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ABSTRACT 
In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials shar- 
ing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic 
functions. 
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1. Introduction 
Let ( )f z  and ( )g z  be two non-constant meromorphic functions defined in the open complex plane C . Let

{ }a∈ ∞C , we say that ( )f z  and ( )g z  share a  CM (counting multiplicities) if ( )f z a− , ( )g z a−  
have the same zeros with the same multiplicities and we say that ( )f z  and ( )g z  share a  (ignoring multip- 
licities) if we do not consider the multiplicities. We denote by ( ),T r f  the Nevanlinna characteristic function 
of the meromorphic function f  and by ( ),S r f  any quantity satisfying ( ) ( )( ), ,S r f o T r f=  as r →∞  

possibly outside a set of finite linear measure. ( ),kN r f  denotes the truncated counting function bounded by 
k . Moreover, ( )1 2, , , kGCD n n n  denotes the greatest common divisor of positive integers 1 2, , , kn n n . 

For the sake of simplicity, let m  be a nonnegative integer, 0 1 10, , , , 0m ma a a a−≠ ≠  be complex constants. 
Define 

( )
( )
( )

1
1 1 0

0

0

0

m m
m ma w a w a w a m

P w
a m

−
− + + + + >= 

=



                    (1.1)

 In 1929, Nevanlinna [1] proved the following well-know result which is the so called Nevanlinna five values 
theorem. 

Theorem A Let f  and g  be two non-constant meromorphic functions. If f  and g  share five distinct 
values IM, then f g≡ . 

Moreover, he got. 
Theorem B Let f  and g  be two distinct non-constant meromorphic functions and ( )1, 2,3,4ja j =  be 

four distinct values. If f  and g  share ( )1, 2,3, 4ja j =  CM, then f  is a Mobius transformation of g . 
In 1976, L. Rubel asked the following question: 
Whether CM can be replaced by IM in the hypothesis of Theorem A with the same conclusion or not? 
In 1979, G. G. Gundersen [2] gave a negative answer for this question by the following counterexample: 

( ) ( ) ( ) ( )2 2
e 1 e 1 , e 1 8 e 1h h h hf g  = + − = + −  , 
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where h  is a non-constant entire function. It is easy to verify that f  and g  share the four values
0,1, , 1 8∞ − , where none of the four values are shared CM, and f  is not a Mobius transformation of g . 

On the other hand, G. G. Gundersen [3] proved the following result which is an improvement of Theorem B. 
Theorem C. If two distinct non-constant meromorphic functions share two values CM and share two other val- 
ues IM, then the functions share all four values CM (hence the conclusions of Theorem B hold). 

In this paper, we shall show that similar conclusions hold for certain types of differential polynomials when 
they share two values IM. 

Theorem 1.1 Let f  and g  be two non-constant meromorphic functions, 0, 0n k> > , and 0m ≥  be  

three integers with 4 9 10n m k> + +  and ( )P w  be defined as in (1.1). If ( ) ( )knf P f    and ( ) ( )kng P g     

share 1 and ∞  IM, then 
1) when 0m > , ( ) ( )n nf P f g P g≡ ; 
2) when 0m = , one of the following two cases holds: 
3) f tg≡  for a constant t  such that 1nt = , 
4) ( ) ( )1 0 2 0e , ecz czn nf z c a g z c a −= = , where 1 2,c c  and c  are three constants satisfying 

( ) ( ) ( )2
1 21 1k n kc c nc− = . 

Remark 1.1 “ ( ) ( )knf P f    and ( ) ( )kng P g    share ∞  IM” ⇔  f  and g  share ∞  IM”. Moreover,  

from ( ) ( )n nf P f g P g≡ , one cannot get f tg≡  for some constant t . For example, let ( ) 1P f f= − ,  
( ) 1P g g= − , then ( ) ( ) ( ) ( )1 11 1 , 1 1 ,n n n nf h h h g h h+ += − − = − −  where h  is a non-constant meromorphic 

function. Obviously, f tg≡/  for some canstant t  but ( ) ( )1 1n nf f g g− ≡ − . 
Now we give some corollaries of Theorem 1.1. Corollary 1.2 and Corollary 1.3 improve Theorems D and E, 

respectively. 
Corollary 1.2 Let f  and g  be two non-constant meromorphic functions, and let ,n k  be two positive  

integers with 9 10n k> + . If 
( )knf    and 

( )kng    share 1 IM, f  and g  share ∞  IM, then either 

( ) ( )1 2e , ecz czf z c g z c −= = , where 1 2,c c  and c  are three constants satisfying ( ) ( ) ( )2
1 21 1k n kc c nc− = , or  

