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Abstract 
In this paper, mathematical model for cell growth and biofuel production under synthetic feed-
back loop is discussed. The nonlinear differential equations are solved analytically for the maxi-
mum production of biofuel under synthetic feedback. The closed-form of analytical expressions 
pertaining to the concentrations of cell density, repressor proteins, pump expressions, intracellu-
lar biofuel and extracellular biofuel are presented. The constant pump model is compared with 
feedback loop model analytically to know the biofuel production. The numerical solution of this 
problem is also reported using Scilab/Matlab program. Also, the analytical results are compared 
with previous published numerical results and found to be in good agreement. 
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1. Introduction 
Micro-organisms (or microbes) play a very important role in our lives. Some microbes cause disease but the 
majority is completely harmless. Microbes help as for the production of enzymes and chemicals. In particular, 
most common biofuel is ethanol, which is produced from the plants. Breakdown of cellulous will also form 
ethanol. However, there are numerous scientific and technical challenges involved with utilizing lignocelluloses 
material for biofuel production. 

Biological and biochemical processes have a very important role in medicine, biology and biotechnology. 
However, it is very difficult to convert directly biological data to electrical signal; the biosensors can convert 
these signals and the biosensors over this difficulty [1]. The advantages of biosensors such as cost-effectiveness, 
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specificity of detection, portability reduced overall time required for detection. Clark et al. [2] developed the 
first biosensor, an enzyme based glucose sensor. Then so many biosensors are developed in many research la-
boratories [3]. 

The cell growth and biofuel production implement a synthetic feedback loop using a biosensor to control ef-
flux pump expression. In this way, the production rate will be maximal when the concentration of biofuel is low 
because the cell does not expend energy expressing efflux pumps when they are not needed. Efflux pumps iden-
tify harmful compounds; transfer them from the cell using the proton motive force and have proven effective at 
exporting biofuel. Even though they improve tolerance, if over expressed, efflux pumps can be harmful. By us-
ing efflux pumps giving to increase tolerance to biofuel, pump toxicity managed biofuel toxicity. Feedback is a 
common mechanism to adjust the conditions such as environmental stressors and signals from other cells. Syn-
thetic feedback helps to control efflux pump expression which would balance the toxicity of biofuel production 
against the adverse effect of pump expression. 

Clomburg et al. [4] discussed that synthetic biology will help improve the productivities of biofuels. The me-
chanism of microbes causes unwanted cellulose stress that leads to over production of proteins which results in 
decreases of cell fitness. Fisher et al. [5] tested seven fast growing host organisms for biofuel production which 
tolerate production stresses. Mostafa et al. [6] provided a brief overview on the research in the area of biofuels, 
with specific emphasis on the economic viability of various approaches. 

Peralta et al. [7] concentrated on the metabolic engineering of genetically polite organisms such as Escheri-
chia coli and Saccharomyces cerevisiae for the production of these advanced biofuels. Soto et al. [8] studied the 
importance of efflux pumps in biofilm growth and about their relevance in antimicrobial resistance forming bio-
film. Huffer et al. [9] highlighted recent advances in metabolic engineering of biofuel-synthesis pathways in E. 
coli and summarized insights gained into regulation of those pathways, and described progress toward over-
coming the challenges facing its adoption as a biofuel-production strain. Christopher et al. [10] discussed the 
contributions of systems biology for the purpose of utilizing microorganisms for biofuel production. 

Recently, Dunlop et al. [11] developed a model for cell growth and biofuel production. Harrison et al. [12] 
developed a mathematical model for cell growth and biofuel production that implement a synthetic feedback 
loop using a biosensor to control efflux pump expression. To the best of our knowledge, there is no general ana-
lytical expression for the concentration of cell density, repressor proteins, pump expressions, intracellular bio-
fuel and extracellular biofuel against the time t. The purpose of this paper is to derive an analytical expression 
for the concentrations of cell density, repressor proteins, pumps, intracellular biofuel and extracellular biofuel 
for both steady and non-steady state conditions. 

