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Abstract 
Catheter is commonly used by the surgeons for various reasons in the treatment of a patient suf-
fering with cardiovascular diseases. Catheterization increases the mean flow resistance in the ar-
terial blood flow and many other complications are associated with the presence of catheter in the 
artery. Effects of catheter in stenosed artery can be estimated non-invasively by means of hemo-
dynamic indicator-WSS, WSSG, volume flow rate and impedance. The effect of slip at the arterial 
wall, inclination of the artery and magnetic field on the hemodynamic indicators and flow profiles 
are computed, presented and discussed through graphs. 
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1. Introduction 
A significant change in blood flow, pressure distribution, wall shear stress and resistance to flow has been uni- 
versally observed when an impediment has developed in the arterial lumen. Generally, in the artery, the impe-
diment developments are resulted from the lipoproteins and fatty acids deposition at the sites of atherosclerosis 
lesion. Consequently, a stenosed artery has been formed. In the stenosed section the velocity gradient near the 
wall region is steeper due to the increased core velocity resulting in relatively large shear stress on the wall even 
for a mild stenosis. Several researchers Fung [1], McDonald [2], Mazumdar [3] and Zamir [4] have given ma-
thematical treatment to the blood flow in arteries subject to various physiological conditions. A fairly good 
number of theoretical and experimental studies on the blood flow through stenosed artery are available in the 
published literature, and some of them are Young [5], Srivastava [6] [7], Liu et al. [8], Yao and Li [9], Mekhei-
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mer and El-Kot [10].  
The use of catheters is of immense importance and has become a standard tool for diagnosis and treatment in 

modern medicine. When a catheter is inserted into the stenosed artery, the further increased impedance or fric-
tional resistance to flow will alter the velocity distribution. Kanai et al. [11] established analytically that for each 
experiment, a catheter of an appropriate size is required in order to reduce the error due to the wave reflection at 
the tip of the catheter. The mean flow resistance increase during coronary artery catheterization in normal as 
well as stenosed arteries has been studied by Back et al. [12]. A number of theoretical studies of suspensions in 
general and blood flow in particular are given by Jones [13], Nuber [14], Brunn [15], and experimental studies 
by Bugliarello and Hayden [16]; Bennet [17], suggest the likely presence of slip (a velocity discontinuity) at the 
flow boundaries (or in their immediate neighbourhood). Misra and Shit [18], Ponalgusamy [19], have developed 
mathematical models for blood flow through stenosed arterial segment, by taking a velocity slip condition at the 
constricted wall.  

The study of flow of an electrically conducting fluid through a stenosed artery with permeable walls not only 
possesses a theoretical importance, but also is useful for many biological and engineering problems such as 
magnetohydrodynamics (MHD) generators, blood flow problems, plasma studies. In the technical fields, the 
specification of MHD studies can be found in Moreau [20]. Kolin [21] has established that the biological sys-
tems in general are greatly affected by the application of external magnetic field. Barnothy [22] investigated that 
the heart rate decreases by exposing biological systems to an external magnetic field. Korchevskii and Marcoch-
nik [23] have discussed the possibility of regulating the blood movement in human system by applying magnetic 
field. In the decade of eighties, engineers attracted towards impact of magnetic field in biomedical flow primar-
ily with a view to utilizing MHD (magnetohydrodynamics) in controlling blood flow velocities in surgical pro-
cedures and also establishing the effects of magnetic fields on blood flows in astronauts, citizens living in the 
vicinity of EM (electromagnetic) towers etc. Several researchers [24]-[26] have worked out significant studies 
on hydromagnetic blood flow in artery. Layek et al. [27] and Kumar et al. [28] worked on a mathematical model 
to study flow through a variable shape stenosed artery under the influence of magnetic field and demonstrated 
the effect of stenosis shape and magnetic field on the resistance to the flow. Mekheimer [29] studied MHD, 
viscous, incompressible fluid flow in an inclined plane channel with electrical insulated walls using a perturba-
tion expansion. They found the explicit relation for velocity flow, pressure rise and flow rate in terms of Rey-
nolds number, wave number, Hartmann number, fround number, inclined angle and the occlusion. 