f tg≡  for a constant t  such that 1nt = . 
Corollary 1.3 Let f  and g  be two non-constant meromorphic functions satisfying ( ), 2f nΘ ∞ > , and 

let ,n k  be two positive integers with 9 14n k> + . If ( ) ( )
1

knf f −   and ( ) ( )
1

kng g −   share 1 IM, f   

and g  share ∞  IM, then f g≡ . 
Corollary 1.4 Let f  and g  be two non-constant meromorphic functions, and let ( ), , 2n k m ≥  be two 

positive integers with 4 9 10n m k> + + , a  be a nonzero constant. If ( ) ( )kn mf f a +   and ( ) ( )kn mg g a +    

share 1 IM, f  and g  share ∞  IM, then f tg≡  for some constant t  such that 1dt = , where  
( ),d GCD n m n= + . 

Theorem 1.1 generalizes the following result that was obtained by Zhang, Chen and Lin [4]. 
Theorem D Let f  and g  be two non-constant entire functions. Let ,n k , and m  be three positive integ- 

ers with 3 2 5n m k≥ + +  and let ( ) 1
1 1 0

m m
m mP w a w a w a w a−

−= + + + +  or ( ) 0P w c≡ , where  

0 1 1 00, , , , 0, 0m ma a a a c−≠ ≠ ≠  are complex constants. If ( ) ( )knf P f    and ( ) ( )kng P g    share 1 CM, then 

1) when ( ) 1
1 1 0

m m
m mP w a w a w a w a−

−= + + + + , either f tg≡  for a constant t  such that 1dt = , where 

( ), , , ,n m n mD nd G iC + + −=   , 0m ia − ≠  for some 0,1, ,i m=  , or f  and g  satisfy the algebraic  
equation ( ), 0R f g ≡ , 
where ( ) ( ) ( )1 1

1 2 1 1 1 1 0 2 2 1 2 0, n m m n m m
m m m mR a a a a a aω ω ω ω ω ω ω ω− −

− −= + + + − + + +  ; 

2) when ( ) 0P w c≡ , either ( ) ( )1 0 2 0e , ecz czn nf z c c g z c c −= = , where 1 2,c c  and c  are three constants 



X. H. SHI 

OPEN ACCESS                                                                                        APM 

37 

satisfying ( ) ( ) ( )2
1 21 1k n kc c nc− = , or f tg≡  for a constant t  such that 1nt = . 

Corollaries 1.2-1.4 greatly improve the following result that was obtained by Liu [5] by reducing the lower 
bound of n . Moreover, the proofs of Corollaries 1.2 - 1.4 fill some gaps appeared in the proof of Theorem E. 

Theorem E Let f  and g  be two non-constant meromorphic functions, and let ,n k , and m  be three  
positive integers with 6 9 14n m k∗> + + , and λ , µ  be two constants such that 0λ µ+ ≠ . If 

( ) ( )kn mf fµ λ 
 +  and ( ) ( )kn mg gµ λ 

 +  share 1 IM, f  and g  share ∞  IM, then\\ 

1) when 0λµ ≠ , If 2m ≥  and ( ) ( ), 3f m nδ ∞ > + , then f g≡ . 

If 1m =  and ( ) ( ), 3 1f nδ ∞ > + , then f g≡ ; 

2) when 0λµ = , if f ≠ ∞  and g ≠ ∞ , then either f tg≡ , where t  is a constant satisfying 1n mt
∗+ = , or 

( ) ( )1 2e , ecz czf z c g z c −= = , where 1 2,c c  and c  are three constants satisfying  

( ) ( ) ( )( )22
1 21 1

kk n mc c n m cλ
∗+ ∗− + =  or ( ) ( ) ( )( )22

1 21 1
kk n mc c n m cµ

∗+ ∗− + =  Here, :m mµχ
∗ = , where  

0µχ =  if 0µ = , 1µχ =  if 0µ ≠ . 

