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Abstract 
When typical meteorological year (TMY) data are used as an input to simulate the energy used in a 
building, it is not clear which hours in the weather data file might correspond to an electric or 
natural gas utility’s peak demand. Yet, the determination of peak demand impacts is important in 
utility resource planning exercises and in determining the value of demand-side management 
(DSM) actions. We propose a formal probability-based method to estimate the summer and winter 
peak demand reduction from an energy efficiency measure when TMY data and model simulations 
are used to estimate peak impacts. In the estimation of winter peak demand impacts from some 
example energy efficiency measures in Texas, our proposed method performs far better than two 
alternatives. In the estimation of summer peak demand impacts, our proposed method provides 
very reasonable results which are very similar to those obtained from the Heat Wave approach 
adopted in California. 
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1. Introduction 
It is not always clear how weather-sensitive energy efficiency measures will perform at the exact hour(s) of the 
utility’s annual summer or winter system peak. Often, building energy use simulation models are used to obtain 
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8760 hourly impact estimates for the change in load associated with the efficiency measure based on typical 
meteorological year (TMY) data. TMY data contain actual months of weather data from different past years. 
Consequently, the TMY year does not coincide with any actual year and thus cannot be matched against actual 
demand or load data for a utility system or market. The hours associated with the most extreme temperatures in 
a TMY file may not necessarily correspond with a peak in demand in a utility system. Other factors, such as day 
of the week and the hour within the day, may also play a role. The challenge is to determine which of the 8760 
hourly values obtained from a building energy use simulation model to select to represent the demand reduction 
at the time of the utility’s system peak. 

This topic is of great importance to utility system planners. Electric and natural gas utility systems are con- 
structed largely to meet peak demand. Thus, the impact or performance of an energy efficiency measure during 
peak periods is of keen interest. Energy efficiency measures or demand side management (DSM) programs are 
valued, in part, based upon the generation and transmission costs which they could potentially displace [1]. Thus, 
the potential for an energy efficiency measure to reduce demand during the system’s peak affects the value of 
measures and programs. 

Various utility regulatory commissions in the US provide specific instructions for utilities and energy effi- 
ciency program administrators to follow when selecting the hour(s) associated with peak demand impacts. In 
California’s DEER database, “the demand savings due to an energy efficiency measure is calculated as the av- 
erage reduction in energy use over a defined nine-hour demand period” [2]. These nine hours correspond with 2 
pm to 5 pm during 3-day heat waves. The Mid-Atlantic Technical Reference Manual, used in Maryland, De- 
laware, and DC, states: “The primary way is to estimate peak savings during the most typical peak hour (as- 
sumed here to be 5 pm) on days during which system peak demand typically occurs (i.e., the hottest summer 
weekdays). This is most indicative of actual peak benefits.” [3] The New York Public Service Commission in- 
structs: “Program Administrators (PAs) should calculate coincident peak demand savings based on the hottest 
summer non-holiday weekday during the hour ending at 5 pm.” [4] Wisconsin’s utility regulatory agency re- 
quires that peak demand reduction for weather-sensitive efficiency measures be based on average design-day 
conditions [5]. In Illinois, Colorado, New Jersey, and Maine, coincidence factors are used to estimate peak de- 
mand reduction based the impacts of a weather-sensitive efficiency measure on annual energy consumption 
[6]-[9]. For energy efficiency measures which are not weather-sensitive, a number of states find it acceptable to 
average the expected energy impacts of the measure over a large number of hours within some “peak period”. 
We are unaware of any regulatory authority having adopted a formal probabilistic approach to estimating the 
impacts of energy efficiency measures upon the peak demand of a utility or market. 

A formal probabilistic approach is attractive because the system peak of a utility or a market may not neces- 
sarily coincide exactly with the hottest summer day, historical temporal patterns, design-day conditions, or heat 
waves. For example, an extremely hot summer temperature reading may not necessarily lead to a summer peak, 
if the extreme temperature occurs on a weekend (when energy use in the commercial or business sector may be 
lower) or early in the afternoon (before the occurrence of an after-work peak in household energy use). While 
extreme temperatures may be the most important determinant of system peak demand, various patterns in energy 
usage (as might be reflected by the time of day and the month of the year), and other factors may play a role as 
well. A probabilistic approach can be used to quantify how various factors may contribute to the establishment 
of a peak in system demand. 

