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ABSTRACT 

Modern high-level programming languages often contain constructs whose semantics are non-trivial. In practice how- 
ever, software developers generally restrict the use of such constructs to settings in which their semantics is simple 
(programmers use language constructs in ways they understand and can reason about). As a result, when developing 
tools for analyzing and manipulating software, a disproportionate amount of effort ends up being spent developing ca- 
pabilities needed to analyze constructs in settings that are infrequently used. This paper takes the position that such 
distinctions between theory and practice are an important measure of the analyzability of a language. 
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1. Introduction 

In 1906 the Italian economist Vilfredo Pareto observed 
that 80% of the land in Italy was owned by 20% of the 
population [1]. Since then similar observations have been 
made in a wide variety of disciplines including the field 
of computer science. This property is often referred to as 
the 80/20 rule, the Pareto principle, or the law of the 
vital few. The essence of the 80/20 rule is that effort and 
payoff are inversely related. 

In software development, the 80/20 rule has been used 
to characterize a wide range of activities ranging from 1) 
the effort associated with testing software, to 2) the effort 
associated with the implementation of software features. 
On October 2, 2002 Microsoft CEO Steve Ballmer wrote 
a 3-page memo which contained the following: 

“One really exciting thing we learned is how, among 
all the software bugs involved in reports, a relatively 
small proportion causes most of the errors. About 20 per- 
cent of the bugs cause 80 percent of all errors, and—this 
is stunning to me—one percent of bugs cause half of all 
errors.” [2] 

In this paper, we make a similar observation about 
complex constructs that sometimes find their way into 
the design of programming languages. One practical im- 

plication of this observation is that when developing 
tools for analyzing and manipulating software, a dispro- 
portionate amount of effort is spent on handling “corner 
cases” of language constructs which are theoretically 
justified but infrequently used in practice.  

Analyzability is an important part of the usability of a 
language. Programming languages are chiefly designed 
such that programs can be efficiently translated into ma- 
chine instructions, a process that typically involves a sig- 
nificant amount of local (e.g., statement-level) analysis. 
However, such designs could pose complications for ob- 
jectives that require a precise understanding of the over- 
all program structure or behavior, such as optimization, 
automated verification, and refactoring. Pointers in C 
provide an archetypal example of language design lead- 
ing to analyzability problems as it complicates the pro- 
cess of accurately identifying data dependencies [3].  

We see an increasing need for tools that perform so- 
phisticated analysis of programs. The expense of devel- 
oping new software necessitate adapting and reusing ex- 
isting software as much as possible. In order to do so, it 
is often necessary for existing programs to be suitably 
modified from their original purpose or environment. For 
example, programs need to be optimized to take advan- 
tage of new processor architectures. They need to be re- 
structured to improve maintainability. And they need to 
be migrated to different platforms. This phenomenon 
especially hits home in the area of embedded systems 

*This work was in part supported by the United States Department of
Energy under Contract DE-AC04-94AL85000. Sandia is a multipro-
gram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy. 
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programming where additional tools are often needed to 
facilitate the reuse of existing software.  

The analyzability of the language will dictate how 
much effort will be spent to develop dependable tools to 
support such activities. Relatively newer languages such 
as Java may be easier to analyze than C but problems still 
persist, as we will illustrate in this paper. We see the Pa- 
reto Principle at work in that most Java language con- 
structs are easy to analyze, but there are a few cases that 
take a significant amount of effort to analyze correctly. 

We illustrate this using our experiences on a project to 
migrate the Java Standard Edition (SE) library to an em- 
bedded processor which runs a restricted implementation 
of the JVM. The processor supports most but not all the 
standard bytecodes. Thus, source code in the Java library 
that compiles to unsupported bytecodes needed to be sui- 
tably modified. To support this migration process, we de- 
veloped a Java analysis and manipulation tool based on 
the TL system [4] that performs a source-to-source trans- 
formation to eliminate code that compiles to unsupported 
bytecodes.  

As part of the analysis, we needed the ability to resol- 
ve type uses (e.g., in field declarations and class exten- 
sions) to their definition, or canonical form [5]. We argue 
that type resolution in Java exhibits the Pareto principle 
where resolution in a large number of settings is straight- 
forward, but where corner cases exist in which type res- 
olution is deceptively difficult. For example, analyzing a 
significant portion of the Java SE library (e.g., java.util, 
java.lang, java.io, etc.) reveals that roughly 99% of type 
uses in field declarations and class extensions involve 
only simple identifiers (i.e., identifiers that do not contain 
“dots”). On the other hand, the remaining 1% needed a 
disproportionate amount of effort to analyze correctly as 
they involved precise and meticulous interpretations of 
the semantics of Java. The difficulty in correctly inter- 
preting the resolution rules in these cases is highlighted 
by the fact that even well-established IDEs (and possibly 
some versions of Java compilers) interpret them incur- 
rectly. These findings are reported in Section 5. 

