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Abstract
A target is assumed to move randomly on one of two disjoint lines L, and L, according to a sto-

chastic process {S (t) te EII+} . We have two searchers start looking for the lost target from some

points on the two lines separately. Each of the searchers moves continuously along his line in both
directions of his starting point. When the target is valuable as a person lost on one of disjoint
roads, or is serious as a car filled with explosives which moves randomly in one of disjoint roads,
in these cases the search effort must be unrestricted and then we can use more than one searcher.
In this paper we show the existence of a search plan such that the expected value of the first
meeting time between the target and one of the two searchers is minimum.
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1. Introduction

The search for lost targets that are either stationary or randomly moving has recently applications, such as:
searching for lost persons on roads, the search for a petroleum or gas underground, and so on (see, Abd-Elmo-
neim [1], Ohsumi [2], El-Rayes and Abd-Elmoneim [3], and Washburn [4]).

When the target to be found is stationary or moves randomly on the real line, this problem is of interest be-
cause it may arise in many real world situations (see El-Rayes et al. [5] and Balkhi [6]). Search problems with
stationary target on line are well studied (see El-Rayes and Abd-Elmoneim [7], El-Rayes et al. [8], Balkhi [6]
[9], Rousseeuw [10], Abd-Elmoneim and Abu-Gabl [11], and Stone [12]). In the case of randomly moving tar-
get on the line and the searcher starts search from the origin, a deal of work has been done for deriving condi-
tions for optimal search path which minimizes the effort of finding the target (see El-Rayes et al. [5], Fristedt
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and Heath [13]). If the lost target is a valuable target as a person lost on one of disjoint roads, or is serious as a
car filled with explosives which moves randomly in one of disjoint roads, then the effort of the search (the cost
of search) must be unrestricted, in these cases using more than one searcher (see Abd EI-Moneim et al. [14]).
The search problem for a randomly moving target on one of two disjoint lines will be considered, in previous
studies (see Abd EI-Moneim and Abu-Gabl [15]), using a searcher for each line where each searcher starts
looking for the lost target from the origin of his line, but Abd EI-Moneim et al. [14] used searchers starting
searching for the target from the origin that is the intersection point of these lines. Each of the searchers moves
continuously along his line in both directions of the starting point, in both cases the target motion is a Brownian
motion. In this article, a target is assumed to move randomly on one of two disjoint lines L, and L, according
to a stochastic process {S (t) te ‘R*} , Where R* is the set of real numbers. This stochastic process satisfies
the following conditions:

(i) Let ¢ u, where u is the drift of the process and c¢ is a constant. Then for any t>0 and for some

£>0, P{S(t)-ct}<s,

(i) Let ©#0,2,>2, and t>max(z/u,2,/u), then P{z,<S(t)<z} isnon-increasing witht,
(iii) Let T be a stopping time for S(t), then

E[s(T)] < oE(T) +[lE(T)
where E stands for the expectation value and & is the variance and
(iv) Let

S(n):izi, n>1,

where {Zi} is a sequence of independent identically distributed random variables (i. i. d. r. v.) and

a(i,j+1)= ZP[ (i+1)<s(n)<-i],

then q(j, j+1) satisfies the renewal theorem.

Two searcher start looking for the target from some point ¢, for the first line L, and ¢, for the second line
L, . We assume that the speeds of the searchers are 14 and v,. Assume that T is the set of real numbers and T" is
the non-negative part of T. Foe any teT", let S(t) be arandom variable with S(0)=0, and assume that Z,
is the initial position of the target to be a random variable and independent of S(t), t > 0. A search plan
((D,(D) with speed vy, v, is defined such that ¢: T*—>T and ¢ : T*—T, respectively, such that

|¢(t1)_¢(t2)|§‘/1|t1 ~t|
#(t)-¢(L)|<vlt-t] VL LeT ged, e
the first meeting time is a random variable valued in 1" which is defined
s =inf{t:g(t)=X,+S(t)or g (t) =Y, +S(t)|

where Z, = X, if the target moves on the first line and Z, = Y, if the target moves on the second line. Let the
search plan of two searchers be represented by D= o, ¢} where @ is the set of all search plans. The prob-
lem is to find search plan ¢ = {(¢ ¢) gec®,pcd!, such that E_ <oo in this case we call @ is a finite
search plan and if Er&* <Er; V¢ed,where E terms to expectatlon value, then we call ¢ is optimal.