2. Proposed Approach 
Our proposed approach to matching a seasonal peak on a utility system with a TMY data file involves the fol- 
lowing steps: 
 Establish the number of hours to be included in the set of peak hours to be predicted each year and season 

(e.g., summer and winter). 
 Use a logistic regression model and hourly data for a number of historical years to estimate the relationship 

between setting a peak hour and a set of explanatory variables, including a temperature variable and dummy 
variables representing the time-of-day and month-of-year. 

 Use the estimated relationships to assign marginal probabilities to changes in the explanatory variables.  
 With the estimated relationships, calculate the probability of setting a peak hour based on TMY weather data.  
 Find and average the savings (i.e., the difference between a base and change case) from the outputs of a 
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building energy use simulation model that used the same TMY data file which corresponds to the same 
hours. 

Although system planners often use a single hour or 15-minute interval to measure peak demand, predicting a 
larger set of peak hours tends to be more practical in the first step. Building energy use simulation models have 
stochastic algorithms. So if a single pair of model runs (i.e., a base case and a change case) is used to calculate 
hourly savings, the predicted savings may be biased for any single hour. So, either multiple model runs must be 
used to average the estimated hourly savings, or a broader definition of peak (i.e., peak hours) must be used. 
Further, in the analysis of the cost-effectiveness of energy efficiency measures and programs, the demand reduc- 
tion tends to be valued based on the capital cost of a combustion turbine which normally has an expected annual 
runtime of 10 to 40 hours. Thus an analysis of the cost-effectiveness of energy efficiency measures and pro- 
grams may benefit from knowledge of the impacts over a set of hours. Finally, estimating the probability of set- 
ting a set of peak hours is much easier than estimating a single peak hour or interval per year with a logistic 
model. For example, if six years of historical data are used and thus Y = 1 on only six instances, more advanced 
techniques would be required in the estimation (e.g., the use of a prior distribution and Bayesian estimation 
techniques) than those discussed here. For these reasons, a set of 20 peak hours is used in the examples pre- 
sented here. 

Note that the second step ignores many other very important factors that might affect the timing of the peak, 
including actions by industrial energy consumers and load-serving entities to respond to wholesale market price 
spikes1. The day of the week is also not considered. However, the inclusion of other variables would prevent the 
application of this approach when only a TMY weather file and a building energy use simulation model are used 
to calculate the peak demand reduction associated with an efficiency measure. TMY data are pieced-together 
from recorded weather during numerous previous years to create a typical year with typical fluctuations. Since 
the TMY data do not represent weather data from any single “real” year, there would be no way of matching 
“real” energy price data, the day of the week, or other variables to the fabricated weather data. 

Marginal probabilities can be obtained by estimating a logistic regression or logit model [11]. Most statistical 
software packages can convert the results from a logit model into probabilities [12] [13]. 

In the final step, either a simple average or a probability-weighted average (with the weights based on the 
probability of the seasonal peak being set in a particular hour in the TMY data file) could be used to estimate 
peak demand reduction among those hours within the set of peak demand hours. 

3. An Example Determination of Peak Hours 
An example is illustrated below to further explain the five steps described above. It is applied to the estimation 
of both summer and winter peak demand reduction associated with various energy efficiency measures. 

Total system electrical load or demand in the Electric Reliability Council of Texas (ERCOT) electricity mar- 
ket is used in this example. The ERCOT electricity market is “settled” based on 15-minute intervals. There are 
96 intervals in most days. Interval-level data were converted to hourly values to facilitate the estimation and 
provide a better match of load to hourly temperature data. The top 20 hours of each summer season of each year, 
Peak Hour, were coded 1, and all other hours were coded as 0. Variables representing the hours ending 16:00, 
17:00, and 18:00 were included to capture time-of-day factors affecting electricity use. All hours before 2 pm 
and after 6 pm were assumed to have zero probability of being within the set of peak hours and were eliminated 
from the dataset to facilitate estimation. Additionally, two variables representing the month-of-year (July and 
August) were also included. Because summer peak loads are largely determined by air conditioning usage in 
Texas, a variable was constructed to represent the ratio between the actual temperature in a central location 
within the ERCOT market (Austin) for a given interval and the highest temperature reading during the given 
year (Relative Max Temp). 

The resulting model was thus: 

( ) ( )Logit Peak Hour Relative Max Temp,  Hour16,  Hour17,  Hour18,  July,  Augustf=               (1) 

This relationship was estimated using R software as a general linear model with a binomial distribution. The 
estimated coefficients and p-values from the logistic regression are provided in Table 1. 