The remainder of the paper is organized as follows: 
Section 2 gives an overview of embedded systems and 
the challenges they pose to software development. In this 
section, the SCORE processor is also introduced and its 
limitations summarized. Section 3 describes a project 
whose goal is to migrate several core classes of the Java 
SE library to the SCORE platform and gives an overview 
of our in-house tool development. Section 4 introduces 
Java type resolution issues. Section 5 presents our find- 
ings with respect to Java’s type resolution semantics. 
Section 6 presents related work and Section 7 concludes. 

2. Background and Motivation 

2.1. Embedded Processors 

The computing power of modern micro-processors and 
micro-controllers has opened the door to increasingly 
complex embedded applications. These embedded sys- 
tems have impacted virtually every aspect of our lives 
ranging from medical devices to automobiles to flight 
control systems. Historically, embedded systems progra- 
mming was done using a low-level language such as as- 
sembly language. However, the complexity of modern 
embedded applications is such that high-level languages 
and tool support must be employed in order to effectively 
develop embedded software. 

Ideally, software for embedded systems would be de- 
veloped using the latest mainstream (i.e., commercially 
available) techniques and methodologies. Software would 
be designed, developed in a high-level language, tested 
on a general-purpose computing platform and then “sim- 
ply” ported to the targeted embedded system. In this set- 
ting, simulators could also be used to support analysis of 
the targeted micro-controller/processor. The advantages 
of this type of an approach are: 1) a large user base is 
employed to vet the technology (e.g., compiler correct- 
ness), 2) high-level mainstream programming languages 
reflect best-practices (e.g., type safety), and 3) tools (e.g., 
Eclipse) are cost-effective and have extensive capabili- 
ties requiring a development effort measured in terms of 
person-years. 

The primary impediment to the adoption of the soft- 
ware development approach described in the previous 
paragraph is the gap that exists between micro-proces- 
sors/controllers used in embedded systems and the gen- 
eral-purpose computing platforms on which the software 
would be developed. This gap arises because the hard- 
ware in embedded systems is oftentimes subjected to 
heavy constraints. In addition to economic forces, physi- 
cal limitations place strict bounds on various hardware 
attributes such as volume, weight, and power usage. As a 
result, the computational capabilities of embedded plat- 
forms generally represent a scaled-back version of the 
more general purpose computing platforms found on a 
PC. From the perspective of software development, the 
gap between general-purpose platforms and embedded 
platforms can be bridged in two ways: 1) develop spe- 
cial-purpose high-level languages (e.g., a non-standard 
dialect of a general-purpose high-level language) and 
tools supporting software development for a specific em- 
bedded platform, or 2) limit software development to a 
subset of a general-purpose high-level language. 

2.2. The SCORE Processor 

The SCORE processor [6] is a hardware implementation 
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of the JVM [7] being designed at Sandia National Labo- 
ratories, that is similar to the Java Card [8,9], for use in 
resource-constrained embedded applications. Table 1 gi- 
ves an overview of the features not supported by the 
SCORE. We would like to mention that the SCORE does 
support general exceptions, just not run-time assertions. 

3. Project Context 

A project is underway to develop a methodology for ef- 
fectively migrating Java code bases to restricted JVMs. 
such as the SCORE and Java Card. The goal is to then 
use this methodology to migrate (as needed) targeted 
portions of the core Java SE library (e.g., java.util and 
java.math) to the SCORE thereby enriching the environ- 
ment for SCORE application programming. 

Our approach to migration consists of two primary ac- 
tivities: removal and re-implementation. Removal is a 
fully automatic process in which source code is analyzed 
and unwanted dependencies are removed. Re-implemen- 
tation is a predominantly manual effort that focuses on 
developing Java code having a desired functionality to 
replace code having unwanted dependencies. Previously, 
we have developed a source-to-source transformation- 
based lightweight code migrator [10,11] and we are using 
lessons learned from the development of this prototype to 
guide our current development efforts. In these earlier 
publications a more detailed discussion can be found re- 
garding the nature of removal and re-implementation. 

3.1. Tool Selection 

Tool support for migration is predicated on the ability to 
analyze (Java) source code. Some analysis results can be 
obtained by leveraging existing software and tools such 
as: javac/javap, Doxygen, and Eclipse. These tools pro- 
duce artifacts (e.g., xml files, Java classfiles, dot files) 
from which information can be mined. However, our ex- 
periences suggest that integrating existing tools can result 
in fragile systems where small changes to the analysis 
requirements can result in major overall tool re-imple- 
mentation efforts. This occurs when information is desi- 
 
Table 1. List of Java features not supported by the SCORE. 

