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In Principia mathematica philosophiæ naturalis (1687), with regard to binomial formula and so general 
Calculus, Newton claimed that Leibniz proposed a similar procedure. As usual within Newtonian style, no 
explanation was provided on that, and nowadays it could only be decoded by Newton himself. In fact to 
the point, not even he gave up any mention of Leibniz in 1726 on the occasion of the third edition of the 
Principia. In this research, I analyse this controversy comparing the encrypted passages, and I will show 
that at least two ideas were proposed: vice versa and the algebraic handing of series. 
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Introduction 
In a conference devoted to resentment seen as an object for 

the historian, I tried to account for the vindictive attitude that 
Newton gradually developed towards Leibniz. What is pro- 
found in the quarrel was not really about who first discovered a 
path to Calculus, but how one happens to recognize a revolu- 
tionary theory in mathematics has been prepared with the req- 
uisites of rigour accepted at a certain time. And more, it is to 
know how it is possible to ensure that a new theory is actually 
completed. I then necessarily reduced my presentation of 
mathematical facts, emphasizing only on the perception of an 
innovator in science, who may imagine accordingly that any 
other creator was to succeed only by following the same path1. 
Resentment may then arise from the almost experimental rec- 
ognition that this almost automatic thought is not true. Public 
sources on the so-called priority quarrel between Newton and 
Leibniz, which began in 1699 through the fault of Nicolas Fatio 
de Duillier, are numerous enough to afford such a psychologi- 
cal study2. But more can be said, outside any theory of emo- 
tions. Here I am to focus on a purely epistemological aspect, 
restricting even to a specific expression, precisely the one given 
by what is called the epistola posterior. The name was coined 
by Newton himself to refer to the second letter he wrote in Oc- 

tober 1676 to Leibniz. In it Newton explained that he had a 
method for dealing with “quantities” (not yet said variable but 
flowing3), when related by an equation, and that there was a 
double reciprocal link between these quantities and their speed 
of change, called fluxions4. Newton wrote about a “vice versa” 
procedure (Figure 1). It has always been thought that this 
meant the relation between differential and integral calculus5. 
Newton mingled the procedure, so is his precise verb, with the 
way to handle series algebraically. I just quote the memoran- 
dum found in Newton’s papers, but give translation of the two 
deciphered parts only. 

My paper confronts the fact that the meaning of what was 
encrypted, which included at least two ideas (one is the vice 
versa and the other is the algebraic handing of series), could 
only be decoded by Newton himself. In his famous Principia 
mathematica philosophiæ naturalis in 1687, eleven years later, 
Newton claimed that Leibniz had a similar procedure, but there he 
did not explain the vice versa. I am not sure, contrary to what 
Hall was thinking, that this attitude of Newton helped to clarify  

1Voir Jean Dhombres, is it interesting to qualify as resentment some epi-
sodes of the priority quarrel between Leibniz and Newton? Reflexions on 
pyschological aspects in history of science, Geneva colloquium of October 
2012 on Resentment, under the responsability of Dolorès Martín Moruno, to 
appear. 
2See: Rupert Hall, 1980; Koyré, 1968; Newton, 1999; Whiteside, 1960; 
Whiteside (ed.), 1967-1974; Guicciardini, 1998; Panza, 2005; Harper, 2011; 
Dhombres, forthcoming 1. 

3The expression for a variable was invented by de L’Hôpital in Analyse des 
infiniment petits, a book published in 1696 at the Imprimerie royale in Paris. 
The expression “to flow” was sometimes used in Latin by Cavalieri in 1635, 
to describe the move of a straight line through a given geometric figure. 
4The vocabulary for fluxions was settled in Newton’s manuscripts around 
1671, but was used earlier around 1666, which is by the way only ten years 
before 1676. 
5Remark that this common thought is based on the idea that computation 
with fluxions and its inverse, which is obtaining fluents from fluxions, is 
exactly the same as differential and integral calculus. That this idea was the 
principle on which a biased judgment of the Royal Society had been found-
ed against Leibniz in the early 18th century should prevent us from accepting 
it without any further discussion. 
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1. Given an equation involving any number of fluent quantities to find
the fluxions and vice versa. 
2. One method consists in extracting a fluent quantity from an equation
at the same time involving its fluxion; but another by assuming a series
for any unknown quantity whatever, from which the rest could con-
veniently be derived, and in collecting homologous terms of the resul-
ting equation in order to elicit the terms of the assumed series6.  

Figure 1. 
Translations of Newton’s Memorandum possibly from October1676, as 
it is dated, where he deciphered the two encrypted messages he sent to 
Leibniz. 
 
his relationship to Leibniz7. To the point he gave up any men- 
tion of Leibniz in 1726 on the occasion of the third edition of 
the Principia. If my basic assumption is that Leibniz could 
absolutely not decipher these messages8, and Newton knew it 
beforehand, I make a second assumption for the present pres- 
entation. Newton would think that at least part of the non en- 
crypted content of the letter, the one devoted to the now-called 
Newton’s binomial, would have been enough for Leibniz to 
grasp the meaning of “vice versa”. The link with series, bino- 
mial series in fact, has always been considered by historians as 
basic to the understanding of Newton’s ways. In other words, to 
conduct the present study, I am assuming that Newton thought 
he had invented calculus of fluxions and its inverse on the basis 
of a meditation on the binomial theorem. Or, better said, New- 
ton thought this meditation on the binomial formula provided 
the only reasonable access to the new Calculus. So that what is 
in the epistola posterior in reference to the binomial theorem 
should be sufficient to rebuild his inventive steps.  