2. The Search Plans

Let &1, & be positive integers and wvand v, are rational numbers such that:
1) v, >|,u| and v, >|,u|,

2) &, &> 1, such that C, :vlévl—_l, C,= 4“2
¢ +1 §2+1

Now we shall define sequences {G,},_ .{r}_,.{H:}., forthe searcher on the first line L,,
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{G, }i>0 AT s ,{I—Ti }izo for the searcher on the second line L, and search plans with speed 1 as follows.
G =¢! -1 =(-1)"C[G +1+(-1)" | H =5 +4,i>0
G =¢1-1T=(-1)"C[ G +1+(-1)" | H, =T +4,i>0
Let O be a finite set of numbers, such that
0={135,-,mjfor jeO,iel”

we have
o<H, <¢gy<H; <H;<---<H; , <H; <0<H;, <

for the first searcher, and

<H,<¢ <H <H,<---< I-_|H<I-_|j <0< H_J.+2<

for the second searcher
foranyt e R%,if G, <t<G, then ¢(t)= i1 —[t=Gy1]

% —H,
andif G, , <t<G, 1<i< JT then ¢ (t)=gp—H, —[t-G,i |,

it G <t<G,, then ¢(t)=H,+(-1)[t-G,]
andif G <t<G,,,i2j+1then §(t)=H,+(-1)'[t-G, ] and
if G, <t<Gy,,, then ¢(t)=H, —¢ +[t-G,]

and G, <t<G,,,, 1s|s1T then §(t)=H, —¢, +[t-Gy, |

We use the following notations where ki(t), k; (t), ka(t) and k, (t) are positive functions, ¢, =s(t)—k,(t),

@, =s(t)+k,(t) onthefirstlineand ¢, =s(t)—k (t), @ =s(t)+k(t) onthesecond line.
Lemma2l.if0<ab<lthenab<a+b
Theorem 2.1. If (¢,¢)e(1) is a search plan, and let 1, » are measurable induced by the initial position of
the target on the first and second line respectively, then E(ra) is finite if:

| j/2

[ 2P (0(Gy) <—x)+ Z;f' (#(Gy) <—X)7, |(dv),

B i
2

42i+1|;>((01 (G2i+1) > —X);/1 (dX).

'MS

1
AN

If ¢,,4, >0,

eSS —38
=
>

c;'P(<o( )<=y _;c P(%,(Gxi)<-y)7. (dy),

N
[N

§;i+1p(¢z ( _2i+1) > _y)7’2 (dy)-

Sle—3
Ingt

I
2N

S 2I+1P G (j_l)/z
(Z)/ ¢ (% ( 2|+1) > X)+
I+

.P((ﬁl (Gzi ) < _X)71 (dX).

SEP(@(Gyuy) < - )}n(dX)

1
W

=1

év-.& S —3
ngb
OyE

Il
iN

(-2 If ¢, 4, <0,

o é/zzmp((ﬂz (sz) > _Y)"‘ 2 &7 P(@ (sz) < _Y):I 7, (dy)

ip((bz (§2i)<—y)72(dy).

i

i=(

s
A

1]
AN

é — 5 Sl——38
_
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[|Sareine < S aviate, ><x>}1<dx>,
iizzllglzmp(%(GZM) - _X)yl(dx)’ If ¢, >0,4, <0,
J { S (0 (6as)>9) S P ((6a)> y)]mdy),
% i=(j+1)/2
T gé’;ip(@z (G_Zi)< _y> V2 (dY)
And

ﬂ i §12i+lp(¢1(62'+1)> X)+( Z ¢ P( ( z|+1)<_x)}71(dx)’
o Li=(i70)/2
f o
I igllglzip(gz)l(cszi ) <—X)7, (dx)
;r: i2 If ¢, <0,¢, >0
_J; id(ﬁP(%(é ) ) z P ( ( 2i)<y)}/2(dy),
Tié}z”lp(% (62i+1)>_y)3’2 (d)’),
P i=1

are finite

Proof: The continuity of S(t), ¢(t) and ¢(t) imply thatif X, >¢, then X, + S(t) is greater than ¢(t) on
the first line until the first meeting, also if X, <¢, then Xq + S(t) is smaller than ¢(t) on the first line until the
first meeting the same for the second line by replacing X, by Yoand ¢, by ¢,. Hence for any i > 0.