Feature Keywords Status 

floating point strictfp, float, double unsupported 

threading synchronized, volatile unsupported 

serialization Transient unsupported 

exceptions assert unsupported 

reflection  unsupported 

native methods native limited support 

red that is not directly (or indirectly) available by a given 
tool. 

Limitations of third-party software provide the impe- 
tus for developing language migration capabilities in- 
house. In particular, we are developing migration capabi- 
lities within a transformation-based system called TL. 

3.1.1. TL 
The TL System [4,12] is a collection of functions provid- 
ing general-purpose support for rewrite-based transfor- 
mation over elements belonging to a (user-defined) do- 
main language. In the TL System, a domain language is 
described by a tuple consisting of 1) an EBNF grammar 
and, 2) a lexical specification of tokens. TL is integrated 
with Standard ML in a relatively seamless manner. This 
enables a transformation to be expressed in a hybrid fa-
shion as a mixture of rewrite rules and SML functions. 

3.1.2. Bascinet 
Bascinet1 is a GUI front-end that has been developed for 
the TL System. Bascinet is implemented in Java and pro- 
vides support for a variety of system-level functions. For 
example, a transformation can be applied to the entire 
contents of a folder (e.g., java.lang). Such application 
can be performed in a discrete or continuous fashion. 
When applied in a discrete mode, global state is not pre- 
served between the application of a transformation to in- 
dividual files (i.e., one transformation application per 
file). When applied in a continuous mode, the application 
of a single transformation spans all the files in the se- 
lected directories. In Bascinet, one can also specify that a 
transformation should be applied only to files having cer- 
tain extensions (e.g., .java). 

TL and Bascinet are freely available and can be down- 
loaded at [4]. 

3.2. Java Processing Infrastructure 

At the time of this writing we have developed a Java in- 
frastructure consisting of the following: 
 A Java parser that preserves JavaDoc comments. 
 A Java pretty-printer that formats Java parse trees 

in a manner conforming fairly closely to Java code 
conventions [13]. 

 A framework where it is easy to write transforma- 
tions that gather a variety of metrics over a code 
base (e.g., number of classes, number of interfaces, 
lines-of-code, number of field declarations, etc.). 

 A transformation that constructs an internal model 
of a Java code base. At present, we are only model- 
ing class and field declarations. Our next step is to 
incorporate interfaces and enums into our model. 
Following that we will incorporate methods and 

1Bascinet is a latest version of the HATS GUI (the previous IDE that 
supported TL programming). 



The Tyranny of the Vital Few: The Pareto Principle in Language Design 

Copyright © 2011 SciRes.                                                                                 JSEA 

149

constructors. 
 A general ability to produce dot-files showing in- 

teresting information. These files can be viewed via 
ZGRviewer [14], which has been integrated into 
Bascinet. Currently, we are producing a dot-file 
showing the field declarations within classes as 
well as their inheritance relationships. The produc- 
tion of this dot-file is dependent on type resolution. 

4. Type Resolution 

The goal of type resolution is to convert a type use U 
occurring in a specific context C into its canonical form2 
 . 

 , resolveU C   

Type uses can occur in a variety of contexts including: 
field declarations, “extends” directives, formal parame- 
ters of methods and constructors, casting operations, and 
local variable declarations. The file to which a context 
belongs is called its compilation unit (CU). 

Consider the type uses associated with the declarations 
of x1 and x2 in the inner-class A1 (whose canonical form 
is p1.A.A1) shown in Figure 1. 

The resolutions of B1.C1 and C2 yield: 

 
 

1. 1, 1. . 1 1. . . 1. 1

2, 1. . 1

resolve

resolve

B C p A A p A B B C

C p A A fail




 

The explanation of these resolutions is as follows: 
B1.C1 is visible within p1.A.A1 because 1) the contents 
of B (e.g., B1) is inherited by A1, and 2) A and B belong 
to the same top-level class and hence have visibility over 
each others’ private members. On the other hand, C2 is 
not visible within A1 because private classes are not in- 
herited. 