An Outline 
The question is now to see how such a thesis can be docu- 

mented. In what may also be seen as a reconstruction of New- 
ton possible epistemological feelings9, I use some documents in 
addition to this second letter that I will not comment in more 

details10. But I selected few other documents, and in fact only 
three authors will help me. First, Nicolaus Mercator, of whom 
John Wallis presented a paper to the Philosophical Transac- 
tions in 1668. It is generally acknowledged that this paper made 
an impression on Newton; he even might have thought that his 
deepest and unpublished thoughts had been discovered. So my 
purpose is to check from Newton’s second letter what could 
have been analogous in Mercator’s Logarithmotechnia. On the 
other hand, I will quote Gregory of Saint-Vincent11, as his name 
appeared in a note by Christiaan Huygens for the Académie 
royale des science the same year 1668, when he precisely com- 
mented Mercator’s results, and wanted to give a more balanced 
history than the one essentially based on Wallis that Mercator 
had provided. 

But before going to this year 1668, when absolutely nothing 
about fluxions had been known outside Newton, I have to make 
clear, at least from our actual point of view, what precisely 
binomial formula could teach. It seems to me that this way, 
perhaps even because of its anachronistic position, helps under- 
standing the past. The only condition is to always confront with 
what we know about the available knowledge in the past, as 
discussed by the available historiography. So history of science 
has to engage not only a confrontation between two periods of 
time, but with the tradition as well. 

What the Binomial Formula May Provide about 
Newton’s Vice Versa Formulation? 

Newton’s Binomial formula is the development in power se- 
ries of a given power of a binomial, generally written nowadays 
as (1 + x), the power being α , in fact any number: 
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This formula has a finite number of terms when exponent α  
is an integer, thus providing what is called Pascal’s triangle. 
Except that coefficients in (1) are analyzed, while in Pascal’s 
triangle they are computed through an iterative construction. 
The second member of (1) is an infinite series for all other val- 
ues of α , even when 1α = − , and this particular case will 
play a leading role. The binomial series may be considered as a 
definition of an exponential, and so is the case by Cauchy in his 
1821 Cours d’Analyse algébrique, for which it was necessary 
to consider limitations on values of x, so that to ensure conver- 
gence of the series (in fact the modulus of x, or its absolute 
value if one restricts to real values, should be strictly less than 
1). In 1676, nobody except Gregory of Saint-Vincent had pro- 
vided a definition of an exponential when an irrational expo- 
nent α  was at stake. Newton’s formulation of the binomial 
was explicitly restricted to rational exponents, and even in this 

6This memorandum is in the “waste-book” kept in the University Library of 
Cambridge (Add. 4004, fol. 81v), and with the help of Newton it was al-
ready printed by Wallis for the third volume of his Mathematical works 
where he put a Latin translation of his Treatise on algebra (1693). The deci-
pherment also appeared in the Commercium Epistolicum in 1712. 
7Hall, 1980. 
8By the way, some letters are missing in the second coding, see Turnbull, 
1960, p. 159. 
9I am using this terminology in order to avoid a contemporary tendency to 
reduce epistemology to logic and to an analytic side, thus destroying what 
Gaston Bachelard analyzed so carefully, under the name of “obstacle épis-
témologique”. Very roughly speaking, it is a process of thought by which 
something cannot be discovered or even expressed because common views 
prevent any investigation on this side. Kuhn modified this idea with the no-
tion of a paradigm, or model for normal science at a time, thus replacing 
common views, but requiring an external object not fitting to the paradigm 
and its logic, the explanation of which will then destroy normal science, to 
get another one. 

10The second letter of 1676 Newton intended for Leibniz through Oldenburg
acting as secretary of the Royal Society established ten years earlier, is 
available in Latin and in an English translation in Turnbull (ed.), 1960, vol. 
II, pp. 110-161. A French translation was given in the thesis of Michel Pen-
sivy, 1987. I am not analyzing the whole letter, and as in a stylistic exercise, 
concentrate on the binomial formula only. 
11Jesuit fathers usually named him by his first name, in Latin, Gregorius. 
The name in French, Grégoire de Saint-Vincent, was not used at the time, 
and in 1668 for the Paris Academy of science, Huygens used the form 
Gregorius de Sancto Vincentio. I will use the form Gregory of Saint-Vin-
cent.
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case he did not attempt a proper definition. There has been 
however an earlier use by Wallis with the square root of 3. 

Let us integrate the left member of (1), under the restriction 
1α ≠ − . One side gives an integration result, 
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and so we deduce by applying (1) in the case of exponent 
1α + , then dividing by 1α + , and with the elimination of the 

constant term:  
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From the second member of (1), we may compute in a dif- 
ferent way, this time using formal integration term by term of 
every power of x, and here there is a need for a more special- 
ized integration result 
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By this process, the first member of (1) becomes the first 
member of (2), and the second member of (1) becomes another 
series, so that one has:  
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Fortunately the two second members of (2) and (3) are being 
identical once rearranged. So that one sees then that the way 
integration works for a xn or for ( )1 x

α+ , with the two formu- 
las which were respectively used for the two previous ways 
along with (1), is reflected in the way coefficients of the bino- 
mial formula are behaving. But we will see that our writing of 
coefficients is not the way Newton wrote about to Leibniz.  