These researches motivated for the present study of blood flow in catheterized stenosed artery subject to a 
velocity slip at the stenosed arterial wall under the influence of transverse magnetic field will be quite rational 
for theoretical study of blood flow and explanation of disease linked with flow dysfunction.  

2. Formulation of the Problem 
The problem considered here is to study pulsatile blood flow through an inclined axially symmetric catheterized 
stenosed artery with slip velocity at the arterial wall. The blood vessel geometry is determined by the radius R0 
of the inlet and outlet unconstricted segment, whereas the radius of the smooth axisymmetric constricted seg-
ment is given by 

( )
*

0*

0

π1 cos
2

otherwise

zR L z L
R z L

R

δ ∗  
− + − ≤ ≤  =   




                       (1) 

where 2L is the length of stenosis and δ is maximum height of the stenosis. 
In the cylindrical coordinate system ( ), ,r zθ ∗ , the axis of the vessel coincides with the z∗ -axis and the ori-

gin * 0z =  corresponds to the peak point of the stenosis. The diameter of the artery is assumed to be greater 
than 1 mm so that Fahreus-Lindquist effect is not significant. The flow through the artery is in the influence of 
external magnetic field, an electromagnetic force will be produced due to the interaction of current with mag-
netic field when electrically conducting fluid like blood is flowing in the magnetic field. 

The electromotive force is proportional to the speed of motion and the magnetic flux intensity B (Tashtoush 
and Magableh, [30]). The Maxwells equations describing the magnetohydrodynamic flow are 

div 0=B                                      (2) 
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curl m Jµ=B                                          (3) 

curl
t

∂
= −

∂
BE                                         (4) 

where, E  is the electric field intensity, B  is the magnetic flux intensity mµ  is the electric permeability and 
J  is the current density. If σ  is the electrical conductivity, Then generalized Ohm’s law is 

( )σ= + ×J E V B                                      (5) 

The induced electromagnetic force ( )emF  is defined as 
( ) ( )emF σ= × = + × ×J B E V B B                               (6) 

Following Cowling [31] that there is no applied or polarization voltage so that 0=E . We assumed a mag-
netic field ( )0 ,0,0B=B  with a constant transverse magnetic flux density 0B  of moderate strength so that in-
duced magnetic field is negligible. On the flowing blood with velocity field in the cylindrical coordinate system 
described by ( )0,0,u∗=V  the magnetohydrodynamic force is 

( ) 2
0

ˆemF B u kσ ∗= × = −J B                                  (7) 

k̂  the unit vector in axial direction. Invoking these assumptions the governing equations of the motion of blood 
as Newtonian incompressible fluid with axisymmetric condition is given by  
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where, u∗  axial velocity, p∗  the pressure, t∗  time, µ  viscosity of the blood, ρ density of the blood, g∗  
gravitational acceleration, 0 1k< <  the aspect ratio of catheter radius to radius of artery, 0V  catheter speed, 

su  the slip velocity, φ  inclination of the artery as shown in Figure 1. 

3. Mathematical Analysis 
Introducing the following non-dimensional parameters: 
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0

2
0 0 0 0 0

2 2*
20 0 0 0

2
0

, , , , ,

,Re ,

t Vr z u gr z t u g
R L R V V R

V R R Bpp H
V

ρ σ
µ µρ

∗

= = = = =

= = =

                       (10) 

 

 
Figure 1. Schematic diagram of the studied physical model.  
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where, H the Hartmann number, Re the catheter speed based Reynold’s number.  
On putting these parameters in the Equations (8) and (9), the equation of motion and boundary conditions in 

dimensionless form reduces to  

21Re Re Re sinu p ur H u g
t z r r r

φ∂ ∂ ∂ ∂ = − + − + ∂ ∂ ∂ ∂ 
                       (11) 

The corresponding boundary conditions are 
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Let us assume the pressure gradient in the dimensionless form as 

( )i1 e tp f
z

ωε∂
= +

∂
                                    (13) 

where, f is constant pressure gradient. The governing equation of motion is nonlinear coupled partial differential 
equation. For its solution, let us consider 

( ) ( )i
0 1e tu u r u rωε= +                                  (14) 

where ω is the frequency of the oscillations of pulsatile blood flow. 
On plugging Equation (14) into Equation (11) and comparing coefficient of like powers of ε, we have ze-

ro-order and first order equations. 