 

 

1An application of this probabilistic method in a situation where utility load data can be matched with actual weather and actual electricity 
prices can be found in [10]. These alternative proposed approaches are adopted from [17]. 
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Table 1. Logistic regression statistical results.                                 

 Estimate p-Value 

Intercept −39.3331 <0.0001 

RelativeMaxTemp 36.1022 <0.0001 

Hour16 1.7570 0.000131 

Hour17 1.9924 <0.0001 

Hour18 1.5439 0.001012 

July 0.9284 0.016848 

August 1.7722 <0.0001 

 
As we can see from Table 1, the coefficient estimates are significant at normally-accepted levels of statistical 

significance, with the possible exception of the dummy variable denoting the impact of the month of July (rela- 
tive to the omitted months of June and September). 

A unit increase in the relative maximum temperature-the ratio between the actual temperature in a central lo- 
cation within the ERCOT market (Austin) for a given interval and the highest temperature reading during the 
given year-raises the log of the odds of being included among the peak hours by 36.1022 ceteris paribus. 

The coefficient estimate of 1.757 on the variable Hour 16 suggests that the log of the odds of the hour be- 
tween 3:00 pm and 4:00 pm being among the peak hours (versus the 2:00 pm to 3:00 pm period or hour ending 
15:00, the time period not explicitly represented in the model with a variable) is 1.757 time higher, holding all 
other variables constant. The log odds of setting a peak hour between 4:00 pm and 5:00 pm (Hour 17) versus 
setting a peak hour between 2:00 pm and 3:00 pm is 1.9924 times higher, holding other variables constant. Si- 
milarly, the log odds of the hour from 5:00 pm to 6:00 pm (Hour 18) being among the peak hours is 1.5439 
times higher, relative to the omitted period and holding all other variables constant. 

For the July and August variables, 0.9284 means the log odds of being a peak hour in July versus being a peak 
hour in June or September are 0.9284 times higher (which is actually a decrease), and the log odds of being a 
peak hour in August versus being a peak hour in June are 1.7722 times higher, confirming that summer peaks 
are most likely to occur in August in Texas. 

The coefficient estimates expressed in log odds may be converted to odds ratios, by taking anti-logs. 
Once the marginal probabilities are estimated, the probability of each hour of the TMY file being included 

among the set of peak hours can be calculated. As an example, consider an hour (3:00 pm to 4:00 pm, aka the 
hour ending 16:00) in August, with an hourly temperature of 100˚F, and the annual highest annual temperature 
being 102˚F. The estimated log of the odds ratio of being a peak hour versus being outside the set of peak hours:  

39.3331 36.1022 100 102 1.757 1.7722 0.4096.+ + + = −− ×  

Thus the probability of obtaining a peak hour during that time and under those conditions is 
( ) ( )( )exp 0.4096 1 0.4096 0.4.exp− + − =  This calculation may be performed automatically with R software. 

The 20 hours in the TMY file assigned the highest probability of being within the set of peak hours are identi- 
fied in Table 2. Our set of 20 peak hours consists of 7 hours in July and 13 hours in August, all falling within 
the 3:00 pm to 6:00 pm afternoon time period (i.e., the hours ending 16:00, 17:00, and 18:00). Certainly, tem- 
perature prominently determines the probability that an hour falls within the set of 20 peak hours. Yet, the TMY 
hour ending 17:00 on August 5, 2004 earns the third highest probability, despite having a lower temperature 
(98.06˚F) than some hotter hours (e.g., July 28, 1995 at 16:00 and 18:00). This is because the hour ending 17:00 
is more likely to set a peak than the hours ending at 16:00 or 18:00. A probabilistic analysis appropriately takes 
into consideration both the weather and the time-of-day. 

Having estimated the probability of each hour being included among the set of 20 peak hours in this section, 
we next demonstrate how this information may be used to estimate the impact of energy efficiency measures on 
peak electricity use when a building energy use simulation model is used to estimate hourly energy consumption 
using TMY data. 

4. Matching the Selected Peak Hours to Energy Efficiency Savings Profiles 
To estimate the impact of an energy efficiency measure upon peak demand, we match the hours with the highest  
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Table 2. Twenty peak hours with the highest probability of being included among the set of peak hours.                  