2. Preliminary Lemmas 
Let 

( ) ( )2 1 2 1 ,H F F F F G G G G′′ ′ ′ ′′ ′ ′= − − − + −                   (2.1) 

( ) ( )1 1 ,V F F F F G G G G′ ′ ′ ′= − − − − +                           (2.2) 

where F  and G  are meromorphic functions. 
Lemma 2.1 [6] Let f  be a non-constant meromorphic function and let ( ) ( ) ( )( )0 1, , , 0na z a z a z ≡/  be  

small functions with respect to f . Then 

( ) ( ) ( )1
1 0, , , .n n

n nT r a f a f a nT r f S r f−
−+ + + = +  

Lemma 2.2 [7] Let ( )f z  be a non-constant meromorphic function, ,s k  be two positive integers. Then 
( )( ) ( )( ) ( ) ( ) ( ),1 , , ,1 , ,k k

s s kN r f T r f T r f N r f S r f+≤ − + +  

( )( ) ( ) ( ) ( ),1 , ,1 , .k
s s kN r f kN r f N r f S r f+≤ + +  

Lemma 2.3 [8-10] Let ( )f z  be a non-constant meromorphic function, and let k  be a positive integer. 
Suppose that ( ) 0kf ≡/ , then  

( )( ) ( ) ( ) ( ),1 ,1 , , .kN r f N r f kN r f S r f≤ + +  

By using the similar method to Banerjee [11, Lemma 2.14], we can prove the following Lemma. 
Lemma 2.4 Let F , G  and H  be defined as in (2.1). If F  and G  share 1 CM and ∞  IM, and 

0H ≡/ , then F G≡/ , and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2, ,1 ,1 2 ,1 ,1 6 , , , ,T r F N r F N r G N r F N r G N r F S r F S r G≤ + + + + + +  

the same inequality holding for ( ),T r G . 
Lemma 2.5 [12] Let F , G  and V  be defined as in (2.2). If F  and G  share ∞  IM, and 0V ≡ , then 

F G≡ . 
Lemma 2.6 [13] If F  and G  share 1 IM, then 

( )( ) ( ) ( ) ( ) ( ),1 1 ,1 , , ,LN r F N r F N r F S r F S r G− ≤ + + + . 

Lemma 2.7 Let f , g  be two non-constant meromorphic functions, V  be defined as in (2.2), where  

( ) ( )knF f P f =   , ( ) ( )knG f P g =   , ( )P w  is defined as in (1.1), 0n > , 0k >  and 0m ≥  are three in- 

tegers. If 0V ≡/ , F  and G  share 1 CM and ∞  IM, then 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 , 3 , 2 ,1 2 ,1 , , .n m k N r f n m k N r g N r F N r G S r f S r g+ + − = + + − ≤ + + +    (2.3) 

Proof Since 0V ≡/ , f  and g  share ∞  IM, suppose that 0z  is a pole of f  with multiplicity p , a 
pole of g  with multiplicity q , then 0z  is a pole of F  with multiplicity ( )n m p k+ + , a pole of G  with  
multiplicity ( )n m q k+ + , thus 0z  is a zero of ( ) ( )1 1F F F F F F F′ ′ ′− − = −    with multiplicity  

( ) ( )1 1n m p k n m k+ + − ≥ + + − , and 0z  is a zero of ( ) ( )1 1G G G G G G G′ ′ ′− − = −    
with multiplicity ( ) ( )1 1n m q k n m k+ + − ≥ + + − , hence 0z  is a zero of V  with multiplicity at least  

1n m k+ + − . So  

( ) ( ) ( ) ( ) ( )1 , 1 , ,1 .n m k N r f n m k N r g N r V+ + − = + + − ≤                     (2.4) 

By the logarithmic derivative lemma, we have ( ) ( ) ( ), , ,m r V S r f S r g= + . Note that F  and G  share 1  
IM, by Lemma 2.6, so we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,1 , , ,

1 1,1 ,1 , , , ,
1 1

2 ,1 2 ,1 2 , , , .

L L

N r V T r V m r V N r V

N r F N r G N r N r S r f S r g
F G

N r F N r G N r f S r f S r g

≤ = +

   ≤ + + + + +   − −   
≤ + + + +

      (2.5) 

From (2.4) and (2.5) we get (2.3). This proves Lemma 2.7. 
Lemma 2.8 [14] Let f  and g  be two non-constant meromorphic functions, and , 2 1k n k> +  be two  

positive integers. If 
( ) ( )k kn nf g =   , then f tg≡  for a constant t  such that 1nt = . 