3.1. Zero-Order Equation 
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3.2. First Order Equation 
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The corresponding boundary conditions are 
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Equation (15) is the modified Bessel’s differential equation whose solution is given by 
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where 2 2 2

Re sin Ref gf
H H

φ
= − +  

Similarly the solution of the Bessel’s Equation (16) for the transient flow is known and given by 
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where, 2 2 ReiHλ ω= +  and 3 2

Ref f
λ

= −  

4. Calculation of Hemodynamic Indices Wss, Wssg, Volume Flow  
Rate and Impedance 

4.1. Wall Shear Stress 
Wall shear stress is important physical indicator for describing arterial disease due to disturbed flow. High Wall 
Shear Stress not only damage the vessel wall and cause intimal thickening, but also activate platelets, resulting 
platelet aggregation and thus formation of thrombus. Wall Shear Stress at the surface of stenosis is given by 
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1

i
1 1 1 2 1 1 3 1 1 4 1 1e t

r R

uWSS H c I HR c K HR c I R c K R
r

ωτ ε λ λ λ
=

∂  = − = − − + − ∂
      (20) 
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4.2. Wall Shear Stress Gradient 
Hemodynamic indicator describes the regions of disturbed flow which corresponds with high WSSG. Experi-
mental results of Meng et al. [32] depict that high positive shear stress gradients encourage endothelial cell mi-
gration, which describe the region with low endothelial cell density prone to flow associated diseases. Based on 
simulated and realistic coronary artery models, Chaichana et al. [33] concluded that WSSG is a better hemody-
namic indicator of atherosclerosis initiation as the regions of WSSG covered a larger region of disturbed flow. 
Mathematically the WSSG for unidirectional flow in the present model can be given by 

 
( ) ( )i

3 1 1 4 1 1e itWSSG c I R c K R
t

ωτ ε ωλ λ λ∂  = − −    ∂ 
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4.3. Volumetric Flow Rate 
The volumetric flow rate Q of blood in the stenotic region is given by  
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∫
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4.4. Resistive Impedance 
The resistive impedance is physiological important hemodynamic indicator used in the study of resistance to 
flow of blood in artery. It is defined as 
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5. Results and Discussion 

The flow profiles are derived for mild stenoses of thickness 20% of radius of artery. The catheter motion is tak-
en in the positive z-direction. 

Figure 2 shows that the effect of magnetic field reduces the flow speed result of which its gradient has been 
declined for higher value of Hartmann number (H). 

Figure 3 depicts that with the increase of Reynolds number, i.e. on the increase of catheter speed, the flow 
velocity increases in both the cases, with slip or without slip at the wall of the artery. The slip at the arterial wall 
fairly increases the flow velocity as compare to the no-slip at the arterial wall. The effect of slip velocity at the 
arterial wall is more in magnitude at low Reynolds number (Re) and its effect diminished with the increase of  

 

 
Figure 2. Variation of axial velocity for Hartmann number at Re = 100, g = 
9.8 , z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.                             