2. Mathematical Formulation of the Problem 
2.1. Feedback Loop Model 
The complete mathematical formulation of this problem is described in [12]. This model involves five nonlinear 
differential equations with limited number of parameter are described as follows [12]: 
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intracellular biofuel and extracellular biofuel respectively. Delay in cell growth is happens due to biofuel toxicity 
( )n ib nδ  and pump toxicity ( )n pnp pα γ+ . When the promoter is not activated, Rα  and pα  represents the 
low level of expression. pβ  and Rβ  represent the degradation rates. Rk  and pk  represent the strength of 
expression for R and p , respectively. In Equation (3), ( )( )1 1 b i RR k b γ+ +  represents the repression of ef- 
flux pump expression and ( )1 b iR k b+  represents the amount of active R  in the system. The parameter bk  
represents the deactivation constant of R . Repressor activation by the inducer IPTG is modeled as ( )II I γ+ , 
where Iγ  indicates the inducer value that corresponds to half maximal activation of repressor. Amount of in- 
ducer is proposional to the repressor concentration. The initial conditions are given by. 

At ( ) ( ) ( ) ( ) ( )0 0 0 0 00, , , , ,i i e et n t n R t R p t p b t b b t b= = = = = =                                    (6) 
The steady state expressions of the concentrations for this model are obtained as follows: 
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and other parameters are in Table 1. 

Analytical Expressions of the Concentrations of Cell Density, Repressor Proteins, Pumps,  
Intracellular and Extracellular Biofuel 
By solving the non-linear Equations (1)-(5) using Homotopy perturbation method (Appendix A) [13]-[18], the 
analytical expressions of the concentrations of cell density, repressor proteins, pumps, intracellular and extra-
cellular biofuel are obtained for non-steady state as follows: 
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Table 1. Symbols used.                                                                                   

Symbols Definitions Values Units 

eb  Concentration of extracellular biofuel - None 

0eb  Initial concentration of extracellular biofuel 0 None 

ib  Concentration of intracellular biofuel - M 

isb  Steady state of intracellular biofuel (feedback loop model) - M 

1isb  Steady state of intracellular biofuel (constant pump model) - M 

0ib  Initial concentration of intracellular biofuel 0 M 

I IPTG level 0 - 1 mM 

bk  Repressor deactivation constant 100 M−1 

kp Pump activation constant 0.2 h−1 

Rk  Repressor activation constant 10 h−1 

n Concentration of cell density - None 

ns Steady state expressions of cell density (feedback loop model) - None 

1sn  Steady state expressions of cell density (constant pump model) - None 

maxn  Maximum population size 1 None 

0n  Initial concentration of cell density 0.01 None 

p Concentration of pump expressions - None 

sp  Steady state expression of pumps (feedback pump model) - None 

1sp  Steady state expression of pumps (constant pump model) - None 

0p  Initial concentration of pump expressions 0 None 

R Concentration of repressor proteins - None 

sR  Steady state expression of repressor proteins - None 

0R  Initial concentration of repressor proteins 0 None 

t Time - h−1 

Greek Letters    
bα  Biofuel production rate 0.1 h−1 

nα  Cell growth rate 0.66 h−1 

pα  Basal pump production rate 0.01 h−1 

Rα  Basal repressor production rate 0.01 h−1 

pβ  Pump degradation rate 0.66 h−1 

Rβ  Repressor degradation rate 2.1 h−1 

Iγ  Inducer saturation threshold 60 μM 

pγ  Pump toxicity threshold 0.14 none 

Rγ  Repressor saturation threshold 1.8 none 

bδ  Biofuel export rate per pump 0.5 M−1∙h−1 

nδ  Biofuel toxicity coefficient 0.91 M−1∙h−1 

ν  Ratio of intra to extracellular volume 0.01 none 

Subscripts    

b Biofuel   

e Extracellular biofuel   

i Intracellular biofuel   

I Inducer   

max Maximum   
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Continued 

n Cell density   

p Pump expressions   

R Repressor proteins   

s Steady state   

Parameters    

s p p b pA R kα α γ= + +  h−1   

Rp b b pB k k kα γ= +  M−1∙h−1   
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The Equations (11)-(15) represent new analytical expressions for the concentrations of cell density, pumps, 

intracellular and extracellular biofuel for this model. 