In the case 1α = − , one starts from a well known particular 
case,  
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This time however, one has not another binomial to use for 
integration of the two members. One has to rely on a com- 
pletely different situation, as the Neper logarithmic function ap- 
pears. 
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We get as well, when playing with variable x (in fact chang- 
ing x into –x in the integration process) 
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This last result that may be visualized in the original paper 
(see Figure 2) was the great novelty of Mercator’s Logarith- 
motechnia12, which had been prepared a year before. In this 
case attested in 1668, one sees that coefficients of the binomial 

formula are well adapted to integration of powers of x.  
Pay attention to the fact that I am not pretending here any- 

thing about the way Newton could have obtained the binomial 
formula13. He never proved it, even if this formula was essential 
to his Methodus fluxionum, for which there is a well established 
manuscript in 1671, and which was never published by New- 
ton14 who died in 1727. What I will precisely be looking at is 
the way Newton wrote binomial formula, in his October 1676 
letter to Leibniz (via Oldenburg). We will see that Newton’s 
writing reflects the behaviour of coefficients towards integra- 
tion, using in fact various integration formula, form the simple 
one for integer powers of x, even in the case of −1, or for any 
power of x. I am then suggesting that conversely integration of 
powers of x can be deduced from this specific writing of the 
binomial formula, and then, precisely from the aspect of the 
formula as a series, integration appears as well for any function 
(supposedly represented by a power series). 

So that I first have to provide Newton’s formulation, as it can 
be read in Newton’s letter for the development of a binomial 
with a rational exponent15 (m, and n, are integers, possibly neg- 
ative, and not zero):  
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Some explanations are required. In fact, the first letter of the  

alphabet A denotes the first term 
m

nP  to the right of the equal  
sign. Newton wanted to have it so denoted so that B, the second 
letter in the alphabet, appearing in the third term of the series,  

denotes the second term 
m

AQ
n

. Then C as third letter of the  

alphabet, appearing in the fourth term, is to denote the third 
term, and so on. Modern terminology exhibits the same play on 
coefficients with a displacement of a unit. I do not believe by 
the way that I am modifying the significance of what Newton 
did by putting index numbers where he used alphabetical order, 
and even by taking P = 1 and Q = x. But I know what I am 
inducing when I add a functional notation in order to state the  

dependence of letter A in 
m

n
 (so that I write f1), or B (which I  

write f2), C, and so on. By using a concept not present in New- 
ton’s mind, I am trying to show as clearly as possible that 
Newton’s binomial, as any exponential like yx , requires two 
variables, one denoted by Newton as Q, and the other is the  

exponent 
m

n
. I may then replace Newton’s manner by a visible  

dependence of coefficients, in order to obtain the formulation:  
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12Mercator, 1668. 

13Whiteside, 1961. 
14It is generally said that Castillon is the first to have provided a proof in 
1742 for Newton’s binomial formula, but in fact it appeared as early as 1708 
in a textbook by Charles Reyneau, L’Analyse démontrée, with a new edition 
in 1736 (See Jean Dhombres, forthcoming 2). There was also a proof in 
Fluxionum Methodus Inversa by Cheyne in 1703. 
15Newton did not use parenthesis for the binomial P + PQ, but he drew a 
line above the whole binomial, ended by a descending vertical line. 
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Figure 2. 
A page full of computations of series, taken from Mercator by Wallis, in his presentation to the Royal Society in August 1668, p. 758. At 
the last line is the famous Logarithmic series (see relation (3)’), and the word quadrature is there forgotten as the abbreviation pl appears, 
for plane area, which is interpreted as a logarithm, due to Gregory of Saint-Vincent’s result as stated by de Sarasa. This formula is very 
efficient for small values of A, so that it avoids the lengthy computation of a whole table for logarithms. 

 
I know from Newton’s writing that the final result will have 

to be: 
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and more generally for  
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In other words, these forms exhibit the very particular be- 
haviour I am looking for, as there is a unit less taken at each 
successive occurrence, and a division by an integer a unit fur- 
ther. This is the form of the successive terms Newton chose to 
exhibit with A, B, C, etc., without exhibiting m/n, but for exam- 
ple in the form where one sees the place of successive integers 
like 2 and 3 in 

1 2

3

m n

n
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. 

So the general writing for coefficients as in (2), our common 
way of writing, is not the generality that Newton was interested 
in. For the use of Leibniz, he preferred to focus on the double 
behaviour for integers. The proper gymnastic on the generality  

of variable 
m

n
, for which one has to add a unit (which corre-  

sponds to the integration in x of power ( )1
m

nx+ ), is an integra- 
tion that for xk divides it by k+1, and for ( )1 x

α+  divides it by 
1α + . At the end, the combinatorial play lies on the formula 
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the nature of which is more hidden if one uses 
m
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separates integers m and n in the form:  
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which was the one used in Newton’s time.  
Let me here add an excursus for how we may then determine 

functions fk. If as Newton we leave undecided the values of 
functions A, B, C, ⋅⋅⋅, if we consider as proven that the integra-  

tion in variable x of ( )1
m
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so avoiding case 1 0
m