 

 
Figure 3. Variation of axial velocity for Reynolds number at H = 1, g = 9.8, z 
= 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.                                   
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Re. The increase in the angle of inclination φ  of the artery (Figure 1), the flow velocity augmented substan-
tially at the core region of the annulus is observed in Figure 4. Figure 5 demonstrate that the flow in the annu-
lus region is substantially affected by the aspect ratio (k) of catheter radius to radius of artery. The increase in 
the value of k produces more surface resistance resulted significant retardation in flow through annulus region. It 
is observed from Figure 6 that wall shear stress (WSS) increases with the increase in Hartmann number in the 
similar manner for both the cases of with slip or without slip at the arterial wall. At small value of H, the WSS 
with slip flow at the arterial wall is very close to its counter case of without slip flow at the wall while on in-
creasing value of H the WSS is greater for slip flow case. 

The WSS is reduces with the increase in the catheter speed based Reynolds number as observed in Figure 7. 
In view of physical model under consideration, the enhancement in flow velocity can be committed with in-
crease in φ , that conclude the reduction in WSS with the increase of φ  as depicted from Figure 8. The in-
crease in the value of k produces more surface resistance resulted significant growth in the WSS as observed in 
Figure 9. 

The volumetric flow rate (Q) diminishes with the increase of H is depicted from Figure 10 while Q enhanced 
with the increase of Re, φ  and aspect ratio k as observed from Figures 11-13 respectively. 

 

 
Figure 4. Variation of axial velocity for angle of inclination at Re = 100, g 
= 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, H = 1.                            

 

 
Figure 5. Variation of axial velocity for catheter radius at Re = 100, g = 9.8, 
z = 0.5, ωt = π/3, ω = 1, φ = π/3.                                       
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Figure 6. Variation of WSS for Hartmann number at Re = 100, g = 
9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.                      

 

 
Figure 7. Variation of WSS for Reynolds number at H = 1, g = 9.8, z 
= 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.                           

 

 
Figure 8. Variation of WSS for angle of inclination at Re = 100, g = 
9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, H = 1.                        

 
The wall shear stress gradient (WSSG) increases with the increase in H and Re as observed in Figures 14 and 

15 respectively. 
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Figure 9. Variation of WSS for different values of radius of inner 
cylinder at Re = 100, H = 1, g = 9.8, z = 0.5, ωt = π/3, ω = 1, φ = π/3.  

 

 
Figure 10. Variation of volumetric flow rate for Hartmann number 
at Re = 100, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.       

 

 
Figure 11. Variation of volumetric flow rate for Reynolds number 
at H = 1, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.          

 
Figure 16 depict that WSSG decreases with the aspect ratio k. 
Figures 17-19 demonstrate that the impedance ( )λ  on the flow is significantly affected by H, Re and k  
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Figure 12. Variation of volumetric flow rate for angle of in-
clination at Re = 100, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 
1, H = 1.                                              

 

 
Figure 13. Variation of volumetric flow rate with catheter 
radius at Re = 100, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, 
φ = π/3.                                               

 

 
Figure 14. Variation of WSSG for Hartmann number at Re 
= 100, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.      
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Figure 15. Variation of WSSG for Reynolds number at H = 1, g = 
9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.                       

 

 
Figure 16. Variation of WSSG for catheter radius at Re = 100, g = 
9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.                       

 

 
Figure 17. Variation of impedence for Hartmann number at Re = 100, 
g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1.                            
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Figure 18. Variation of impedence for Reynolds number at H 
= 1, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.          

 

 
Figure 19. Variation of impedence for catheter radius at Re = 
100, g = 9.8, z = 0.5, k = 0.2, ωt = π/3, ω = 1, φ = π/3.          

 
throughout in the stenosis region of artery. 

At the maximum height of stenosis λ  is appreciably diminishes with the increase of H, is in good agreement 
with the results of Mekheimer and Kot [10]. The impedance on the flow in annulus has augmented with the in-
crease of Re and k, shown in the Figures 18 and 19 respectively. 

6. Conclusions 

 Wall shear stress increases with increasing transverse magnetic field. 
 WSSG high at the apex of the stenosis indicates more disturbed flow at this location. 
 The impedance at the apex of the stenosis reduces increasing transverse magnetic field strength. 
 The impedance on the flow in annulus has augmented with the increase of Re and k. 
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