2.2. Constant Pump Model 
For this model, the concentration of repressor proteins ( )R t  is removed and the concentration of cell density 
( )n t , intracellular biofuel ( )ib t  and extracellular biofuel ( )eb t  remains the same. But the concentration of 

pumps expression ( )p t  becomes 
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where the value of I (IPTG) is selected from 0 mM to 1 mM. We can obtain the steady state expressions of con-
centrations for constant pump model as follows:
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Analytical Expressions of the Concentrations of Cell Density, Pumps, Intracellular and  
Extracellular Biofuel 
By solving the Equations (1), (4), (5) and (17), the closed form of an analytical expression of the concentrations 
of pumps, intracellular biofuel and extracellular biofuel are obtained as follows: 
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The Equations (21)-(24) represents new analytical expressions for the concentrations of cell density, pumps, 
intracellular and extracellular biofuel for constant pump model. 

3. Numerical Simulation 
The non-linear differential Equations (1)-(5) are solved by numerical method. The function pdex4 in Scilab 
software which is a function of solving partial differential equations (PDE) is used to solve these equations. To 
show the efficiency of the present method, our analytic results are compared with numerical solution and it gives 
a satisfactory agreement. The SCILAB/MATLAB program is also given in Appendix B. 

4. Discussion 
Equations (11)-(15) represents simple analytical expressions for the concentrations of cell density, pumps, 
intracellular and extracellular biofuel in terms of six parameters, biofuel export rate bδ , biofuel toxicity coeffi- 
cient nδ , biofuel production rate bα , growth rate nα , pump toxicity threshold pδ , and maximum cell density 

maxn . Those parameters give the greatest impact on the system when they are varied. Production of biofuel de- 
pends upon the growth rate, maximum cell density, pump toxicity threshold and biofuel toxicity coefficient. 

Simulation results are often used to validate the analytical solutions. Recently, Harrison et al. [12] obtained 
the numerical solution of the nonlinear equations in feedback model using MATLAB program. The Figure 1 
shows cell density ( )n t , pump ( )p t , intracellular biofuel ( )ib t , extracellular biofuel ( )eb t  versus time t . 
In this figure, our analytical results are compared with the simulation results. Our analytical results were found 
to be in satisfactory agreement with simulation results. 

Figure 2 represents the cell density ( )n t  versus time t. The concentration depends upon the pump toxicity 
threshold pγ , biofuel toxicity coefficient nδ , maximum population size maxn  and growth rate nα . After very 
short time, cell density increases sharply and reaches the maximum value nearly 0.4 after 25 hours. Also from 
this figure, it is including that the cell density increases when growth rate is decreases and coefficient of biofuel 
toxicity is increases. 
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Figure 1. Comparison of analytical results (feedback model) with previous numerical results (Harrison 
et al., [12]): The concentrations were computed using Equations (11)-(15) for the experimental values. 
The key to the graph: dotted line represents the analytical results and solid line represents the numeri-
cal results. 



O. M. Kirthiga, L. Rajendran 
 

 
269 

 
Figure 2. Cell density n(t) versus time t for various values of pump toxicity thre-
shold γp, biofuel toxicity coefficient δn, maximum population size nmax and growth 
rate αn and for some fixed values of the parameters (refer Table 1). 
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The concentration of repressor ( )R t  with time t for various values of repressor degradation rate Rβ , re- 
pressor activation constant Rk  and basal repressor production rate Rα  is shown in Figure 3. When time in- 
creases the concentration also increases and finally it reaches the steady state value at short time 2t = . Repres- 
sor prevents efflux pump expression until it is deactivated by biofuel. 

In Figure 4, the concentration of pumps ( )p t  measured with time t for various experimental values of re- 
pressor saturation threshold Rγ , pump activation constant pk , pump degradation rate pβ  and basal pump 
production rate pα . If time increases the concentration also increases and finally it reach steady state level by 
the control of efflux pump using feedback model. Pump expression increases the biofuel productions because of 
repressor deactivation. Concentration of pump depends upon the rate of pump expression. 