n
+ = , and if we moreover accept to in-  

tegrate a series term by term, according to Descartes’ undeter- 
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mined coefficients method extended to power series in x, a 
cascade of equalities is obtained. The presentation is being 
facilitated by the numbering Newton had chosen, with the al- 
phabetical order and his iterative writing with products. The 
identity  
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and by using what has been previously proved, we get 
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So we see precisely a unit less and division by an integer 
having a unit more. So that  
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The possibility of a solution leads in effect, and for  
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I have doubts this last proof (that I named an excursus) could 
have been thought by Newton. Not because there are techni- 
calities unproved with the handling of series, but because the 
core of the proof is the form of a function. As I went from x to x 
+ 1, or perhaps more properly said, from m/n to (m + n)/n. I 
think the idea of a function came only once integral calculus 

was understood. I so have not used such changes on functions 
for the proofs I gave concerning Newton’s writing of the bino- 
mial formula and what one may deduce for integration theory16. 
However, to the list I gave of presuppositions for the validity of 
Newton’s show to Leibniz, I have to add that integration was 
indeed supposed to be an additive process. Was it not what 
Newton intended to explain by exhibiting precisely series, on 
which he wrote in his memorandum? That the integration proc- 
ess was additive could have been confirmed for Newton by the 
very result Mercator had obtained with (2)’. Mercator was not 
using a priori considerations on integration, playing precisely 
with Riemann sums as we will see, from which the additive 
property of integration on functions is obvious. We may also 
think that Newton used what Cavalieri had shown earlier with 
his very specific figures adding surfaces from addition of 
lengths in his Geometria indivisibilibus, and other works on in- 
divisibles. We also know that, at least for some integers, the 
result 
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was important to Cavalieri. 

Mercator’s Results as Presented to the Royal 
Society and an Addition by Huygens 

My second step is to check an earlier use of the binomial 
formula and of power series17. As announced, I take the pres- 
entation by Mercator in 1668, published in the issue of the Phi- 
losophical Transactions dated Monday, 17th August 1668. The 
brochure (Figure 3) gave two analysis of books done by John 
Wallis, the latest being that of a Logarithmotechnia. 

Wallis presented it in the form of a letter to Lord Viscount 
Brouncker18, dated July 8 in Oxford. Brouncker had previously 
worked on similar techniques on the hyperbola. So that this is a 
good example on how the Royal Society worked, outside offi- 
cial meetings using an active correspondence. There too is a 
proof of a few pages in a second letter of Wallis dated August 8; 
it had been specifically requested by Brouncker on August 3rd. 
In this issue, there is an extract provided by Mercator himself of 
his Logarithmotechnia. This book was appearing the same year 
in London. All these texts are accompanied by two figures only, 
by which Wallis attracted even more attention they resemble 
figures found in his Arithmetica infinitorum, already twelve 
years old (Figures 4 and 5). 

If Wallis reported on the book, it is in part because there was 
“an accurate and subtle construction of logarithms”. It is a nu- 
merical display, and explains the reason why Mercator’s name 
is famous. But it was also clear Mercator had a way of “squar- 
ing of the hyperbole”19, as Wallis named it.     
16However I considered it was then easy to deduce the integration between 0 
and of x to power n from the primitive of a binomial with any power. 
17I am not considering here the way James Gregory, in a letter dated 1670, 
proved the binomial formula by using an interpolation. Recall that I am not 
here in the quest for an archeology of the binomial formula, but looking at 
the meaning Newton intended to give by presenting this formula to Leibniz, 
where the encrypted messages are given. 
18Quoting Lord Viscount Brouncker was relevant, as this member of the 
Royal Society had published in the same third volume of the Philosophical 
Transactions some results on The Squaring of the Hyperbola by an infinite 
Series of rational Numbers (p. 645-649). 
19The quotation in Latin is page 753 in the third volume of Philosophical 
Transactions, and the reference made to Figure 1 is to the figure provided 
with the figure here numbered as Figure 4. 



J. G. DHOMBRES 

Open Access 27

 

 
Figure (a). 

 
The word “quadrature” (see Figures (a) and (b)) lost a large 

part of its meaning, in the sense that no square with an equal 
area as the area of a hyperbolic segment is seen. Finding a se- 
ries seems to be the new name for quadrature, but for sure 
Leibniz and the Bernoulli brothers will give a different meaning 
to quadrature, the one almost the same we use today when 
speaking of different quadratures one has to achieve for differ- 

ential equations. In fact, any mathematician of the time knew 
that this was related to quadratures due to Gregory of Saint- 
Vincent. This author was later quoted in the presentation by 
Wallis. But few readers could find a link between this statement 
on Gregory of Saint-Vincent and the paraphernalia of algebraic 
formulas Mercator presented20. 

 

 
Figure (b). 

 
I think the following modern terminology will be enough to 

understand Mercator’s computations (see Figure 2). I directly 
start with “Riemann sums”21. 

 

 

Figure 3. 
The presentation page of the issue of the Philosophical Transactions 
where Mercator’s ideas were presented, and at the end of this presenta- 
tion, the announcement of the two figures about the “sum of Loga- 
rithms”, which is just series (3)’. 
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These Riemann sums have equal steps, and this is precisely 
such equal steps we see in Mercator’s figure with four parallel 
lines (Figure 4). We also see such equal steps in Figure 5 by 
Wallis. Binomial formula provides summation of the series 
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and so we may write, using an inversion of the order of summa- 
tion: 
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The last sum appearing is the Riemann sum, with equal  
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Outside convergence problems with inverting orders in sum- 
mations and taking limits, questions, which shall not be treated 
seriously before Cauchy and Gauss in the early 19th century, we 
see that integration theory is taken by Mercator according to 
two points of view. One is the numerical one, that is obtaining  

20The quotation is page 758 in the third volume of Philosophical Transac-
tions. 
21The anachronistic mention of Riemann sums to define integrals is useful to 
understand how long it took to get a definition of integration different from 
the simple inverse of derivation. But we know Riemann sums were used for 
finding centres of gravity, volumes and for example in gauging methods for 
ships. 