If one omits some technical details, the core function- 
ality of Java’s type resolution algorithm can be summa- 
rized in terms of the following set of resolution rules: 
 local-resolution rule—Search locally for a declara- 

tion matching the type use. 
 super-resolution rule—Search the inheritance hier- 

archy for a declaration matching the type use. 
 single-type import rule—Search the single-type 

imports for an import matching the type use. 
 package-resolution rule—Search all compilation 

units (CUs) belonging to the given package for a 
declaration matching the type use. 

 on-demand import rule—Search the on-demand 
imports for an import matching the type use. 

 implicit import rule—Search java.lang for an im- 
port matching the type use.3 

 

Figure 1. Visibility rules involving inner-classes and in- 
heritance. 

 
 direct-resolution rule—Resolve the type use taking 

into account inheritance properties of the context. 
 absolute-resolution rule—Resolve the type use 

without making any assumptions about the context 
in which it occurs. 

Type resolution consists of a controlled application of 
these rules. For example, resolution must try the single- 
type import rule before trying the on-demand import rule. 
The on-demand import rule can be tried before the im- 
plicit import rule. It is worth mentioning that between the 
single-type and on-demand import rules is a package re- 
solution rule that attempts resolution within the package 
but outside of the CU to which the context belongs. 

On a more conceptual level, control over the applica- 
tion of resolution rules is governed by the following fac- 
tors: 1) the presence/absence of a type declaration within 
a given context, 2) the visibility properties that hold be- 
tween the context in which the type use occurs and the 
location where the type is declared, and 3) whether or not 
the resolution of a qualified id has partially succeeded 
(type resolution does not involve backtracking). 

5. Findings 

We have developed test cases that require type resolution 
to make a distinction between each type of rule. For ex-
ample, the code in Figure 2 distinguishes between the 
direct-resolution rule and the absolute-resolution rule. 
The interesting thing about this example is we have not 
been able to find a “real” Java program in which the dis-
tinction between these two rules is actually made. The 
code base we have (automatically) analyzed using our 
tool is the jdk1.6.0_18 which consists of over 2 million 
lines of code distributed across 7197 files. In the code 
base, the direct resolution rule is never needed and the 
absolute resolution rule is need only a tiny fraction of the 
time. In Section 5.1 we discuss some of our findings. 

5.1. Metrics 

At present we are focusing our migration efforts on a key  

2In Eclipse, focusing (F2) on a type use will resolve the type to its
canonical form. 
3The implicit import rule implicitly imports java.lang to all packages.
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Figure 2. The distinction between the direct and absolute 
resolution rules. 
 
subset of the Java SE library; specifically, the 23 pack- 
ages whose prefixes can be matched with java.io, java. 
lang, java.math, java.nio, and java.util. The resulting 
code base comprises 13.7% (257,163 LOC) of the Java 
libraries. Table 2 and Table 3 provide metrics for the 
libraries we are currently targeting. These metrics were 
automatically collected by our tools. 

Table 2 gives a summary of the use-frequency for se- 
lected resolution rules for all type uses that are currently 
modeled. Things worth noting include: 1) the direct-reso- 
lution rule is never used, 2) the use of the absolute-reso- 
lution rule is extremely rare, and 3) type uses within 
enums, interfaces and anonymous classes are (currently) 
not being modeled—this accounts for the discrepancy be- 
tween the type use totals in Table 2 and Table 3. 

Table 3 gives a breakdown of the targeted libraries 
along a variety of metrics. Things worth noting include: 
1) virtually all type uses in both fields and class exten- 
sions are simple identifiers (i.e., identifiers that do not 
contain dots), and 2) it is extremely rare for a class decla- 
ration to occur within a method or constructor 

5.2. Type Resolution Comparison 

Type resolution is an essential function that underlies a 
variety of software development activities such as refac- 
toring and various other code analysis capabilities provi- 
ded by Eclipse [15], Netbeans [16] and IntelliJ IDEA 
[17]. In the majority of cases, type resolution is straight- 
forward and has a semantics similar to the classical static 
scoping algorithm. However, implementing an algorithm 
capable of performing type resolution in all settings is 
deceptively tricky. Some cases are highlighted in this se- 

ction. 

5.2.1. Netbeans 
Figure 3 shows an error in Netbeans involving the use of 
classes inside of methods. Java specifies that such classes 
are only accessible within the encompassing method. Al- 
so according to Java: a use of some class should first at- 
tempt to resolve to a corresponding class within the same 
scope. Thus when C extends B in Figure 3, B should re- 
solve to p1.A.foo().B. However, Netbeans incorrectly re- 
solves B to p1.A.B, while Eclipse and IntelliJ resolve it 
correctly. Netbeans printed “0”, whereas the other tools 
printed “1”. 

One thing especially bad about this bug is that it com- 
piles without any warning, and running it from Netbeans 
gives the wrong answer, however using the jar file gen- 
erated by Netbeans and running from the command line 
gives the correct answer. 

Figure 4 shows an error in Netbeans—this time in- 
volving duplicate class declarations. In Java, one is not 
allowed to have two files with the same name within a 
package. This includes package-private classes within 
other java files.  

