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Abstract 
This work analyzes heat transfer through a wall containing triangular fins partially embedded in 
its volume. The coupled heat diffusion equations governing each constituent are solved numeri-
cally using an iterative finite volume method. A well bracketed effectiveness of the combined sys-
tem that suits wide range of applications is analytically derived. Good agreement between the 
numerical and the analytical results is attained. It is found that the fin-root can act simultaneously 
as a heat sink and heat source for the wall. The heat transfer rate through the combined system is 
clearly seen to be maximized at a specific fin-root length. The maximum reported heat transfer 
rate through the triangular rooted-finned wall is found to be at most 90% above that for the root-
less fin case at wall Biot number of 1.54. This percentage is noticed to decrease as the wall Biot 
number decreases. At that Biot number, the maximum heat transfer rate through the combined 
system reaches 150% above that through the plain wall. As a result of this work, it is recommend-
ed to utilize the triangular rooted-fin as a heat transfer enhancer for high mechanical strength 
structures exposed to highly convective fluid streams. 

 
Keywords 
Conduction; Convection; Fins; Augmentation; Roots; Thermal System 

 
 
 

1. Introduction 
Heat transfer through finned surfaces, like finned tubes, was widely studied in the literature [1]-[4]. Special in-
terest to the present work is the wall that contains fins partially embedded in its volume. The rooted-finned wall 
systems can be proposed to be used in engineering applications including boiling, superheating and cooling of 
nuclear reactors. In these applications, the heating/cooling device must possess both high mechanical strength 
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and high heat transfer capability. In order to satisfy both requirements, the main construction system of the de-
vice which can be the tube must be made from a high mechanical strength material like a stainless steel. As such, 
the heating/cooling device can support the high pressures of the fluid streams. Meanwhile, fins made of a large 
thermal conductivity material like copper can be partially embedded in the main construction system. The fin 
materials are generally not mechanically strong. As such, rooting the fin is necessary in order to enhance heat 
transfer through the less conductive main construction system. This is because these systems usually possess 
smaller thermal conductivities.  

To the authors’ best knowledge, the thermal performance of the rooted-finned wall systems was first studied 
by Khaled [5] [6] and Khaled and Al-qadi [7]. They have shown that the wall comprising rectangular rooted-fins 
may better augment heat transfer than the regular finned surface. This depends on the fin-root length, relative 
system dimensions, thermal conditions, and wall-to-fins thermal conductivities ratio. The rooted-finned wall 
system is expected to have better thermal performance if the fin-root has larger volume with larger interface area 
and when the external-fin portion has smaller volume with larger surface area. This is because the former fea-
tures produce minimum wall conduction resistance while the latter ones increase the fin efficiency and decrease 
the thermal-convection resistance. The typical fin geometry that satisfies these features is the triangular fin with 
its base embedded inside the wall. The previous proposal received no attention in the heat transfer literature, and 
it is therefore the main motivation behind the present work. 

In the next section, the two-dimensional heat diffusion equations governing the wall and the triangular 
rooted-fin materials are appropriately non-dimensionalized. Then, the corresponding boundary conditions and 
different suitable performance indicators are recognized. Next, an approximate simplified engineering model is 
casted for the first time in this work and a bracketed equation for the triangular rooted-finned wall effectiveness 
is identified. After that, the numerical and the approximate analytical computations of the performance indica-
tors are compared. Eventually, an extensive parametric study is performed in order to fully characterize the 
thermal performance of the proposed system. Finally, the main, concluding remarks, are emphasized. 