By the same reason as in Lemma 5 of [8], we obtain the following lemma. 
Lemma 2.9 Let f  and g  be two non-constant meromorphic functions. Let ( )P w  be defined as in (1.1),  

and 0, 0n k> > , and 0m ≥  be three  integers with 2 1n k m> + + . If ( ) ( ) ( ) ( )k kn nf P f g P g   =    , then 

( ) ( )n nf P f g P g= . 
Lemma 2.10 [15] Let f  and g  be non-constant meromorphic functions, ,n k  be two positive integers 

with 2n k> + , and let ( )P w  be defined as in (1.1), ( ) ( )0,a z ≡ ∞/  be a small function with respect to f   

with finitely many zeros and poles. If ( ) ( ) ( ) ( ) 2k kn nf P f g P g a    =    , f  and g  share ∞  IM, then ( )P w   

is reduced to a nonzero monomial. 
Use the proof of Theorem 3 in [15] and we obtain. 
Lemma 2.11 Let f  and g  be non-constant meromorphic functions, ,n k  be two positive integers with  

n k> . If 
( ) ( )

1
k kn nf g    =    , f  and g  share ∞  IM, then ( ) ( )1 2e , ecz czf z c g z c −= = , where 1 2,c c  and 

c  are three constants satisfying ( ) ( ) ( )2
1 21 1k n kc c nc− = . 

Lemma 2.12 [16] Let 0s >  and t  are relatively prime integers, and let c  be a complex number such that 
1sc = . Then there exists one and only one common zero of 1sw −  and tw c− . 

3. Proof of Theorem 1.1 

Let ( ) ( )knF f P f =   , ( ) ( )knG g P g =   , ( )1
nF f P f= , ( )1

nG g P g= , then F  and G  share 1 IM and 
∞   
IM. Suppose that 0H ≡/ , then F G≡/ , and 0V ≡/ . 

Case 1. 0m > . By Lemma 2.4 we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2, ,1 ,1 2 ,1 ,1 6 , , , ,T r F N r F N r G N r F N r G N r F S r F S r G≤ + + + + + +    (3.1) 

By Lemma 2.2 with 2s = , we obtain 

( ) ( ) ( ) ( ) ( )1 2 2 1, , ,1 ,1 , ,kT r F T r F N r F N r F S r F+≤ − + +                    (3.2) 
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and 

( ) ( ) ( ) ( )2 2 1,1 ,1 , , .kN r G N r G kN r G S r G+≤ + +                       (3.3) 

Combining (3.1) - (3.3) gives 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

1 2 1 2 1

1 1 1 1

, ,1 ,1 4 6 ,

2 ,1 ,1 , ,

3 4 ,1 3 ,1 2 3 ,1

2 ,1 4 6 , , , .

k k

k k

T r F N r F N r G k N r f

N r F N r G S r f S r g

k N r f N r P f k N r g

N r P g k N r f S r f S r g

+ +

+ +

≤ + + +

+ + + +

≤ + + + +

+ + + + +

 

It follows from Lemma 2.1 and the above inequality that 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 3 4 ,1 3 ,1 2 3 ,1

2 ,1 4 6 , , ,

3 3 4 , 2 2 3 ,

4 6 , , , .

n m T r f k N r f N r P f k N r g

N r P g k N r f S r f S r g

k m T r f k m T r g

k N r f S r f S r g

+ ≤ + + + +

+ + + + +

≤ + + + + +

+ + + +

         (3.4) 

Similarly we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 3 3 4 , 2 2 3 ,

4 6 , , , .

n m T r g k m T r g k m T r f

k N r g S r f S r g

+ ≤ + + + + +

+ + + +
               (3.5) 

Note that . ( ) ( ), ,N r f N r g= . From (3.4) and (3.5) we deduce that 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )5 4 7 , , 2 4 6 , , ,n k m T r f T r g k N r f S r f S r g− − − + ≤ + + + .        (3.6) 

Note that 0V ≡/  and we get (2.3). By Lemma 2.2 with 1s = , we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

1 1 1,1 ,1 ,1 , ,

1 ,1 ,1 , , ,
kN r F N r F N r F kN r f S r f

k N r f N r P f kN r f S r f
+= ≤ + +

≤ + + + +
             (3.7) 

and 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

1 1 1,1 ,1 ,1 , ,

1 ,1 ,1 , , .
kN r G N r G N r G kN r g S r g

k N r g N r P g kN r g S r g
+= ≤ + +

≤ + + + +
            (3.8) 

From (2.3), (3.7) and (3.8) we get 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )3 3 , 2 1 , , , , .n m k N r f k m T r f T r g S r f S r g+ − − ≤ + + + + +        (3.9) 

Combining (3.6) - (3.9) gives 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )5 4 7 3 3 4 4 6 1 , , , , ,n k m n m k k k m T r f T r g S r f S r g− − − + − − − + + + + ≤ +    (3.10) 

which is a contradiction since 4 9 10n m k> + + . Thus 0H ≡ . Similar to the proof of [17, Lemma 3], we obtain  

1) ( ) ( ) ( ) ( )
1

k kn nf P f g P g    = , or 

2) ( ) ( ) ( ) ( )k kn nf P f g P g   ≡    .  