P(r¢; >t)=P(T¢ >t and 5 >t):P(T¢>t)-P(T¢;>t)

—0

P(r,>Gyy)< jf’jop(xo +5(Gy ) <Hy /Xo = X) 13 (dX) + [ P(Xo+5(Gyy) > Hypa/Xg = X) 7, (dx)

é
we get
P(7,>Gar) <[ P(61(Gar) < —X) 7 () + [ “P(04(Gua) > =X )7 ()
Also
P(T¢7 >GZi+1)£.[iP(¢2 (GZi)<_y)72(dy)+thP((P2<_2i+1)>_y)72 (dy)
P(z,>Gy)<[* P(A(Gy)<—X) 7 (dx) + Jo P(#(Gus) > —x)72(dx)
and
P(r$>52i)§jip(¢2((§ )<- y);/z(dy) J' ((pz( 2i71)>—y)y1(dy)
Hence
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from Lemma 2.1 then we get:

_21 §1 |: ( )+§1 (T¢ >G)+§l (T¢ >G2)+4'13P(r¢>G3)+...:|
+2, (&, -1)[P(75 > 0)+ &P (1 > G, )+ (2P(1, > G, )+ £3P(z, > Gy) 4|
If ¢,,¢, <0, then

E(%)s ﬂi(./;l—l)lp(% >0)+¢,P(z, >Gl)+§f{T P(4(G,)>—x)n (dx)

%

+ [ P(a(G,)< x);/l(dx)}+g“1 IP 3 (Gy) > —X) 7, (dx) + ? (¢1(Gz)<—x);fl(dx)}

—0 o

)
vt {i P((G,)> _x)n(dx)+¢Ji P(3(G,)< —X)h(dx)}*"*éﬁj {i P(#:(6))>)n (o)

+
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e
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ffop(@(e‘zk—y)yz(dy)}%;{ip(%( )> -7 (d) + T (%(G-Z)<_y)y2(dy)}+...

(¢2(GJ 1)< Y)72 dy }+§z {;JZP( ( ]1)> y)yz(dy)

+
Al
—
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P( 12>y)72dy TP¢2 Jl<y)}/2dy}

(2
P(¢’2 o)< yyzdy} ]

8'_‘§‘ Sle—3

+§2j+3{;i ( (G_]3)> y);/z(dy)+

Then
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%

E(r&)ﬁﬂl(g”l—l) 0, +(& 1) & | P((G,) <—x) 7, (dx)

2} B )
+(§1+1)§14:LP(¢1(G ) <=X)7, (dx) +-+ (& +1)¢; LP( #(G,.)< x);/l(dx)
(G

+(4+1)¢7 P(¢1(Ga)>_x)71(dx) (¢ +1)¢ J. ( 5) > x);/l(dx)

©

P(3(G;) > —X) 7 () +++(& +1) 7 [ P((Gy, ) > —x) 7 (dx) -

%

@“—.8 @‘—.8

+(&+1) ¢

+/12(§2 §2+1§ ?P( ( )< Y)72(dY) (§2+1)§;T P(¢2(64)<_y)72(dY)+"'

+(§2+1)§;+2?P( (612)< y)7z(dy)+ +(§2+1)§2_[ ( (63)>_y)72(dy)

—® &

(DG ] P(#(Ga)> ~y) 7 (dy)++(£,+2) 2 [ P(:(G, ) > =) 7 () +--
%

Sle— 3

+(&, +1) ¢S T P(@,(Gy.2)>-y)7 (dy)+ }

%

©

E(r&)ﬁﬂl(é’l—l)[ gl(§1+1){? ml(x);/l(dx)+¢;[ql(x)yl(dx)+;f;ql(x)yl(dx)H

—0

+/12(§2 [91 ¢ +1 {T 72 dy T 7/2 dy Ta( )72(dy)}}

) )
where

0

glzP(r¢>0)+§1 (T¢>G)+§1;[ (@.(Gy) >—x)7,(dx)

g, = P(T,z >0)+§2P(T¢7 >Gl)+§2zj P((bz (G_l) >_Y>7/2 (dy)
ml(x)zé,lzp(@l(GZi)< —X),
ml(Y):§§P(¢2 (Gzi)<_Y),