2. Problem Formulation 
2.1. General Model 
Consider a two dimensional slab wall having a uniform thickness W and height H. The x-axis is taken along the 
wall thickness starting from the left surface while the y-axis is aligned along its height starting from the wall 
center-line as shown in Figure 1(a). Next, consider an isosceles triangular fin of length W and base thickness t. 
The fin-base is considered to be embedded inside the wall volume as shown in Figure 1(b). The distance be-
tween the wall right surface ( )x W=  and the fin-base is Lo as seen from Figure 1(a). The xf-axis of the fin is 
directed along the fin length starting from o ox x W L= = −  while the yf-axis of the fin is aligned along the fin 
thickness starting from the fin center line at 0fy y= =  as shown in Figure 1(a). The thermal conductivity of 
the wall is k while that of the fin is fk  where fk k> . Assume that heat transfer inside both materials is go-
verned by the Fourier’s law of conduction. The two-dimensional heat diffusion equations for both volumes are: 
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The quantities T, Tf, TL and T∞ are the wall temperature field, fin temperature field, left surface temperature  
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(a)                                                  (b) 

Figure 1. (a) A 2D schematic diagram for a wall segment containing a triangular rooted-fin and the corresponding coor-
dinates systems; (b) A 3D sketch for a wall containing a triangular rooted-fin.                                                                  

 
and the fluid free stream temperature, respectively.  

The boundary conditions of Equations (1) and (2) are taken as: 
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where oX  and Bi (wall Biot number) are equal to the following: 
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The quantity h is the convection heat transfer coefficient of the fluid stream. When the flow is made parallel 
to the depth of Figure 1(a), one can expect that all convective surfaces will have the same convective heat 
transfer coefficient. The total heat transfer rate through the left surface per unit depth represents the total heat 
transfer rate through the triangular rooted-finned wall. It can be evaluated from the following expression: 

( )
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q ka T T Y
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∞
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∂′ = − −
∂∫                            (9) 

The triangular rooted-finned wall effectiveness [7] is defined as the heat transfer rate through the combined 
system divided by that for the plain wall case. Mathematically, it is given by: 
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When there is no fin, the wall right surface temperature, ( )no-finRT , can be obtained from the following ex-
pression using the one-dimensional heat transfer model [8]: 
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As such, εW can be computed from the following expression: 
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Define the rooted-finned wall second performance indicator γ  as the ratio of the total heat transfer rate to 
that for the rootless fin case ( )1oX = . It can be expressed as: 

( ) ( ) 1o o

WL

L Wx W X

q
q

ε
γ

ε
= =

′
≡ =

′
                               (13) 

2.2. Approximate Solution 
In spite of the complexity of the present system, Wε  may be bracketed by considering the present system as a 
piecewise one-dimensional combined system of Figure 2. The analyzed system is modeled as an arrangement of 
nine series and parallel different one-dimensional layers and the fluid stream medium. The thermal conductivity 
of layers A, B1, B2, D1 and D2 is k while that of layers C1, C2, E and the external-fin portion is fk . The di-
mensions of each layer are clearly seen on Figure 2. The layers C1 and C2 are connected in series with layers 
D1 and D2, respectively. The layers B1, B2, E, equivalent series C1-D1 layer and equivalent series C2-D2 layer 
are considered parallel layers. The latter equivalent parallel layers are connected in series with layer A to form 
 

 
Figure 2. One dimensional piecewise model for a wall 
segment containing a triangular rooted-fin.               
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the combined wall and fin-root system. This combined system is bounded by 0 x W≤ ≤  and 2 2H y H− ≤ ≤ . 
The right surface of the latter system located at x W=  is subjected to convection heat transfer over an area of 

( )oH t x W−  per unit depth and conduction heat transfer through the external-fin base over an area of 
( )ot x W  per unit depth.  
Recall that the thermal resistance [8] of a given layer of thickness LW , height LH , unit depth length, and 

thermal conductivity Lk  is equal to: ( ),t L L L LR W k H= . The thermal resistance of the external-fin portion per  

unit depth is given by: ( )2
, 1 2 1t f f o tR h x aη= +  where fη  is the efficiency of the external-fin portion.  

Meanwhile, the convective thermal resistance of the right isothermal surface of the wall per unit depth is equal 
to: [ ]( ), 1t c oR h H tX= − . Also, recall that the equivalent thermal resistance ( ),t eR  of n-series thermal resis- 

tances ( ), , 1,2, ,t iR i n=   is computed from the following formula: , ,
1

n

t e t i
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R R
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Finally, recall that the total heat transfer rate through the system shown in Figure 2 can be calculated from the 
following expression: ( ) totalL Lq T T R∞′ = −  where totalR  is the total equivalent thermal resistance between the 
left surface ( )0x =  and the fluid free-stream on the right side of the system. 