Date in TMY File Hour Ending Temperature in Degrees F maxtemp RelativeMaxTemp logodds Probability 

7/28/1995 17:00 102.02 102.02 1 −0.3101 0.42309 

8/5/2004 16:00 100.04 102.02 0.980592041 −0.40961 0.400743 

8/5/2004 17:00 98.06 102.02 0.961184082 −0.86764 0.295746 

7/28/1995 16:00 100.94 102.02 0.98941384 −0.92768 0.283395 

8/20/2004 16:00 98.06 102.02 0.961184082 −1.10304 0.249171 

7/28/1995 18:00 100.94 102.02 0.98941384 −1.14078 0.242177 

8/20/2004 17:00 96.98 102.02 0.950597922 −1.24982 0.222731 

7/27/1995 17:00 98.96 102.02 0.970005881 −1.39295 0.198937 

8/3/2004 16:00 96.98 102.02 0.950597922 −1.48522 0.18464 

8/4/2004 16:00 96.98 102.02 0.950597922 −1.48522 0.18464 

8/11/2004 16:00 96.98 102.02 0.950597922 −1.48522 0.18464 

8/19/2004 16:00 96.98 102.02 0.950597922 −1.48522 0.18464 

8/26/2004 16:00 96.98 102.02 0.950597922 −1.48522 0.18464 

8/3/2004 17:00 96.08 102.02 0.941776122 −1.56831 0.172457 

8/4/2004 17:00 96.08 102.02 0.941776122 −1.56831 0.172457 

8/19/2004 17:00 96.08 102.02 0.941776122 −1.56831 0.172457 

8/26/2004 17:00 96.08 102.02 0.941776122 −1.56831 0.172457 

7/27/1995 16:00 98.96 102.02 0.970005881 −1.62835 0.164056 

7/24/1995 17:00 98.06 102.02 0.961184082 −1.71144 0.152977 

7/26/1995 17:00 98.06 102.02 0.961184082 −1.71144 0.152977 

 
probability of being among the set of peak hours to those same hours in the output from a building energy use 
simulation model that used the same TMY data file. The average of the energy efficiency measure’s hourly sav- 
ings over those 20 hours provides an estimate of the savings associated with the efficiency measure coincident 
with the summer peak. 

Application of this approach to a simulation of the savings associated with ceiling insulation and air infiltra- 
tion in an electrically-heated home in Austin is presented here. We also examine the savings from two light- 
ing-related energy efficiency measures. 

A whole-home simulation was developed using Energy Gauge, a simulation software tool that uses a DOE-2 
simulation engine [14]. Prototype home characteristics were selected using available data on the construction, 
occupancy, and equipment characteristics of Texas homes, as listed in Table 3. The rows labeled “Ceiling Insu- 
lation” and “Air Infiltration” state the base and change conditions. 

The simulations assumed differently sized HVAC systems for the analysis of the two weather-sensitive effi- 
ciency measures: 
 Air infiltration: 2.8 ton air conditioning capacity, 3.5 ton heating capacity 
 Ceiling Insulation: 4.3 ton air conditioning capacity, 4.8 ton heating capacity 

Table 4 compares estimates of the demand reduction of various scenarios associated with our proposed prob- 
abilistic approach with some alternative methods2: 
 Top 2 Hours of All Peak Months. Select the two hours when the peak hour has most-frequently occurred 

over the last ten years. Examine impacts during those two hours during every summer weekday during four 
summer months. Average the impacts over the resulting 170 hours—e.g., the hours ending 17:00 and 18:00 
during every summer weekday. 

 

 

3These alternative proposed approaches are adopted from [18]. 
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Table 3. Home characteristics inputs used in simulation model.                                                  

Input Value Source 

Conditioned Area 1915 square feet Weighted average total conditioned square feet of Texas single  
family detached Single Family Dwelling (SFD) homes. 

Site Plan 1 story square, 43'9'' × 43'9'' 
78% of Texas SFD homes are 1 story per 2009 Residential  
Energy Consumption Survey (RECS) [15]; a square home  

is agnostic to orientation. 

Bedrooms 3 Majority of SFD homes (53%) have 3 bedrooms. 

Bathrooms 2 A plurality of SFD homes (41%) have 2 bathrooms. 

Foundation Slab-on-grade, no insulation Majority (76%) of SFD homes have a slab. 

Ceiling Insulation 
For Air Infiltration measure R-22. 

For Ceiling Insulation measure: Base R-2.5, 
Change R-30. 

The average ceiling/wall insulation level for homes existing before 1998 
is R-20.51/10.94, per utility baseline studies. It is assumed that all 

homes built from 1998 on had an average of R-30/13, per International 
Energy Conservation Code (IECC) 2009 code requirements. Per [15], 

78% of Texas SFD homes are pre-1998, and 22% were built on or after 
1998. Taking the weighted average U values of insulation, the result is 

an overall average of U-0.0882/0.0454, or R-11.3/22.0. 