However Netbeans does not catch a duplicate class 
name if it is hidden inside a different ‘.java’ file. Fortuna-  

 
Table 2. Syntax-based metrics for core Java library. 

Resolution Rule Count Frequency 

single-type import rule 102 2.50% 

on-demand import rule 129 3.16% 

implicit import rule 312 7.64% 

direct-resolution rule 0 0.00% 

absolute-resolution rule 11 0.27% 

all other resolution rules 3530 86.43% 

Total 4084 100.00% 

 

 

Figure 3. Netbeans Bug I.    
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Table 3. Syntax-based metrics for selected core Java library. 

 Java Library Total 

 java.io java.lang. java.math java.nio. java.util.  

Packages 1 6 1 5 10 23 

Compilation Units (CUs) 84 169 7 139 232 631 

Lines of Code (LOC) (includes comments) 29003 54890 9422 46862 116986 257163 

Type Uses in Field Declarations (classes, enums and interfaces) 

Simple ids or primitives 392 676 84 215 1802 3169 

Total type uses 395 685 85 215 1847 3227 

Percentage of simple ids or primitives 99.2% 98.7% 98.8% 100% 97.5% 98.2% 

Enums 0 4 1 0 2 7 

Interfaces 12 29 0 7 51 99 

Classes 

Inner classes (non-static) 4 0 0 0 103 107 

Static nested classes 23 28 2 7 198 258 

Classes within methods 0 1 0 0 0 1 

Classes within constructors 0 0 0 0 0 0 

Top-level classes 73 132 6 125 191 527 

Total 100 161 8 132 492 893 

Type Uses in Class Extensions 

Type uses consisting of simple ids 65 87 3 110 305 570 

Implicit extensions to Object 34 72 5 19 180 310 

Type uses consisting of qualified ids 1 2 0 3 7 13 

Total 100 161 8 132 492 893 

Percentage of simple ids or Object 99% 98.7% 100% 97.7% 98.6% 98.5% 

 

 

Figure 4. Netbeans Bug II. 
 
nately, Netbeans won’t compile with this error. However, 
Netbeans will allow users to run the code from the IDE. 
And whichever file was most recently saved is the one 
which Netbeans will use during execution. (Thus printing 
“5” or “10” depending on which file was saved last). 

It is important to note that Netbeans is supposed to use 
the same complier as Java: which makes the bugs we 
found more interesting. On the Netbeans forum, some of 
the bugs were thought to be errors in JDK1.7 javac that 
propagated to Netbeans (though Bug II appears to be a 
bug strictly local to Netbeans). The current released JDK 
at the writing of this paper is ‘java 1.6update21’. Though 
at present, Java also has the ‘JDK 7 project’ which acces- 
sible but is still considered to be in the ‘build’ stages. 
Netbeans, since it is directly associated with Oracle and 
Java, is using a preliminary version of JDK 1.7 javac. We 
have found that both Netbeans 6.8 and the latest version 
6.9 have Bug I, yet when we downloaded the current 
binaries for JDK7 (build 99), Bug I did not occur. We 
therefore assume that Netbeans used an early version of 
JDK7 that had the problem, but we expect that future 
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releases of JDK7, as well as Netbeans, will have fixed 
this problem. 

5.2.2. Eclipse 
Figure 5 reveals a bug in Eclipse. According to the Java 
specification, “fields obscure classes”. Thus when given 
the choice between a class and a field with the same name 
in the context where they both could be used, resolution 
should favor the field over the class. This is what Eclipse 
appears to be doing. However, in this case the field B is 
not visible in package p1 since it’s access is package-pri- 
vate. Therefore, B in the print statement should refer to 
the class. Unfortunately, Eclipse refers to the field (which 
is not visible), and results in the error shown. 

Interestingly, IntelliJ has the same bug while Netbeans 
correctly identifies the class B as the resolvent. 

Figure 6 reveals another bug in Eclipse. This time the 
problem occurred with import statements. The Java lan- 
guage specification [5] Section 7.5.1 states: 

A single-type-import declaration d in a compilation 
unit c of package p that imports a type named n shadows 
the declarations of: 
 any top level type named n declared in another 

compilation unit of p. 
 any type named n imported by a type-import-on- 

demand declaration in c. 
 any type named n imported by a static-import-on- 

demand declaration in c. 
The specification [5] Section 7.5.2 goes on to say, “A 

type-import-on-demand declaration never causes any oth- 
er declaration to be shadowed.” Therefore, if an import- 
on-demand contains a class that is also in a single-type- 
import, the single-type-import would take precedence. 