J. G. DHOMBRES 

Open Access 28 

  

 
Figures 4, 5. 
The two figures published under n 38 in Philosophical Transactions for August 17th 1668 (this appears on page 756), the second 
one being close to a figure in Arithmetica infinitorum (proposition XCV): one clearly sees parallel lines at equal intervals like in 
many drawings on indivisibles, four parallel lines only in the first figure. 

 
an integral by Riemann sums of constants steps, so that  
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The last equality uses a result known for a long time in 
Arithmetic (at least for small integers m), which precisely was 
the main object in Wallis’ Arithmetica infinitorum, published in 
1656. In place of an explicit limit, Wallis used a fraction with 
an infinite number of terms, both for the numerator and the 
denominator: he thus used an indeterminate integer n, having 
first made a change of scale in the variable as well as on the 
function. But this is not relevant for the present study. 

The other integration theory used by Mercator is the loga- 
rithmic result:  

( )
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x t
x

t
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+ . 

This had been found by Gregory of Saint-Vincent. More pre- 
cisely the Flemish scientist had found that the variable area 
under a hyperbola using an abscissa x, something we write now  

as ( )
1

dx t
F x

t
= , satisfies the relation: 

( ) ( ) ( )
2

F a F b
F ab

+
= . 

In fact, Gregory expressed it geometrically by proving what 
amounts to the following equality for areas:  

( ) ( ) ( ) ( )F ab F a F b F ab− = − .         (4) 

This relation is not what Wallis and Mercator explicitly used 
from Gregory of Saint-Vincent: as they considered there was 
the expression of a logarithm (precisely because of (4)). These 
conclusions had been expressed in 1649 by Antonio Alfonso de 
Sarasa (see Figure 6 for a translation of this polemical title in 
his book). He wrote under the guidance of Gregory of Saint- 
Vincent, as may be checked form the manuscripts kept in the  

In this proposition, two things are predicted by the person who
claims it: 
1. the proposition probably requires something far more dif-
ficult than the quadrature itself  
2. squaring the circle by the Reverend Father Gregory of Saint-
Vincent loses itself in this still unsolved problem. By this, this
person suggests that the solution to the problem of squaring the
circle will be released, if one overcomes the defect that was
indicated in the solution of the problem this person gave. 
Author P. Alphonse Antoine de Sarasa from the Society of Jesus
Antwerp.  

Figure 6. 
Translation of the title of the booklet by de Sarasa in 1649, 
where logarithms are identified with “hyperbolic spaces” and 
associated vignette of the Plantin’s press, with an allegory on 
meditation, as well as on financial difficulties to publish books. 

 
Royal Library in Brussels (Mss. 5770-57793). 

On the 17th of October 1668, only two months after the 
presentation in London by Wallis and Mercator in the issue of 
the Philosophical Transactions, Christiaan Huygens insisted in 
a regular meeting of the Paris Academy of sciences on the true 
origin of the computation involving logarithms. He even drew a 
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figure (Figure 7) that is very similar to that of Mercator, and 
provided a very short explanation (Figure 4).  

Or cette dimension de l’hyperbole sert aussy a trouver les 
logarithmes avec facilité parce que ces espaces hyper-
boliques comme VRHF, BIHF sont tousiours entre eulx 
comme la raison de VR à FH est à la raison de BI a FH ce 
que Gregorius de Sancto Vincentio a monstré le pre-
mier22. 

Such a simple expression of the logarithmic property may 
astonish the historian, but not the one who knows that Huygens 
had truly discovered logarithms only some years before, and 
had too corresponded with the then aged Gregory of Saint- 
Vincent who explained to him his intellectual trajectory. In fact 
Huygens was oversimplifying the expression of this mathema- 
tician that we will have to study in our next step. This is also 
frequent in history of mathematics: something that took years to 
be understood, once published is viewed as obvious by a new 
generation, or better said as new bases to build new things. For 
the moment, it is enough to interpret this Huygens’ sentence in 
our modern terminology, using the exponential notation but 
keeping letters as organized in Figure 7, and adding pl in front 
of VRHF just to mean the area of the “hyperbolic space” as was 
named by Huygens, and to compare with Mercator’s writing.  

plVRHF

plBIHFBI VR

FH FH
  = 
 

 

This amounts to what Gregory of Saint-Vincent had also 
proved, as will be seen in my next step. Huygens immediately 
transferred this result in “numerical” terms, and so forgot every 
precaution about proportion theory. He made it clear that the 
use of logarithms justified this direct way. 

C’est a dire si l’on pose des nombres pour BI, VR, FH al-
ors comme l’espace VRHF est a BIHF ainsy sera la dif-
ference des logarithmes des nombres VR, FH a la differ- 
 

 
Figure 7. 
A figure used by Huygens at the Académie des sciences in Paris to 
explain Mercator’s contribution presented in London two months ear- 
lier. 

ence des logarithms de BI, FH23. 

Due to this maintenance of ratios for quantities as well as for 
logarithms (therefore considered as numerical quantities), there 
is no need here to specify the kind of logarithms being used. 
That is any form like alnx + b will prove convenient. It is 
enough in fact to have the functional property (4), a property 
that was up to Mercator at the basis for the construction of 
logarithmic tables. 