Wall Insulation R-11.3 See above. 

Window Area 210 square feet Per [15], the average Texas home has 14 windows, assuming an average 
size of 3’ × 5’ that makes for 210 square feet of windows. 

Air Infiltration 
For Ceiling Insulation measure: 12.2 ACH50 
For Air Infiltration measure: Base 12.2 ACH 

50, Change 7.43 ACH50 

Based on LBNL’s ResDB [16], US average of 0.61 Normalized Leakage 
(NL) rate for SFDs; per ResDB [16] 0.5NL = 10 ACH50, so 0.61 

NL = 12.2 ACH50. 

Window U-Value 0.78 

Combined the prevalence of single, double, and triple paned glass in 
Texas SFDs from [15] (58/41/1%) with the average U and solar heat 
gain coefficient (SHGC) for each pane level from LBNL’s RESFEN 

database [17], excluding windows with high solar gain coatings. 

Window SHGC 0.56 See above. 

Thermostat Settings 

Heating: 71.3˚F during the day when  
someone is home, 67.7˚F during the day 
when no one is home, 69.8˚F at night; 
Cooling: 74.1˚F during the day when  

someone is home, 76.6˚F during the day 
when no one is home, 73.9˚F at night. 

Weighted average reported thermostat set points from [15].  
Times associated with these set points are assumed to be the  

same as those specified by Energy Star program in US. 

Duct Losses 18% total loss From LBNL’s ResDB [16]. National average total duct leakage is 18% 
of air flow. 

Air Conditioning 11.3 SEER Result of combining the average age of central cooling equipment from 
[15] with annual shipment-weighted SEER values from the US DOE. 

Electric Heater COP of 1 Fundamental property of electric resistance. 

 
Table 4. Summer peak demand reduction for various efficiency measures from different approaches.                      

 Ceiling Insulation  
Austin (kW) 

Air Infiltration  
Austin (kW) 

Indoor Lighting Austin 
(kW) 

Outdoor Lighting Austin 
(kW) 

Probabilistic Approach (20 hours) 2.089 0.341 0.062 0 

Top 2 Hours of All Peak Months (170 hours) 1.531 0.257 0.087 0 

Heat Wave (9 hours) 2.036 0.344 0.056 0 

Average Over Peak Period (510 hours) 1.511 0.241 0.069 0 

 
 Heat Wave. The TMY weather files are scanned to locate a three-weekday period that has the highest aver- 

age temperatures during the peak hours. 
 Average Over Peak Period. Estimate a measure’s average impact between 1 pm and 7 pm on all summer 
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weekdays over four summer months. (510 hours) 
The second and third alternatives are consistent with the definitions adopted by some state regulatory authori- 

ties in the US, as discussed earlier in this paper. The Public Utility Commission of Texas formerly required the Aver- 
age over Peak Period method. Note that two of these three methods ignore the weather information in the TMY file. 

The peak demand reduction from two weather-sensitive efficiency measures, ceiling insulation type and air 
infiltration, is presented in Table 4. The estimated average summer demand reduction in Austin for a prototype 
home using the probabilistic analysis is 2.09 kW for the ceiling insulation efficiency measure and 0.34 kW for 
the air infiltration efficiency measure. 

The demand reduction impacts of two non-weather-sensitive measures, indoor and outdoor lighting in Austin, 
have also been estimated. For indoor lighting kW savings, we assumed that 30% of the original usage would be 
saved if energy-saving indoor lighting equipment was installed. Thus an average of 0.062 kW savings could be 
calculated based on the Energy Gauge home simulation model during 20 summer peak hours. For outdoor 
lighting, we considered a variety of outdoor lighting equipment and assumed that 5 kW savings when the out- 
door light is on is a reasonable deduction. Since none of the summer 20 peak hours occurs at night, the demand 
reduction associated with the outdoor lighting efficiency measure is 0 kW. 

For the two weather-sensitive measures, the definitions involving the highest number of hours yield the small- 
est estimated peak demand reduction. This is a reasonable result, since including further hours (without regard to 
the temperature associated with those hours) into a calculation of average impacts shall lower the average and 
bias the results downward. Our proposed probabilistic method provides estimates which are very similar to the 
Heat Wave method for the summer. The impact of the indoor lighting efficiency measure is greatest under the 
Top 2 Hours of All Peak Months Definition. 