Using Equation (10) and the previous recalled formulations, the triangular rooted-finned wall effectiveness 
Wε  can be bracketed into the following form: 
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where S is given by: 
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Using results available in any of heat transfer textbooks [8], fη  for the external-fin portion can be obtained 
from the following correlation: 

5 4 3 20.093478 0.44565 0.64053 0.21691 0.22228 1f Z Z Z Z Zη = − + − + − +             (16) 

where Z based on the external-fin portion geometry is given by: 

2 o

f t

XkZ Bi
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3. Numerical Methodology and Validation 
3.1. Numerical Methodology 
The two-dimensional heat diffusion equations given by Equations (1) and (2) are coupled via their boundary 
conditions represented by Equations (4), (5) and (6). These systems of equations have been solved using an iter-
ative finite volume method [9]. A third order scheme is used to discretize these equations [10] in order to reduce 
the numerical diffusion of errors. The selected convergence criterion requires that the sum of the energy equa-
tions residues between the current and the previous solutions be less than 10−12. Furthermore, the solution con-
vergence has been ensured by checking the value of heat transfer rate at the left surface ( )0x =  and the sum of 
the heat transfer rate at the wall right surface ( )x W=  and heat transfer rate from the fin surfaces exposed to 
the fluid stream. For all runs, the maximum sum of these values was found to be less than 10−5. As such, the 
conservation of energy was satisfied, in outE E=  . Furthermore, a fine mesh of 16,700 elements was selected. 
When a numerical result of one case based on that mesh was compared with the result based on a mesh of 4175 
elements, the percentage difference in Wε  was found to be less than 0.02%. As such, solutions independent on 
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the grid size was attained. It should be mentioned that for the situation where the interface between the fin-root 
and the wall is not a perfect contact surface, other methods, such as lattice Boltzmann method may be used [11]. 

3.2. Validation of the Numerical Solution 
Comparisons between the numerical results (2D solution) and analytical results (1D solution, Equation (14)) are 
shown in Figures 3 and 4. Excellent agreement are seen when 0.3oX ≥  for all Bi numbers and when  
 

 
Figure 3. Effects of Xo and Bi on εw.                                              

 

 
Figure 4. Effects of Xo and Bi on γ.                                               
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0.1oX ≤  if 0.5Bi ≤ . This led to more confidence on the obtained results. Moreover, the following validity 
condition of the present 1D solution is recommended: 

( )1 0.5o
o

hLBi X
k

− = <                               (18) 

The condition given by Equation (18) requires that the variation in the temperature of the wall across the root 
length and the variation in the temperature of the fin-root are negligible. This indicates negligible transverse 
conduction across the wall-root interface as compared to the axial conduction through the fin root-base. As such, 
the analytical 1D model given by Equation (14) is valid. 

4. Discussion of the Results 
4.1. Discussion of Temperature Contour Plots 
Figure 5 shows temperature contours inside the different constituents of the present system at two different Biot 
numbers with various root-base positions. The temperature contours inside the fin-root and the wall show exis-
tence of transverse heat fluxes originated from the wall material around the root-base and directed toward the 
fin-root. The magnitude of these fluxes can be noticed to decrease as oX  increases until it is eliminated when 

1oX = . Meanwhile, it can be depicted from these plots that there can be heat fluxes originated from the fin-root 
close to the fin-base and directed toward the wall right surface. This is because the wall two sharp edges sur-
rounding the fin-base have negligible conduction resistances. The previous phenomenon is noticed to disappear 
when 0.9oX ≥ . The two dimensional induced heat fluxes are expected to be negligible when ( )1 0.5oBi X− ≤  
as discussed earlier. 

