
Journal of Software Engineering and Applications, 2011, 4, 146-155
doi:10.4236/jsea.2011.43016 Published Online March 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

The Tyranny of the Vital Few: The Pareto
Principle in Language Design

Victor Winter1, James Perry1, Harvey Siy1, Satish Srinivasan1, Ben Farkas2, James McCoy2

1University of Nebraska at Omaha, Omaha, Nebraska, USA; 2Sandia National Laboratories, Albuquerque, New Mexico, USA.
Email: {vwinter,jperry,hsiy,smsrinivasan}@unomaha.edu, {bdfarka,jamccoy}@sandia.gov

Received January 26th, 2011; revised February 26th, 2011; accepted February 28th, 2011.

ABSTRACT

Modern high-level programming languages often contain constructs whose semantics are non-trivial. In practice how-
ever, software developers generally restrict the use of such constructs to settings in which their semantics is simple
(programmers use language constructs in ways they understand and can reason about). As a result, when developing
tools for analyzing and manipulating software, a disproportionate amount of effort ends up being spent developing ca-
pabilities needed to analyze constructs in settings that are infrequently used. This paper takes the position that such
distinctions between theory and practice are an important measure of the analyzability of a language.

Keywords: Java Type Resolution, Transformation, Code Migration, SCORE Processor

1. Introduction

In 1906 the Italian economist Vilfredo Pareto observed
that 80% of the land in Italy was owned by 20% of the
population [1]. Since then similar observations have been
made in a wide variety of disciplines including the field
of computer science. This property is often referred to as
the 80/20 rule, the Pareto principle, or the law of the
vital few. The essence of the 80/20 rule is that effort and
payoff are inversely related.

In software development, the 80/20 rule has been used
to characterize a wide range of activities ranging from 1)
the effort associated with testing software, to 2) the effort
associated with the implementation of software features.
On October 2, 2002 Microsoft CEO Steve Ballmer wrote
a 3-page memo which contained the following:

“One really exciting thing we learned is how, among
all the software bugs involved in reports, a relatively
small proportion causes most of the errors. About 20 per-
cent of the bugs cause 80 percent of all errors, and—this
is stunning to me—one percent of bugs cause half of all
errors.” [2]

In this paper, we make a similar observation about
complex constructs that sometimes find their way into
the design of programming languages. One practical im-

plication of this observation is that when developing
tools for analyzing and manipulating software, a dispro-
portionate amount of effort is spent on handling “corner
cases” of language constructs which are theoretically
justified but infrequently used in practice.

Analyzability is an important part of the usability of a
language. Programming languages are chiefly designed
such that programs can be efficiently translated into ma-
chine instructions, a process that typically involves a sig-
nificant amount of local (e.g., statement-level) analysis.
However, such designs could pose complications for ob-
jectives that require a precise understanding of the over-
all program structure or behavior, such as optimization,
automated verification, and refactoring. Pointers in C
provide an archetypal example of language design lead-
ing to analyzability problems as it complicates the pro-
cess of accurately identifying data dependencies [3].

We see an increasing need for tools that perform so-
phisticated analysis of programs. The expense of devel-
oping new software necessitate adapting and reusing ex-
isting software as much as possible. In order to do so, it
is often necessary for existing programs to be suitably
modified from their original purpose or environment. For
example, programs need to be optimized to take advan-
tage of new processor architectures. They need to be re-
structured to improve maintainability. And they need to
be migrated to different platforms. This phenomenon
especially hits home in the area of embedded systems

*This work was in part supported by the United States Department of
Energy under Contract DE-AC04-94AL85000. Sandia is a multipro-
gram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy.

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

147

programming where additional tools are often needed to
facilitate the reuse of existing software.

The analyzability of the language will dictate how
much effort will be spent to develop dependable tools to
support such activities. Relatively newer languages such
as Java may be easier to analyze than C but problems still
persist, as we will illustrate in this paper. We see the Pa-
reto Principle at work in that most Java language con-
structs are easy to analyze, but there are a few cases that
take a significant amount of effort to analyze correctly.

We illustrate this using our experiences on a project to
migrate the Java Standard Edition (SE) library to an em-
bedded processor which runs a restricted implementation
of the JVM. The processor supports most but not all the
standard bytecodes. Thus, source code in the Java library
that compiles to unsupported bytecodes needed to be sui-
tably modified. To support this migration process, we de-
veloped a Java analysis and manipulation tool based on
the TL system [4] that performs a source-to-source trans-
formation to eliminate code that compiles to unsupported
bytecodes.