(i-y/2

G (x) = Z:I 512i+1p[¢1(G21+1)>_x]
e _
a(y)= ( Z): 4/12H1P|:¢2 (Gzi+1) > _y:l

(X)_ Z)/ s 1P[(P1 2i 1 > X]
and

Q)= 3 o P[0, (Cois) > -]

i=(j+1)/
the other cases can be proved by similar way
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Lemma 2.2. Leta, >0 for n >0, and a,+; < a,, {d.} n >0 be a strictly increasing sequence of integers with dg
=0then forany k<0,

i[dn+1 -d,Ja, < i a, < i“[dn+1 -d,]a, (see EL-Rayesetal. [5])
n=k n=dy n=k

Theorem 2.2. The chosen search plan satisfies

G, (x) < L(|x]). @ () =< L(x])

6: (x) < L'(X), @ () < L'(|Y]), do s > O
m, (x) <L7(|x]). m (y)<L"(|y])
6 (x)<L"(X). &.()<L"(I¥). b <O

where: L ([x), L' (), L"([x]). L"(|x]). L (y). L' (y]). L"(]y

Proof. We shall prove the theorem for {, (x) and g, (y) since the other cases can be proved by a similar

),L"(]y|) are linear functions.

way,
6, (x) = 245‘”P[<p(62i+1) > #>0,
6,(y)= Z:ﬁ'”P[ (Gaa)>-y ] >0
(i) if x> ¢
G, ()=, (4)+ ng'“P[ X<p(Gy1) <~ |
and y>4
6 (v) =0 (%) + 22 P[ -y <0(Gu) <]
(i) if 0 <X < ¢h :
0 (x) = 6, (0)+ Y. ¢ *P[ X< 9(Gyy) <O]
and 0<y<g, :
& (y)=0(0)+ 2.2 P~y <9(Gyr) <0]
(iii) if x < 0 N
0 ()= (0)- 367 P[0< (Gy ) < ]
andy<0 N

EZ(YFqu(0)—2522”1P[0<(0(52”1)S—y}
wehave x>¢, and y>g, in(ii)
0, (x) <4, (0) and G, (y)<q,(0)

648
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qrz(y):az(ao)"‘gé/zzmp[ y<€0( 2|+1) ¢7:|

but,
6,(x) =4, (0)+§§f‘“P[—x < (Gy..)<0]
G(9) =G (0)+ 262P[ -y <p(Gun) <0
from [1]

( ) Zglzl+1p[(0(62l+l > Oj| < Z§2H1 Gai1 < é/gl .

% (y)= ZQZMP[ ( 2.+1)>0Jﬁi§2'”50?1<§§2 , O<e<l

i=1

we define the following
1) d, =Gpy = (§12n+1 1)

dn GZn+1 (4'22n+1 1)
2) k(n) :(p(n):ZWi ,where {W,}. issequence of (i.i.d.r.v.)
i=1 N
k(n)=2(n)=>W, where {\/\_/i}iZO is sequence of (i. i. d. r. v.)

i=1

3) a(n)=P[-x<k(n)<0]= Zj;P[ j+1)<k(n)<-j]
P[ y <k (n) <OJ ZP[ (j+1)<k(n)=<- j:l

4)nyisan integer such that d, = =by|x|+b, ; n, is an integer such that d, = El|x|+52
5 U(j,j+1)= Ztﬂ jﬂ<k()—ﬂ

0(j,j+1)= ZtP[ (i+1)<k(n)<-j]

6) o =¢’/(5-1)
= gz /(4122 _1)
If n>d, and an then agp, a, are non-increasing, see [15], and we can apply Lemma 2.2 in suitable
steps.

n= n=n+1

0, (1)-0,(0) = 32 P [x < 0(Gy) < -0] = D¢ (4, )+ 3 7a(d)
<2 3 (9,-4,)a(d,)

n=m+1

< ng”*l +ay Z a(n)

x\/z

S DU (5, j+1)

=1 j=0

IN
ER

=

and
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L0)-50)- 24P -y <0(6,)<0] - S a(@)s $ aa)

n=ny+1

<Z§2n+l+a2 i §§n+lg(an)

n=ny+1

< zgm va, Y (d,-d,,)a(n)

n=ny+1

Z:ZnJrl_‘r_azZ ()