4.2. Discussion of System Effectiveness and Second Performance Indicator 
As the root length increases, the wall conduction resistance decreases while the total convection resistance in-
creases. This phenomenon is capable of minimizing the total thermal resistance of the combined system at a  
 

 
Figure 5. Effects of Xo and Bi on temperature contours for aH = 
1.0, at = 0.6, and k/kf = 0.042.                               
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specific root length. As such, the total heat transfer rate can be maximized at this length. Figure 3 demonstrates 
the previous phenomenon. The maximum system effectiveness seen in Figure 3 is noticed to vary with Bi as this 
quantity clearly alters in the total thermal resistance of the combined system. It is seen from Figure 3 that Wε  
becomes independent on Bi at a specific dimensionless fin-root length which is equal to ( )1 0.48oX− = . This  
means that both Lq′  and ( )no-finLq′  increase by the same extent with an increase in Bi at that specific fin-root 
length. 

Figure 4 shows that the maximum value of γ  is max 1.449γ =  when 1.535Bi = . This means that the 
maximum heat transfer rate when 1.535Bi =  is 44.9% above that for the rootless fin case. This maximum val-
ue occurs at a dimensionless fin-root length of ( )1 0.7oX− = . maxγ  is seen to increase as Bi increases as 
shown in Figure 4. Finally, Figure 6 shows the variation of the maximum combined system effectiveness 

,maxWε  and maximum second performance indicator maxγ  at 1.535Bi =  as functions of both ta  and fk k  
values. This figure shows that maxγ  becomes almost independent on ta  when fk →∞ . According to this 
figure, the maximum heat transfer rate through the triangular rooted-finned wall increases until it approches 
asymptotically 90% above that for the rootless fin case at 1.535Bi = . 

5. Conclusions 
The problem of computing heat transfer rate through a system composed of a wall and triangular rooted-fin is 
theoretically investigated. Appropriate forms of the coupled heat diffusion equations for the wall and the trian-
gular rooted-fin systems were solved using a finite volume method. Approximate closed form solution for the 
present problem based on a wide range of engineering applications was derived. Good agreement was obtained 
between the numerical and the closed form solutions when the wall Biot number based on the fin-root length is 
smaller than the one-half. The following remarks were concluded: 1) there is a critical fin-root length that max-
imizes the total heat transfer rate; 2) there is a critical fin-root length that makes the total system effectiveness 
independent on Biot number; 3) the maximum heat transfer rate through the combined system relative to that for 
the rootless fin case increases as the wall Biot number increases; 4) the maximum heat transfer rate through the 
triangular rooted-finned wall can be at most 90% above that for the rootless fin case at 1.535Bi = ; and 5) the 
maximum heat transfer rate for the combined system can reach 150% above that through the plain wall at 

1.535Bi = . Finally, it is recommended to consider triangular rooted-fins as heat transfer enhancers for highly 
mechanical strength structures exposed to highly convective fluid streams. 
 

 
Figure 6. Effects of at and k/kf on εw,max and γmax.                                        
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Nomenclature 
aH, at: (wall height, fin-root base thickness) to wall width ratio; Equations (3g) and (3h). 
Bi: wall Biot number; Equation (8). 
H: wall height [m]. 
h: convection heat transfer coefficient [W/m2∙K]. 
k, kf: (wall, fin) thermal conductivity [W/m∙K]. 
qL: triangular rooted-finned wall heat transfer rate [W]. 
Lo: fin-root length [m]. 
T, Tf: (wall, fin) temperature field [K]. 
TL, TR: wall (left, right) average surface temperature [K]. 
T∞: free stream temperature [K]. 
t: fin-root base thickness [m]. 
W: wall width (and) fin length [m]. 
x, xf: (wall, fin) axial coordinate [m]. 
Xo, xo: (dimensionless, dimensional) axial location of the fin-root base [m]. 
X, Xf: dimensionless (x, xf)-coordinate; Equations (3b) and (3c). 
y, yf: (wall, fin) transverse coordinate [m]. 
Y, Yf: dimensionless (y, yf)-coordinate; Equations (3d) and (3e). 

Greek Symbols 

Wε : triangular rooted-finned wall effectiveness; Equation (10). 
γ: triangular rooted-finned wall second performance indicator; Equation (13). 

fη : fin efficiency. 
θ, θf : (wall, fin) dimensionless temperature; Equations (3a) and (3b). 
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