Winter peak demand reduction estimates for our proposed approach can be implemented using steps similar to 
those described above. However, RelativeMaxTemp needs to be replaced by RelativeMinTemp to represent the 
ratio between the actual temperature in a central location within the ERCOT market (Austin) for a given interval 
and the lowest temperature reading during the winter in the year. A Heat Wave calculation is not performed for 
the winter peak. The winter kW savings estimated under three definitions appear in Table 5. 

The probabilistic approach produces far higher (and more-realistic) winter peak impact estimates for the 
weather-sensitive efficiency measures. The wide difference in estimates using different approaches can be traced 
to Texas’ climate. Freezing temperatures set the winter peak and are a relatively rare event in this southern state. 
Deep freezes follow no predictable pattern. That is, one would not expect them to predictably occur during the 
same month-of-year and hour-of-day year after year. Consequently, the Top 2 Hours of All Peak Months per- 
forms poorly. Averaging over a prolonged winter peak period (in this case, from 6 am to 10 am and 6 pm to 10 
pm) performs very poorly, as well, since many hours with mild temperatures and no need for space conditioning 
would be introduced into any peak period average. 

All 20 of the winter peak hours happen after sunset and before sunrise. Consequently, the demand reduction 
in the winter for outdoor lighting is 5 kW under two of the three definitions. A lower peak demand reduction es- 
timate is obtained when some daylight hours are included in the definition, as under the Average Over Peak Pe-
riod calculation.  

For indoor lighting, similar results are obtained under any of the approaches considered. For the weath- 
er-sensitive measures, the probability-based method provides far more-plausible results for a measure’s impacts 
on winter peak for Texas. Extreme temperatures indeed largely coincide with peaks in energy use, so the 
impacts of an efficiency measure during extreme weather (with adjustments for the time-of-day and 
month-of-year) should be used when estimating winter peak demand impacts. The use of simple temporal pat- 
 
Table 5. Winter peak demand reduction from different approaches.                                               

 Ceiling Insulation Austin 
(kW) 

Air Infiltration Austin 
(kW) 

Indoor Lighting Austin 
(kW) 

Outdoor Lighting Austin 
(kW) 

Probabilistic Approach  
(20 hours) 2.253 0.810 0.134 5 

Top 2 Hours of All Peak 
Months (124 Hours) 0.601 0.197 0.183 5 

Average over Peak Period 
(510 Hours) 0.933 0.239 0.105 3.583 
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terns which ignore temperatures or the averaging over large numbers of hours is inappropriate. It is suspected 
that in a colder climate where heat waves are a relatively rare event, the naïve application of patterns (without 
regard for temperature) or averaging to obtain summer peak impacts would similarly lead to implausible results. 

5. Conclusions 
Utility system planners and energy efficiency program administrators are interested in the impacts of energy ef- 
ficiency programs at the time of peak demand on a utility system or energy market. Yet, it is not obvious which 
hour(s) correspond with peak hours when the output from a building energy use simulation model solved with 
TMY data is examined. Should the hour associated with the highest (or lowest) temperature be used? Should an 
average of the measure’s impacts during the hours and months within which the utility’s peak typically falls be 
used? Should impacts when design conditions are experienced be used? Should impacts during consecutive days 
of extreme weather be averaged? Would a lot of averaging dilute the impact of a weather-sensitive measure? 

This paper proposes a formal probabilistic method to address this problem. We select the hours in a TMY 
weather data file most likely to coincide with a peak hour, based on the temperature, hour-of-day, and month- 
of-year data contained within the TMY data file and the relationships between these variables and actual load 
data for a utility system. Logistic regression is used to estimate the relationships based on actual historical data. 
The estimated relationships and TMY data are used to calculate the probability that an hour represented in the 
TMY data file would be included among a set of peak hours. 

Our proposed approach represents a considerable improvement over existing practices which estimate impacts 
based solely on extreme temperatures in a TMY file, estimate impacts based upon design-day conditions, aver- 
ages impacts over a large number of hours within a “peak period”, or relies upon typical times of peak occur- 
rence without consideration of the temperature in the TMY file during those hours. When applied to data for 
Texas, a probability-based approach provides more-realistic estimates of winter peak impacts, relative to two al- 
ternatives. When estimating the impacts of an efficiency measure upon summer peak demand, our approach 
provides impacts similar to the Heat Wave approach being used in California. 
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