By Lemma 2.10, the case of 1) is impossible. By Lemma 2.9, we get ( ) ( )n nf P f g P g≡  from 2).  
Case 2. 0m = . Similar to the proof of Case 1, we get 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )5 7 3 3 4 4 6 1 , , , ,n k n k k k T r f T r g S r f S r g− − − − − + + + ≤ +   ,        (3.11)  

which is a contradiction since 9 10n k> + . Thus 0H ≡ . and we have 

3) 
( ) ( )

1
k kn nf g    =    , or 
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4) 
( ) ( )k kn nf g   ≡    . 

For 3), by Lemma 2.11, we get ( ) ( )1 0 2 0e , ecz czn nf z c a g z c a −= = , where 1 2,c c  and c  are three con- 

stants satisfying ( ) ( ) ( )2
1 21 1k n kc c nc− = . 

For 4), By Lemma 2.8, we get f tg≡  for a constant t  such that 1nt = . This completes the proof of Theo-
rem 1.1. 

4. Proof of Corollaries 1.2 - 1.4 
The proof of Corollary 1.2 is the same to the proof of Case 2 of Theorem 1.1, we only need to let 0 1a = . Thus 
we omit the proof here. 

Now we prove Corollary 1.3, Let 1m = , similar to (3.10), we get 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )5 11 3 2 4 4 6 2 , , , ,n k n k k k T r f T r g S r f S r g− − − − − + + + ≤ +   ,        (3.12) 

which is a contradiction since 9 14n k> + . Thus 0H ≡  and we have  

1) ( ) ( ) ( ) ( )
1 1 1

k kn nf f g g   − − =    , or  

2) ( ) ( ) ( ) ( )
1 1

k kn nf f g g   − ≡ −    . 

By Lemma 2.10, the case of (i) is impossible. By Lemma 2.9, we get ( ) ( )1 1n nf f g g− ≡ −  from 2). 
Similar to the proof of Theorem 2 in [14], we get f g≡ . This proves Corollary 1.3. 
Next we prove Corollary 1.4. 
According to the proof of Case 1 in Theorem 1.1, we have  

1) ( ) ( ) ( ) ( )
1 1 1

k kn m n mf f g g   − − =    , or 

2) ( ) ( ) ( ) ( )
1 1

k kn m n mf f g g   − ≡ −    . 

By Lemma 2.10, the case of 1) is impossible. By Lemma 2.9, we get ( ) ( )1 1n m n mf f g g− ≡ −  from 2). 

Let h f g= . If h  is not a constant, then substitute f gh=  into ( ) ( )1 1n m n mf f g g− ≡ −  and we get 

( ) ( )
( ) ( )

1

1

1 ,
1

n
nm

n m
n m

h a h ahg
h b h bh +

+

− −−
= =

− −−





 

where ( )1,2, ,ja j n=   are distinct roots of the algebraic equation 1nl = , ( )1,2, ,jb j n m= +  are distinct 
roots of the algebraic equation 1n ml + = . 

Suppose that ( ),d GCD n m n= + , then n m sd+ = , n td= , where s , t  are co-prime integers and s t> ,  
thus ( )m s t d= − , which implies d m≤ . By Lemma 2.12, there exists one and only one common zero of 

1sw −  and 1tw − , namely 1w = . Therefore, there exists at least n  of ( )1,2, ,jb j n m= +  different from 
( )1, 2, ,ja j n=  . Suppose that ( )1,2, ,jb j n=   are different from ( )1,2, ,ja j n=  , then all zeros of 

( )1,2, ,jh b j n− =   have order of at least m. Applying the second fundamental theorem to h  gives 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 1 12 , , , , , , , .
2 2

n n

j jj j

nn T r h N r S r h N r S r h T r h S r h
h b h b= =

    +
− ≤ + ≤ + ≤ +      − −   

∑ ∑  

Note that 4 9 10n m k> + +  and we get a contradiction. Thus h  is a constant. From (4.2) we have 1n mh + =  
and 1nh = , thus f tg≡  for some constant t  such that 1dt = , where ( ),d GCD n m n= + . This proves Co- 
rollary 1.4. 

5. Open Problem 
For further study, we pose the following. Problem: What form of ( ) ( )n nf P f g P g≡  implies f tg≡  for 
some constant t ? 
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