Consider for a moment package p1 in Figure 6; the 
import statements p2.Bar.B and p3.Foo.* imply that any 
use of B should come from p2.Bar and not from p3.Foo. 
However Eclipse does the opposite. In general Eclipse 
handles resolution involving import statements correctly, 
but the case shown in Figure 6 is more complicated in 
two ways: 1) one of the imports is a static import, and 2) 
there exists field-class name clash. A static import allows 
a CU to import static members of a class, which can in- 
clude: static fields, static methods, and even static classes. 
Thus, import static p2.Bar.B is importing both the class 
and the field B. In addition, p2.Bar contains a field and a 
class whose identifier is B. As was mentioned earlier, the 
rules of obscuring states that a field should be chosen 
over a class if they both could be used in this context and 
if they have the same name. It is true that fields and clas- 
ses can be used inside a print statement; however, fields 
are not classes and therefore do not have a .class to be 
accessed. We believe that the cause of the error is be- 
cause Eclipse first obscures the class B with the field B 

 

Figure 5. Eclipse and IntelliJ Bug I. 
 

 

Figure 6. Eclipse Bug II. 
 
inside p2.Bar. Then it sees the complete context require- 
ing a class and the only class B it can find is within 
p3.Foo.* since the class within p2.Bar was obscured— 
this is incorrect—since it must be a class in this context, 
the field B should not obscure the class.  

Netbeans, IntelliJ, and the Java compiler correctly de- 
termine first that the context requires a class—and there- 
fore choose p2.Bar.B since it was imported using a sin- 
gle-type-import. 

5.2.3. IntelliJ IDEA 
Aside from the bug pointed out in Figure 5, Figure 7 
reveals another bug in IntelliJ regarding accessing private 
classes from subclasses. The Java language specification 
Section 8.4.8 states: 

A class C inherits from its direct superclass and direct 
superinterfaces all non-private methods (whether abstract 
or not) of the superclass and superinterfaces that are pub- 
lic, protected or declared with default access in the same 
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Figure 7. IntelliJ Bug II. 
 
package as C and are neither overridden nor hidden by a 
declaration in the class. 

Also, the specification states: 
A private class member or constructor is accessible 

only within the body of the top level class that encloses 
the declaration of the member or constructor. 

Based on this latter rule, class B2 in Figure 7 should 
be able to access the private class D1 when qualified by 
the inherited class C1. On the other hand, class B2 should 
not be able to access the private inner class C2 in its su- 
perclass B1. Instead, the reference to C2 should resolved 
to the single type import extra.C2. IntelliJ correctly re- 
solves the reference to C1.D1 as A.B1.C1.D1, but incur- 
rectly resolves C2 to A.B1.C2, which should not be visi- 
ble. Eclipse, NetBeans and the Java compiler correctly 
resolve both references. 

5.3. Discussion 

These findings illustrate the Pareto Principle at work in 
code analysis and manipulation. Type resolution is strai- 
ghtforward in most cases as an overwhelming number of 
type uses are simple identifiers. However, for the few in- 
stances where qualifiers are used, resolution quickly be- 
comes complicated and there are a few cases where even 
established tools resolve types incorrectly. Such situa- 
tions could lead to hard-to-detect faults when these incor- 
rectly resolved types are further manipulated, e.g., throu- 
gh refactoring. For example, an operation to rename all 
occurrences of a particular type may cause the wrong set 
of occurrences to be renamed.  

Investing significant additional efforts in testing and 
fixing such problems in code analysis and manipulation 
tools exacerbates an already complicated development 
process for embedded processor environments. As em- 
bedded processors are used to control safety- and busi- 
ness-critical systems, there is little margin for error for 
software development, let alone the tools used to support 
the development process. 

6. Related Work 

6.1. Library Migration 

Rayside and Kontogiannis [18] discuss a process to ex- 
tract Java library subsets for supporting embedded sys- 
tems applications by removing unused components from 
the library. They have the capability to produce library 
subsets having certain properties: 1) a space optimized 
subset, 2) a partial space optimized subset, and 3) a space 
reduced subset. The production of a subset is application 
specific with the space optimized subset being the most 
aggressive. The space optimized subset is created by re- 
moving all fields and methods that are not referenced by 
a given application. This is slightly different than the mi- 
gration goals we are pursuing in which we want to uni- 
versally prohibit access to fields and methods depending 
on features that are not supported by the target platform 
(i.e., the SCORE). Furthermore the class loader for the 
SCORE [19] already has similar removal capabilities to 
the space optimized subset produced by Rayside and 
Kontogiannis. In particular, when processing the class 
files for a given application the class loader for the 
SCORE removes all methods (but not fields) that are not 
referenced. 

