pb b δ δ− + + = . 

Hence 
3 2 3 2

3 2 2 3 2 2 2 2
( ) ( ) ( 0  )

k k k k k k

k k k k k k k k k k

p p p p p p

p p p p p p p p p p

b b b b

x x x x x x x x

δ δ δ δ

δ δ δ δ

= − + + = − + +

= − − + + = − − − − + − + − =


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Hence only one case will occur in the above three cases. Therefore, 
2 2

1
2( )
n

kk k
p pp px x x x bδ

−
+

− + + + =  only 
has a solution over np

F . The theorem holds. 

3. Conclusion 

In the paper, we obtain some permutation polynomials of the form ( ) ( )
kp tx x L xδ− + +  with 1

2

n
rpt p−

= + ,  

which are not covered by [18,19]. It is possible that they have some applications in coding theory, cryptography, 
combinatorics, design theory and so on. 
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