Gregory of Saint-Vincent Methods for the 
Logarithm and for the Exponential 

My third step is to show how Gregory of Saint-Vincent 
proved equality (4). He used Riemann sums, but with non equal 
steps. In Figure 8, taken from Opus geometricum published in 
1647, Gregory drew parallel lines forming rectangles (called 
parallelograms in the written text) like FCX, MXG, etc. They 
cannot be taken for “thick” indivisibles, in the sense that the 
sizes measured by the abscissas are not uniform24. So that rec- 
tangles with the same basis AH which are summed up in the 
right part of the figure (Figure 8), would have to be put in de- 
creasing values according to CX, XG, GI, IH, and so give more 
than the error made by replacing the hyperbola FMELD by 
rectangles named by three letters only, like FCX, MKG, etc. In 
a similar but not exactly same way, rectangles appear in a fig- 
ure (Figure 9) for a general curve in Newton’s Principia. One 
may then pile up such rectangles aKbI, bLcm, etc., with the 
same basis AB. The idea is to show how to pile up “small” 
quantities, while keeping a “small” quantity. Smallness in this 
figure is provided by length (Figure 9), as it is provided by 
length CX (larger that XG, GI and IH in Figure 8). What is 
surprising is that Newton kept unexplained a small rectangle 
IfFB, drawn in part with dotted lines, which may precisely 
show the fluxion of the area is the ordinate of the curve, a result 
not at all mentioned in Gregory’s Opus geometricum. 

Now I am ready for the fourth step, which is to read proposi- 
tion 108 in Gregory of Saint-Vincent’s Opus geometricum. This 
result is known as a quadrature of the hyperbola, but there is no 
quadrature in the old sense, nor in the sense with series that 
Mercator had used: an equality is obtained between a priori 
numerically unknown areas. 

Proposition 108: Let AB and AC be asymptotes to hyper- 
bola DEF, and DH, EG and CF25 parallel26 to the asymp- 

22This dimension of the hyperbola is also used to easily find logarithms as 
hyperbolic spaces like VRHF and BIHF are always one to another as the 
ratio of BI is to FH. This is what Gregory of Saint-Vincent was the first to 
show. Huygens, 1668, p. 264. 

23That is if one uses numbers for BI, VR, FH, then as space VRHF is to 
BIHF, so is the difference of logarithms of numbers VR and FH to the dif-
ference of logarithms of BI and FH. Huygens, 1668, p. 264. I have not 
checked the original manuscript (Registres de l’académie des sciences, tome 
III, pp. 138-143), but I am using the very precise edition of the complete 
works of Huygens (vol. 20, p. 261). Huygens’ sentence can be rendered in 

the following terminology: ( )ln ln ln ln
plVRHF

BI FH VR FH
plBIHF

− = − . 

24Cavalieri in 1635 drew parallel straight lines moving in such a way as to 
cover entirely a figure, and so to generate an area. Such lines were called 
indivisibles, and so they were supposed without any thickness. Thick indi-
visibles were later invented in order to link what Cavalieri did to what was 
done on figures with Riemann sums, seen as geometric approximations to an 
area. 
25For analogy reasons, one should prefer the writing FC in this order. But 
Gregory of Saint-Vincent chose quite often, in a sort of baroque mood, to 
end a series of letters by inverting the order. As if to close something in the 
appearance of a figure. 
26The original text reads as “equidistant”. 
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Figures 8, 9. 
Figure of a hyperbola accompanying proposition 108 in Book 
VI of the Opus geometricum, published in Antwerpen in 1647. 
The second figure is from Newton’s Principia. I chose the last 
edition (1726, p. 28), which is here the same as in the original 
1687 edition, to prove that Newton had not tried to modify the 
way summation of infinitely small sums worked. 

 
tote AB, be in continued proportion27. I say that segment 
DHGE is equal to segment EGCF. 

Its proof goes in the following way. 

Proof: Let LI be given and put proportional means be-
tween HD MK, EG, CF, and draw BD, LN, EW, MP, FQ 
parallel to the asymptote AC. Since DH, LI, EG, MK, FC, 
continue the same ratio, AH, AI, AG, AK, CA, are propor-
tional28 (according to proposition 78 in this book). But 
since the differences29 HI, GI, GK, etc., are proportional 
(Proposition 1 of De progressionibus30) that HI is to IG, 
AI is to AG, that is to say, as EG is to LI. This is why par- 
allelograms LH and EI are equal. (by Proposition 14 of 
this book). Also because GI is to GK as MK to EG, paral-

lelograms EI and MG are also equal. Similarly, parallelo-
gram FK is equal to parallelogram MG. So the four paral-
lelograms LH, EI, MG, FK are equal. So the two paral-
lelograms LH and EI cut off from segment EGHD are 
equal to two parallelograms MG and FK cut off from 
segment FCEG. Once again, if we set the mean propor-
tional between DH, LI31, EG, and between EG, MK, FC, 
is shown in the same way as above, that the parallelo-
grams in segment EGHD are equal to the parallelograms 
in segment FCEG. And since it can always be done in 
such a way that the parallelograms cut off from segment 
DHEG are greater than half segment DHEG and equal to 
those who are cut off from segment EGFC are also larger 
than the half of the same segment, it is clear that segment 
FCEG is equal to segment EGDH (Proposition 116 of De 
progressionibus). This was to be proved. 