6.2. Java Type Resolution 

Type resolution can be generalized into identifier lookup 
where the use (or access) of an identifier (e.g., variables, 
types, methods, etc.) is matched to its declaration. Shafer, 
et al. [20] discussed identifier lookup issues in the con- 
text of automatic support for identifier renaming in Java 
programs. Identifier renaming requires precise identifica- 
tion of lookups and accesses. Making the prerequisite 
conditions too weak would lead to unsound renaming 
(the renaming is carried out incorrectly). Making the con- 
ditions too strong would disallow certain potential rena- 
ming operations from being carried out. Complex name 
lookup rules and addition of new language features ex- 
acerbates the difficulty of defining correct renaming rules. 
To address the shortcoming, the authors proposed a re- 
verse lookup strategy, an approach which is very similar 
to a name lookup implemented for a compiler. The inver- 
ted lookup rules ensures the preservation of the binding 
structure between identifier access and declaration and 
that preconditions that are too weak are avoided. Secon- 
dly, the direct correspondence between the inverted loo- 
kup rules and direct access makes it possible for the re-
factoring tools to cope with evolution in a language. In 
comparison, our process of transforming a type use to its 
canonical form is similar to defining the lookup and ac- 
cess function binding, though it is unclear whether their 
solution differentiates between direct and absolute refer- 
ences.  
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The introduction of parameterized types or generics 
further complicates the type resolution process. Our type 
resolution algorithm currently leaves type arguments 
alone. To correctly resolve type arguments, the ability to 
perform type inference is needed. Just as implementa- 
tions of type resolution have problems, we take note that 
type inference algorithms can also work incorrectly, as 
Smith and Cartwright [21] point out in the case of the 
Java 5 compiler. Some of the problems arise from cons- 
cious engineering decisions and others from the heuristic 
nature of the algorithm. Their solution, while not com- 
pletely backwards compatible with the current language 
definition, solves many of the bugs and makes it possible 
to address extensions like first-class intersection types and 
lower-bounded type variables. 

7. Conclusions 

In this paper we have argued that the type resolution 
rules for Java are complex and make semantic distinc- 
tions along some dimensions that virtually never arise in 
practice. Nonetheless, the level of dependability needed 
by critical embedded applications necessitate that tools 
supporting the development processes of such applica- 
tions must be able to handle such cases when they do 
occur. 

Our experiences with Java type resolution lend support 
to the premise that an extreme case of the Pareto princi- 
ple applies to language design. The presence of the Pare- 
to principle has a number of implications on the analyz- 
ability of a language: 
 Infrequently used parts of a language are not as 

comprehensively vetted by the programming com- 
munity at large as their mainstream counterparts. 
As a result, in such settings compilers and develop- 
ment tools are not as mature as they are in more 
standard settings. 

 Infrequently used parts of a language are also de- 
ceptive with respect to level-of-effort estimates for 
tool development. For example, it may be relatively 
easy to develop a prototype that correctly analy- 
zes a construct in a standard setting. When (casual- 
ly) tested, this prototype may successfully analyze 
the construct in virtually all cases. However, the 
ease in developing this prototype does not imply 
that development of a comprehensive analysis of 
the construct, handling all corner cases, also requi- 
res a similar level of effort. When the Pareto prin- 
ciple is in effect, a tool developer doesn’t know 
how hard it is to develop a tool for analyzing a con- 
struct until they have implemented it in its entirety. 
Extrapolating the Balmer memo from Section 1 
suggests half of the development effort may lie in 
the implementation of the last one percent. 

In this article, we argued that if a programming lan- 
guage contains language constructs that are complex and 
infrequently used, then this can present significant obsta- 
cles to the development of reliable tools for that language. 
We believe this kind of problem is a serious one to which 
language designers of the future should be more cogni- 
zant. With this in mind we introduce the following new 
language design principle. 

Design Principle 1. Regular Use—a language design 
principle such as uniformity or generality is achieved 
only to the extent that it is used by the programming 
community for that language. 

Generality and uniformity are commonly accepted 
principles belonging to the theory of good language de- 
sign [22]. However, to truly achieve its goals such theory 
should be reflected in practice: A design principle not 
used is not a design principle at all. 

REFERENCES 
[1] V. Pareto, “Manuale di Economia Politica,” Piccola Bib- 

lioteca Scientifica, Milan, 1906. English Translation by A. 
Schwier, “Manual of Political Economy,” Kelley Pub- 
lishers, New York, 1971. 

[2] S. Ballmer, “Connecting with Customers,” 2002.  
http://www.microsoft.com/mscorp/execmail/2002/10-02 
customers.mspx. 