As part of the analysis, we needed the ability to resol-
ve type uses (e.g., in field declarations and class exten-
sions) to their definition, or canonical form [5]. We argue
that type resolution in Java exhibits the Pareto principle
where resolution in a large number of settings is straight-
forward, but where corner cases exist in which type res-
olution is deceptively difficult. For example, analyzing a
significant portion of the Java SE library (e.g., java.util,
java.lang, java.io, etc.) reveals that roughly 99% of type
uses in field declarations and class extensions involve
only simple identifiers (i.e., identifiers that do not contain
“dots”). On the other hand, the remaining 1% needed a
disproportionate amount of effort to analyze correctly as
they involved precise and meticulous interpretations of
the semantics of Java. The difficulty in correctly inter-
preting the resolution rules in these cases is highlighted
by the fact that even well-established IDEs (and possibly
some versions of Java compilers) interpret them incur-
rectly. These findings are reported in Section 5.

The remainder of the paper is organized as follows:
Section 2 gives an overview of embedded systems and
the challenges they pose to software development. In this
section, the SCORE processor is also introduced and its
limitations summarized. Section 3 describes a project
whose goal is to migrate several core classes of the Java
SE library to the SCORE platform and gives an overview
of our in-house tool development. Section 4 introduces
Java type resolution issues. Section 5 presents our find-
ings with respect to Java’s type resolution semantics.
Section 6 presents related work and Section 7 concludes.

2. Background and Motivation

2.1. Embedded Processors

The computing power of modern micro-processors and
micro-controllers has opened the door to increasingly
complex embedded applications. These embedded sys-
tems have impacted virtually every aspect of our lives
ranging from medical devices to automobiles to flight
control systems. Historically, embedded systems progra-
mming was done using a low-level language such as as-
sembly language. However, the complexity of modern
embedded applications is such that high-level languages
and tool support must be employed in order to effectively
develop embedded software.

Ideally, software for embedded systems would be de-
veloped using the latest mainstream (i.e., commercially
available) techniques and methodologies. Software would
be designed, developed in a high-level language, tested
on a general-purpose computing platform and then “sim-
ply” ported to the targeted embedded system. In this set-
ting, simulators could also be used to support analysis of
the targeted micro-controller/processor. The advantages
of this type of an approach are: 1) a large user base is
employed to vet the technology (e.g., compiler correct-
ness), 2) high-level mainstream programming languages
reflect best-practices (e.g., type safety), and 3) tools (e.g.,
Eclipse) are cost-effective and have extensive capabili-
ties requiring a development effort measured in terms of
person-years.

The primary impediment to the adoption of the soft-
ware development approach described in the previous
paragraph is the gap that exists between micro-proces-
sors/controllers used in embedded systems and the gen-
eral-purpose computing platforms on which the software
would be developed. This gap arises because the hard-
ware in embedded systems is oftentimes subjected to
heavy constraints. In addition to economic forces, physi-
cal limitations place strict bounds on various hardware
attributes such as volume, weight, and power usage. As a
result, the computational capabilities of embedded plat-
forms generally represent a scaled-back version of the
more general purpose computing platforms found on a
PC. From the perspective of software development, the
gap between general-purpose platforms and embedded
platforms can be bridged in two ways: 1) develop spe-
cial-purpose high-level languages (e.g., a non-standard
dialect of a general-purpose high-level language) and
tools supporting software development for a specific em-
bedded platform, or 2) limit software development to a
subset of a general-purpose high-level language.

2.2. The SCORE Processor

The SCORE processor [6] is a hardware implementation

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

148

of the JVM [7] being designed at Sandia National Labo-
ratories, that is similar to the Java Card [8,9], for use in
resource-constrained embedded applications. Table 1 gi-
ves an overview of the features not supported by the
SCORE. We would like to mention that the SCORE does
support general exceptions, just not run-time assertions.

3. Project Context

A project is underway to develop a methodology for ef-
fectively migrating Java code bases to restricted JVMs.
such as the SCORE and Java Card. The goal is to then
use this methodology to migrate (as needed) targeted
portions of the core Java SE library (e.g., java.util and
java.math) to the SCORE thereby enriching the environ-
ment for SCORE application programming.

Our approach to migration consists of two primary ac-
tivities: removal and re-implementation. Removal is a
fully automatic process in which source code is analyzed
and unwanted dependencies are removed. Re-implemen-
tation is a predominantly manual effort that focuses on
developing Java code having a desired functionality to
replace code having unwanted dependencies. Previously,
we have developed a source-to-source transformation-
based lightweight code migrator [10,11] and we are using
lessons learned from the development of this prototype to
guide our current development efforts. In these earlier
publications a more detailed discussion can be found re-
garding the nature of removal and re-implementation.