We notice that this is a direct procedure in this proof of an 
equality. It is based on earlier and general proofs in the Opus 
geometricum, put in book 2. It is related to what Newton will 
do in 1687 under the name of ultimate ratios.  

I am adding Figures 10 to 12 to show that Gregory of 
Saint-Vincent’s procedure, but this time with parallel lines at 
equal intervals, is used a second time in his book, at book 7, for 
the ductus planum in plani. Such parallel lines appear as well in 
Luca Valerio’s book on centers of gravity, in the early seven- 
teenth century (Figure 13). 

In book 6, to which we return, Gregory of Saint-Vincent 
went further, and provided a figure (see Figure 14). 

Proposition 129. Let AB32 and BC be asymptotes of the 
hyperbola DFH, and let DE, FG, and HC33 be parallel to 
the asymptote AB. Let plane surface FGCH be incom- 
mensurable to plane surface DEGF. I say the ratio of DE 
to FG multiplies the ratio of FG to HC as many times 
quantity DEGF34 contains quantity FGCH (Dico rationem 
DE ad FG, toties multiplicare rationem FG, ad HC, quo-
ties quantitas DECF, continet quantitatem FGCH)35. 

Proposition 129 in the same book 6 on the hyperbola by 
Gregory of Saint-Vincent gave the exponential property of 
transforming a sum into a product. Gregory distinguished a 
commensurable case (for which the reasoning by computation 
is direct) and a non-commensurable case, easily proved by a 
result of equality from Proposition 108. Gregory thus followed 
the path chosen by Archimedes for his famous theory of the 
lever in On planes equilibrium. His goal here was to define a 
real number as an exponent, and as he has no name for it, he 
called it a procedure of “many times”. It refers to what was 
written earlier as a quotient of areas introduced by pl. This ex- 
plains exponentiation, and is not restricted to rational exponents. 
Gregory of Saint-Vincent thought in terms of numerical ratios. 
It can be translated without betraying him by setting 

areaDEGE

areaFGCH
α= , 

and in a similar way, 
27Continuous proportion just means: 

DH EG

EG CF
= . 

28The hyperbola transforms a proportion on the abscissa-axis into one in the 
ordinate-axis. The ratio of the proportion is reversed in the passage through 
the hyperbola. 
29The word difference is here to indicate a term like HI = AH − AI, to get a 
continuous proportion as well. 
30This is a reference to the second book in Opus geometricum. 

31By mistake in the original text LE is written. 
32A is missing in the figure, and should be read at the top left. 
33This time, the last term HC is written by analogy with the three others. 
34By mistake there is a C in place of a G. 
35Gregory of Saint-Vincent used the same expression as in proposition 125, 
but the “number of times” involved in the present proposition 129 is an 
irrational number.
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Figures 10 to 13. 
One of the first figure to the left in the book on ductus 
by Gregory of Saint-Vincent, showing parallel lines at 
equal intervals. It prepares an interpretation for solid 
geometry. Therefore here there is no approximation 
procedure. The next figure to the right appears in the 
third chapter on the ductus, with a general “concave” 
curve. It exhibits a way to prove that the sum of small 
rectangles like GPFR, RFSN, etc., remains small as 
being included in 0AEG, where EG gives a step for the 
approximation. All letters are not clearly legible, and N, 
for example, has been inverted by the printer. Next 
figure is from a manuscript page with drawings from 
what will become the seventh book on the ductus by 
Gregory of Saint-Vincent, showing inscribed rectan- 
gles for a general curve. One also sees a non concave 
curve, and this generality is typical of this seventh 
book of Opus geometricum. Last illustration is a figure 
from De Centro gravitatis due to Luca Valerio in 1606, 
which certainly played a role in the scientific education 
of Gregory of Saint-Vincent. One sees the approxima- 
tion of the area of a parabola with circumscribed and 
inscribed rectangles. The difference between these two 
approximations is shown as an addition of small rec- 
tangles, but they are not entirely piled up. 

 
Figure 14. 
Figure accompanying proposition 129 in the same book, with 
parallel lines and no rectangles. 

 

DE FG

FG HC

β
 =  
 

. 

Therefore we have three possibilities only: 
, ,α β α β α β> < = . What is to be proved is that only the last 

equality is true. It is enough to establish that the previous two 
inequalities are false. Note that the functional property, which 
is true for any exponential, is derived here from the geometric 
evidence of addition of areas (one “sees”: x y x ya a a+ = ). This 
property of the exponentiation was not recognized at the time, 
and almost never quoted by historians36. Thus it plays no role in 
my present story. Except I wanted to show that a mathematician, 
like Newton in this case, was not always able to see what was 
important in another one, here Gregory of Saint-Vincent. So 
that the hope that Leibniz could understand immediately his 
mention of the binomial formula was certainly fallacious. 