[3] L. Hendren and G. Gao, “Designing Programming Lan- 
guages for Analyzability: A Fresh Look at Pointer Data 
Structures,” Proceedings of the International Conference 
on Computer Languages, Oakland, 1992, pp. 242-251. 
doi:10.1109/ICCL.1992.185488 

[4] V. L. Winter, “The TL System,” 15 November 2010. 
http://faculty.ist.unomaha.edu/winter/TL/TL_index.html 

[5] J. Gosling, B. Joy, G. Steele and G. Bracha, “The Java 
Language Specification,” Third Edition, Addison-Wesley, 
Boston, 2005. 

[6] G. L. Wickstrom, J. Davis, S. E. Morrison, S. Roach and 
V. L. Winter, “The SSP: An Example of High-Assurance 
System Engineering,” Proceedings of the 8th IEEE In- 
ternational Symposium on High Assurance Systems En- 
gineering (HASE), Tampa, March 2004, pp. 167-177.  

[7] T. Lindholm and F. Yellin, Ed., “The Java Virtual Ma- 
chine,” Second Edition, Addison-Wesley, Boston, 1999. 

[8] Z. Chen, “Java Card™ Technology for Smart Cards: Ar- 
chitecture and Programmer’s Guide,” Prentice-Hall, Up- 
per Saddle River, 2000. 

[9] Oracle Sun Developer Network, “Java Card Platform 
Specification 2.2.2,” 15 November 2010. 
http://java.sun.com/javacard/specs. html 

[10] V. L. Winter and J. Beranek, “Program Transformation 
Using HATS 1.84,” In: R. Lämmel, J. Saraiva and J. Vis- 
ser, Ed., Generative and Transformational Techniques in 
Software Engineering (GTTSE), LNCS Vol. 4143, Sprin-
ger, Berlin, 2006, pp. 378-396.  
doi:10.1007/11877028_15 



The Tyranny of the Vital Few: The Pareto Principle in Language Design 

Copyright © 2011 SciRes.                                                                                 JSEA 

155

[11] V. L. Winter, A. Mametjanov, S. E. Morrison, J. A. 
McCoy and G. L. Wickstrom, “Transformation-Based 
Library Adaptation for Embedded Systems,” Proceedings 
of the 10th IEEE International Symposium on High As- 
surance Systems Engineering (HASE), Dallas, November 
2007, pp. 209-218. doi:10.1109/HASE.2007.38 

[12] V. L. Winter, “Stack-Based Strategic Control,” Prepro- 
ceedings of the 7th International Workshop on Reduction 
Strategies in Rewriting and Programming, Paris, June 
2007. 

[13] Oracle Corporation, “Code Conventions for the Java Pro- 
gramming Language,” 1999.  
http://www.oracle.com/tech-network/java/codeconvtoc-1
36057.html 

[14] E. Pietriga, “A Toolkit for Addressing HCI Issues in 
Visual Language Environments,” IEEE Symposium on 
Visual Languages and Human-Centric Computing (VL/ 
HCC), Dallas, September 2005, pp. 145-152. 

[15] Eclipse, “Eclipse,” 21 July 2010. http://www.eclipse.org 

[16] Oracle, “NetBeans,” 21 July 2010. 
http://www.netbeans.org 

[17] JetBrains, “IntelliJ IDEA: The Most Intelligent Java 

IDE,” 12 October 2010. http://www.jetbrains.com/idea 

[18] D. Rayside and K. Kontogiannis, “Extracting Java Li- 
brary Subsets for Deployment on Embedded Systems,” 
Science of Computer Programming, Vol. 45, No. 2-3, 
November-December 2002, pp. 245-270. 
doi:10.1016/S0167-6423(02)00059-X 

[19] S. Morrison, “SSP Class Loader Responsibilities,” Tech- 
nical Report (Internal), Sandia National Laboratories, 
Albuquerque, 2005.  

[20] M. Shafer, T. Ekman and O. de Moor, “Sound and Exten- 
sible Renaming for Java,” Proceedings of the 23rd ACM 
SIGPLAN Conference on Object-Oriented Programming 
Systems Languages and Applications (OOPSLA), Orlando, 
2008, pp. 277-294.  
doi:10.1145/1449764.1449787 

[21] D. Smith and R. Cartwright, “Java Type Inference is 
Broken: Can We Fix It?” Proceedings of the 23rd ACM 
SIGPLAN Conference on Object-Oriented Programming 
Systems Languages and Applications (OOPSLA), Orlando, 
2008, pp. 505-524. doi:10.1145/1449764.1449804 

[22] K. Louden, “Programming Languages: Principles and 
Practice,” Cengage Learning, 2003. 

 

 