/2 _
<Zg2"*1+a2§;u(j,j+1)
j=0

_Since U (], j+1), U(j,j+1) satisfies the conditions of renwal theorem (see [15]) hence U (], j+1),
U (j,j+1) isbounded for all j by a constant, so

qz(x)sq2(¢o)+M1+M2|X|=L(|X|)
0 (¥) <@L () + M, + M, |y|=L(]y])
¢)e

Theorem 2.3. If there exist a finite search plan (¢ $)ed then E|Z,| s finite.
1

Proof. If Ez; <o, then P(z, <wo)=1or p(z; <o)=
then P(r, <w)+(7, <o0)=1, thatis Z, ( ) ( ) with probability 1, so

[
12, =4( ‘s )‘ +‘s r&)‘

Hence E|ZO|SET&+E‘S(T¢;‘ but ‘S ‘<r¢ then E‘S ‘<Er and E|Z,| <.

_Remark A direct consequence of theorems 1, 2 and 3 in Section 2 is the existence of a finite search plan
¢e®(t) if and only if E|ZO| <, and then the set of search plans, which defined in Section 2, satisfies the
conditions of Theorem 1 if the expectation value of initial position of the lost target is finite.

3. Existence of an Optimal Path

Definition. Let q?n € (ig(t) be a sequence of search plans, we say that ¢, convergesto ¢ asn tends to o if
forany tel”™ —, ¢ (t) convergesto ¢(t) onevery compact subset.

Theorem 3.1. Let for any teiﬁ, S(t) be a process with continuous sample paths. The mapping
(4.6)—>E(z,)e®R" is lower semi-continuous on ®(t). '

Proof. Let & be a sample point on L, corresponding to the sample path §(t) of X +S(t) and £ bea
sample point on L, corresponding to the sample path &£(t) of Y, +S(t). Let {¢n} _, be a sequence of
search paths which converges to ¢ € @, (t) and {¢Tn}n>l convergesto ¢ € ®, (t). Given te ", we define
forany n>1 -

£(x)~4 (x)|> 0],
£(x)-4(x)>0},
F()-(y)>9]
E(1)-3(y)>0]

% (0)={¢ pin
0

B, (t):{f - min

O<y<t

{§ min

0<x<t

and E():{§ min

o<y<t
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Let £eB(t), £eB(t) andsince {g,} , converges uniformly on [0,t] to ¢, then there exists an in-
teger n(&) suchthatforall n>n(&) andforany 0<x<t

|¢n(x)—¢(x)|<g:0.5cr)rg1xig E(X)—-g(¥)|
and [£(x)-¢(x)] <[£(x)- | [#(x) =4 (x)]
then |§ 8, (X)| 2 [ () (x)|~|o( ) L (X)|226-£=£>0.
Hence cfeBn() foraII n>n(§) and so B() liminf B, (t),

n—w

[P(B(t)dt< [P P(liminf B, (t )dt<jnmmf P(B, (t))dt
by the same way we can get
[P(B(t))dt < Tp[minf B, () ot < Tmmf P(B, (t))dt

since the sample paths are continuous then
Bn(t)={ ~t), B(t)={z, -}, B,(1)={z, >t} and B ={r, -t

we get Tp( >t)dt<j||m|nf p(z, >t)dt and Ip(r >t)dt<j||m|nf p(z‘ >t)dt we obtain
0

I[ (r >t)+ p(r¢ >t)}dt<“mmf[ p(ran >t)+ p(% >t)}dt
then

Tp(r>t)dtsﬁminf p(zs, >t)dt,
0 0

where @, =(4,.4,)
hence E(r, )< E(hm infz, ) By Fatou lemma, we get
n—w
E(z,)< E(!m inf rwn)s!m inf E(Tmn)'
Since @ is sequentially compact (see [2]), then by the same way & is sequentially compact. It is known
that a lower semi-continuous function over a sequentially compact space attains its minimum.

4. Conclusion

We consider, here, the search for a lost target on one of two disjoint lines, where the target moves randomly ac-
cording to continuous stochastic process which satisfies some conditions. Theorems conclude that there exists a
finite search plan if and only if the expectation value of the initial position of the target is finite. Existence of op-
timal search plan is proved.
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