Figure 5 describes the intracellular biofuel ( )ib t  with time t. For both biofuel production rate, when time t 
increases concentration of intracellular biofuel also increases. Biofuel rate is increased because intracellular 
biofuel accumulates more quickly and efflux pumps are needed earlier.  

Figure 6 indicates the extracellular biofuel ( )eb t  versus time t. The concentration depends upon biofuel 
export rate per pump bδ , ratio of intra to extracellular volume ν  and cell growth rate nα . For both biofuel 
production rate, if time increases the concentration also increases. From this figure, it is observed that the con-
centration of extracellular biofuel linearly increases with time t. This is because when efflux pumps are used to 
export biofuel form the cell the extracellular level of biofuel will increase, allowing intracellular biofuel levels to 
remain low. 

An analytical expression of cell density ( )n t , concentration of pump ( )p t , intracellular biofuel ( )ib t  and 
extracellular biofuel ( )eb t  for feedback and constant pump model are compared in Figure 7. This figure  

 

 
Figure 3. Concentration of repressor proteins R(t) versus time t for various values of repressor 
degradation rate βp, repressor activation constant kR and basal repressor production rate αR and 
for some fixed values of the parameters (refer Table 1). 
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Figure 4. Concentration of pumps p(t) versus time t for various values of repres-
sor saturation threshold γR, pump activation constant kp, pump degradation rate βp 
and basal pump production rate αp and for some fixed values of the parameters 
(refer Table 1). 
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Figure 5. Concentration of intracellular biofuel bi(t) versus time t (a) At αb = 0.001 
for various values of biofuel export rate per pump δb and some fixed experimental 
values of other parameters. (b) At αb = 0.01 for various values of δb and some fixed 
experimental values of other parameters. 

 

 
Figure 6. Concentration of extracellular biofuel be(t) versus time t for 
various values of biofuel export rate per pump δb, ratio of intra to extra-
cellular volume ν  and cell growth rate αn and for some fixed values of 
the parameters (refer Table 1). 
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Figure 7. Comparision of concentrations for feedback (Equations (11)-(15)) and constant pump 
model (Equations (21)-(24)) for various values of biofuel production rate. The key to the graph: 
“***” represents the constant pump model and “ooo” represents the feedback model. 
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shows that the feedback model is better suited then constant pump for all values of the parameter. Also the bio- 
fuel produced for feedback model higher than constant pump model. 

5. Conclusion 
A time dependent non-linear differential equation in feedback and constant pump models has been solved ana- 
lytically. By comparing both models analytically, the feedback model produces more biofuel than the constant 
pump model. For all biofuel production rates, the most highly induced sensor model produces the most biofuel. 
This theoretical result helps determine the various biofuel potential by changing the biofuel production rate and 
toxicity coefficient. The feedback control model represents a valuable contribution to synthetic biology designs 
for optimizing biofuel yields. This method can be extended to solve the nonlinear equations in feedback and 
constant pump models with diffusion term. 

Acknowledgements 
This work is supported by the Department of Science and Technology (DST) (No.SB/SI/PC-50/2012), Govern-
ment of India, New Delhi, India. The authors are thankful to Sri. S. Natanagopal, Secretary, The Madura Col-
lege Board and Dr. R. Murali, Principal, The Madura College (Autonomous), Madurai, Tamil Nadu, India for 
their constant encouragement. It is our pleasure to thank the editors and referees for their valuable comments. 

References 
[1] Singh, A., Poshtiban, S. and Eyoy, S. (2013) Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pa-

thogen Detection. Sensors, 13, 1763-1786. http://dx.doi.org/10.3390/s130201763 
[2] Clark, L.C. and Lyons, C. (1962) Electrode Systems for Continuous Monitoring Cardiovascular Surgery. Annals of the 

New York Academy of Sciences, 102, 29-45. http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x 
[3] Sara, R.M., Maria, J.L. and Damia, B. (2006) Biosensors as Useful Tools for Environmental Analysis and Monitoring. 