More than a Conclusion, and to Go Further 
My conclusion indeed is that by the formulation Newton 

36If exponentiation was really discovered and correctly defined by Gregory 
of Saint-Vincent, it does not mean that he explained exponential of base e. 
And so we may understand why Huygens chose to prefer using the already
constructed Neperian logarithm (without explicitly thinking it was the in-
verse of the exponential of base e). What is surprising is that Gregory had 
everything to have the exponential of base e. A modern notation will make it 
clear. Suppose that we take three points, named x1, x2 and x3, as abscissas 
and corresponding y’s on the hyperbola (the Cartesian equation of which can 
be written as xy = k). And denote by area 1, area 2, area 3, the successive 
areas of the hyperbolic segments. What Gregory of Saint-Vincent proved in 

proposition 129 is that: 

area 2

area1
32

1 2

yy

y y

 
= 

 
. If we define 

1

area1
2

1

y
A

y

 
=  
 

, then we 

have the expression of a ratio in terms of an exponential. That is area2 3

2

y
A

y
=

In our modern way of writing, this just means that 
1

ke A
−

= . Gregory of 

Saint-Vincent could have proved that his number 
1

ke A
−

=  was not de-
pendent of the specific hyperbola used, or even have taken k = 1. He cer-
tainly could have proved, just form his result in Proposition 129 that what he 
did with 1 and 2 to define A would give the same number with 2 and 3, etc. 
But he was not thinking in terms of a general representation of positive real 
numbers (his general ratios) in terms of an exponential. Due to addition of

areas, he may see as well that area2 area3 4

2

y
A

y
+ = . And he may have, area3 4

3

y
A

y
=

So that from the well known composition of ratios, 34 4

2 3 2

yy y

y y y
= , Gregory of 

Saint-Vincent could have deduced the characteristic exponential property: 
area1 area2 area1 area2A A A+ = . 
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chose for the binomial he could think this was a good way to 
exhibit to Leibniz the “vice versa”, that is the reciprocal link 
between fluxional operation and integration operation, the two 
being defined as independent operations. This was at least clear 
in 1676, when Newton specifically insisted in writing this for- 
mula by using a recurrence on coefficients and not an explicit 
formula for such coefficients, later known as binomial coeffi- 
cients. At this time, and after a long process, Newton had al- 
ready obtained fluxions and integration, with separate defini- 
tions. So that he then could be impressed by what he saw in the 
binomial formula, quite independently of the fact that this for- 
mula might have been as well at the beginning of his thoughts 
on the Calculus. Another strong impression could be the fact 
that what had been done with integration to understand the 
recurrence for coefficients in the binomial formula, could be 
done as well with derivation, this time using  

( ) ( ) ( ) 11d d or d 1 1n nx nx x x x
α αα −−= + = +  

or more properly said with the equivalence with dots in writing 
fluxions37. This is important if we consider that for Newton, 
following Leibniz, integration came first, and derivation after- 
wards. At this time, year 1676, Newton might suppose that 
Leibniz had obtained the same. 

Later, textbooks on the Calculus began by explaining how 
derivation or integration worked on powers of x, rational or 
irrational, and so insisted far less on the binomial formula, 
which appeared to be a formula of secondary importance. Such 
textbooks, following Jean Bernoulli, were based on integration 
as being defined as the inverse to derivation (so that the ap- 
pearance of 1/n + 1 in the integration of xn was not a proof, but 
the consequence of a definition and of derivation law). In this 
way, textbooks forgot for a while Riemann sums and numerical 
methods for approximation of areas or volumes. They however 
were still used in practice. I warned at the outset that I certainly 
was not trying here to decide between Leibniz and Newton on 
the advantages and presentations of Calculus from derivation or 
from integration: we all know that the differential notation is 
better than the dots in the sense that a differential can be seen in 
the writing of an integral, so clearly linking the two operations 
to have one Calculus only. I so gave my basic assumptions 
from the Newton memorandum. But I did not need to base my 
account on an “innocence” of Newton, as I merely “see” what 
one could get for the discovery of Calculus if Newton’s en- 
crypted message was literally read. The advantage of my very 
restrictive procedure is to avoid complicating the story with the 
introduction of “indivisibles”, which Newton did not mention 
in the text I chose. In May 1686, Leibniz felt the need to pre-
sent Cavalieri’s work as a start, or on his own terms, the “child- 
hood of a resurgent science”38. This seems to contradict his 
later presentation of integration as a mere inverse of derivation. 
It was then a pleasure to give some place here to Gregory of 
Saint-Vincent, as his importance lies in the fact that he speci- 
fied integration as a process, inventing the notion of a primitive, 
or indefinite integral. But, under the guidance of Huygens, I 
associated the Flemish mathematician to Mercator, who pre- 
ferred to mention Mersenne. This mathematician handled series 
and algebraic notations, which Gregory of Saint-Vincent scorn- 
ed or ignored and so could not go much further. Contrary to 

Newton, as we have seen in his epistola posterior to Leibniz. 
For my specific point of view here, it is the confluence of 

two specific types of integration with different Riemann sums, 
as we say today, which gave its numerical strength to Merca- 
tor’s discovery. We must not forget that it caused a revolution 
in the establishment of tables of logarithms. John Wallis had 
only one type of integration due to his very specific notations 
for Riemann sums with constant steps. It could have led to an- 
other revolution in Newton’s mind, once he saw that the fluxion 
of an area was precisely the function to be integrated. I have not 
tried here to check what the information from Gregory of Saint- 
Vincent and from Mercator could have brought to Leibniz, but 
in the mind of the German mathematician, infinitesimals in 
general played a major role, while we have seen Newton trying 
to restrict to the integration process, then deducing the deriva- 
tion process. There was a different way for Calculus, and the 
Leibniz way was apparently the one privileged, outside applica- 
tions of Calculus to various practical domains such that ships 
stability, till Cauchy proved in 1821 the fundamental theorem 
of Calculus showing that integration via Riemann sums indeed 
corresponded to integration as inverse to derivation. 
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