Analytical and Bioanalytical Chemistry, 386, 1025-1041. http://dx.doi.org/10.1007/s00216-006-0574-3 
[4] Clomburg, J.M. and Gonzalez, R. (2010) Biofuel Production in Escherichia coli: The Role of Metabolic Engineering 

and Synthetic Biology. Applied Microbiology and Biotechnology, 86, 419-434.  
http://dx.doi.org/10.1007/s00253-010-2446-1 

[5] Fischer, C.R., Marcuschamer, D.K. and Stephanopoulos, G. (2008) Selection and Optimization of Microbial Hosts for 
Biofuels Production. Metabolic Engineering, 10, 295-304. http://dx.doi.org/10.1016/j.ymben.2008.06.009 

[6] Mostafa, S.E. (2010) Microbiological Aspects of Biofuel Production: Current Status and Future Directions. Journal of 
Advanced Research, 1, 103-111. http://dx.doi.org/10.1016/j.jare.2010.03.001 

[7] Peralta, P.P. and Keasling, J.D. (2010) Advanced Biofuel Production in Microbes. Journal of Biotechnology, 5, 147- 
162. http://dx.doi.org/10.1002/biot.200900220 

[8] Soto, S.M. (2013) Role of Efflux Pumps in the Antibiotic Resistance of Bacteria Embedded in a Biofilm. Virulence, 4, 
223-229. http://dx.doi.org/10.4161/viru.23724 

[9] Huffer, S., Roche, C.M., Blanch, H.W. and Clark, D.S. (2012) Escherichia coli for Biofuel Production: Bridging the 
Gap from Promise to Practice. Trends in Biotechnology, 30, 538-545. http://dx.doi.org/10.1016/j.tibtech.2012.07.002 

[10] Christopher, M.G. and Stephen, S.F. (2011) Applications of Systems Biology towards Microbial Fuel Production. 
Trends in Microbiology, 19, 10. 

[11] Dunlop, M.J., Keasling, J.D. and Mukhopadhyay, A. (2010) A Model for Improving Microbial Biofuel Production Us-
ing a Synthetic Feedback Loop. Systems and Synthetic Biology, 4, 95-104.  
http://dx.doi.org/10.1007/s11693-010-9052-5 

[12] Harrison, M.E. and Dunlop, M.J. (2012) Synthetic Feedback Loop Model for Increasing Microbial Biofuel Production 
Using a Biosensor. Frontiers in Microbiology, 3, 360. http://dx.doi.org/10.3389/fmicb.2012.00360 

[13] Anitha, S., Subbiah, A., Subramaniam, S. and Rajendran, L, (2011) Analytical Solution of Amperometric Enzymatic 
Reactions Based on Homotopy Perturbation Method. Electrochimica Acta, 56, 3345-3352. 
http://dx.doi.org/10.1016/j.electacta.2011.01.014 

[14] Hemeda, A.A. (2012) Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations. Applied 
Mathematical Sciences, 6, 4787-4800. 

[15] He, J.H. (1999) Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178, 

http://dx.doi.org/10.3390/s130201763
http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x
http://dx.doi.org/10.1007/s00216-006-0574-3
http://dx.doi.org/10.1007/s00253-010-2446-1
http://dx.doi.org/10.1016/j.ymben.2008.06.009
http://dx.doi.org/10.1016/j.jare.2010.03.001
http://dx.doi.org/10.1002/biot.200900220
http://dx.doi.org/10.4161/viru.23724
http://dx.doi.org/10.1016/j.tibtech.2012.07.002
http://dx.doi.org/10.1007/s11693-010-9052-5
http://dx.doi.org/10.3389/fmicb.2012.00360
http://dx.doi.org/10.1016/j.electacta.2011.01.014


O. M. Kirthiga, L. Rajendran 
 

 
275 

257-262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3 
[16] He, J.H. (2005) Application of Homotopy Perturbation Method to Nonlinear Wave Equations. Chaos, Solitons and 

Fractals, 26, 695-700. http://dx.doi.org/10.1016/j.chaos.2005.03.006 
[17] Eswari, A., Usha, S. and Rajendran, L. (2011) Approximate Solution of Non-Linear Reaction Diffusion Equations in 

Homogeneous Processes Coupled to Electrode Reactions for CE Mechanism at a Spherical Electrode. American Jour-
nal of Analytical Chemistry, 2, 93-103. http://dx.doi.org/10.4236/ajac.2011.22010 

[18] PonRani, V.M. and Rajendran, L. (2012) Mathematical Modelling of Steady-State Concentration in Immobilized Glu-
cose Isomerase of Packed-Bed Reactors. Journal of Mathematical Chemistry, 50, 1333-1346. 
http://dx.doi.org/10.1007/s10910-011-9973-6 

  

http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/j.chaos.2005.03.006
http://dx.doi.org/10.4236/ajac.2011.22010
http://dx.doi.org/10.1007/s10910-011-9973-6


O. M. Kirthiga, L. Rajendran 
 

 
276 

Appendix A 
In this appendix, the general solutions of Equations (1)-(5) are derived. Consider the Equation (1), 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )max

d
1

d
n

n n i
p

n t n t p t n t
n t b t n t

t n p t
α

α δ
γ

 
= − − − 

+ 
                 (A1) 

The above equation is strongly nonlinear. Hence we take i isb b=  and sp p= . Now the Equation (A1) be-
comes 

( ) ( ) ( ) ( ) ( )
max

d
1

d
n s

n n is
s p

n t n t p n t
n t b n t

t n p
α

α δ
γ

 
= − − − 

+ 
                     (A2) 

We rewrite (A2) as 

( ) ( ) ( )( )2

max

d
d

n s n
n n is

s p

n t p
b n t n t

t p n
α α

α δ
γ

   
= − − −    +   

                  (A3) 

By solving (A3), we get 

( )
( ) ( )

max

1 e L tn

Ln t
C L

n
α −

=
+

                            (A4) 

From Equation (A4), we can find the constant C1 can be obtained by substitute the initial condition. We get 

( )

0

max

0

1

nnL
n

C
n L

α
−

=                                     (A5) 

Substitute Equation (A5) in Equation (A4), the final solution is obtained. 

( )
0

max 0 max

1 e Ltn n

Ln t
nL

n n n
α α −

=
 

+ − 
 

                             (A6) 

where n s
n n is

s p

p
L b

p
α

α δ
γ

 
= − −  + 

                                                          (A7) 

When t →∞ , the above equation becomes ( ) sn t n= .                                        (A8) 

Appendix B
 Scilab/Matlab program to find the numerical solution of Equations (1)-(5). 

function main1 
options= odeset('RelTol',1e-6,'Stats','on'); 
Xo = [0.01;0;0;0;0];   
tspan = [0,40];  
tic 
[t,X]= ode45(@TestFunction,tspan,Xo,options); 
toc 
figure 
holdon 
plot(t, X(:,1)) 
%plot(t, X(:,2)) 
%plot(t, X(:,3)) 
%plot(t, X(:,4)) 
%plot(t, X(:,5)) 
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return 
function [dx_dt]= TestFunction(t,x) 
an=0.66;ar=0.01;ap=0.01;ab=0.01; 
br=2.1;bp=0.66; 
dn=0.91;db=0.5; 
gp=0.14;gi=60;gr=1.8; 
kr=10;kp=0.2;kb=100;nmax=1; 
v=0.01;i1=1; 
dx_dt(1)=(an*x(1)*(1-(x(1)/nmax)))-(dn*x(4)*x(1))-(an*x(1)*x(3)/(x(3)+gp)); 
dx_dt(2)=ar+(kr*(i1/(i1+gi)))-(br*x(2)); 
dx_dt(3)=ap+(kp*(1/(gr+(x(2)/(1+(kb*x(4)))))))-(x(3)*bp); 
dx_dt(4)=(ab*x(1))-(x(3)*db*x(4)); 
dx_dt(5)=v*db*x(3)*x(4)*x(1); 
dx_dt = dx_dt'; 
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