3.1. Tool Selection

Tool support for migration is predicated on the ability to
analyze (Java) source code. Some analysis results can be
obtained by leveraging existing software and tools such
as: javac/javap, Doxygen, and Eclipse. These tools pro-
duce artifacts (e.g., xml files, Java classfiles, dot files)
from which information can be mined. However, our ex-
periences suggest that integrating existing tools can result
in fragile systems where small changes to the analysis
requirements can result in major overall tool re-imple-
mentation efforts. This occurs when information is desi-

Table 1. List of Java features not supported by the SCORE.

Feature Keywords Status

floating point strictfp, float, double unsupported

threading synchronized, volatile unsupported

serialization Transient unsupported

exceptions assert unsupported

reflection unsupported

native methods native limited support

red that is not directly (or indirectly) available by a given
tool.

Limitations of third-party software provide the impe-
tus for developing language migration capabilities in-
house. In particular, we are developing migration capabi-
lities within a transformation-based system called TL.

3.1.1. TL
The TL System [4,12] is a collection of functions provid-
ing general-purpose support for rewrite-based transfor-
mation over elements belonging to a (user-defined) do-
main language. In the TL System, a domain language is
described by a tuple consisting of 1) an EBNF grammar
and, 2) a lexical specification of tokens. TL is integrated
with Standard ML in a relatively seamless manner. This
enables a transformation to be expressed in a hybrid fa-
shion as a mixture of rewrite rules and SML functions.

3.1.2. Bascinet
Bascinet1 is a GUI front-end that has been developed for
the TL System. Bascinet is implemented in Java and pro-
vides support for a variety of system-level functions. For
example, a transformation can be applied to the entire
contents of a folder (e.g., java.lang). Such application
can be performed in a discrete or continuous fashion.
When applied in a discrete mode, global state is not pre-
served between the application of a transformation to in-
dividual files (i.e., one transformation application per
file). When applied in a continuous mode, the application
of a single transformation spans all the files in the se-
lected directories. In Bascinet, one can also specify that a
transformation should be applied only to files having cer-
tain extensions (e.g., .java).

TL and Bascinet are freely available and can be down-
loaded at [4].

3.2. Java Processing Infrastructure

At the time of this writing we have developed a Java in-
frastructure consisting of the following:
 A Java parser that preserves JavaDoc comments.
 A Java pretty-printer that formats Java parse trees

in a manner conforming fairly closely to Java code
conventions [13].

 A framework where it is easy to write transforma-
tions that gather a variety of metrics over a code
base (e.g., number of classes, number of interfaces,
lines-of-code, number of field declarations, etc.).

 A transformation that constructs an internal model
of a Java code base. At present, we are only model-
ing class and field declarations. Our next step is to
incorporate interfaces and enums into our model.
Following that we will incorporate methods and

1Bascinet is a latest version of the HATS GUI (the previous IDE that
supported TL programming).

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

149

constructors.
 A general ability to produce dot-files showing in-

teresting information. These files can be viewed via
ZGRviewer [14], which has been integrated into
Bascinet. Currently, we are producing a dot-file
showing the field declarations within classes as
well as their inheritance relationships. The produc-
tion of this dot-file is dependent on type resolution.

4. Type Resolution

The goal of type resolution is to convert a type use U
occurring in a specific context C into its canonical form2
 .

 , resolveU C 

Type uses can occur in a variety of contexts including:
field declarations, “extends” directives, formal parame-
ters of methods and constructors, casting operations, and
local variable declarations. The file to which a context
belongs is called its compilation unit (CU).

Consider the type uses associated with the declarations
of x1 and x2 in the inner-class A1 (whose canonical form
is p1.A.A1) shown in Figure 1.

The resolutions of B1.C1 and C2 yield:

 
 

1. 1, 1. . 1 1. . . 1. 1

2, 1. . 1

resolve

resolve

B C p A A p A B B C

C p A A fail





The explanation of these resolutions is as follows:
B1.C1 is visible within p1.A.A1 because 1) the contents
of B (e.g., B1) is inherited by A1, and 2) A and B belong
to the same top-level class and hence have visibility over
each others’ private members. On the other hand, C2 is
not visible within A1 because private classes are not in-
herited.

If one omits some technical details, the core function-
ality of Java’s type resolution algorithm can be summa-
rized in terms of the following set of resolution rules:
 local-resolution rule—Search locally for a declara-

tion matching the type use.
 super-resolution rule—Search the inheritance hier-

archy for a declaration matching the type use.
 single-type import rule—Search the single-type

imports for an import matching the type use.
 package-resolution rule—Search all compilation

units (CUs) belonging to the given package for a
declaration matching the type use.

 on-demand import rule—Search the on-demand
imports for an import matching the type use.

 implicit import rule—Search java.lang for an im-
port matching the type use.3

Figure 1. Visibility rules involving inner-classes and in-
heritance.

 direct-resolution rule—Resolve the type use taking

into account inheritance properties of the context.
 absolute-resolution rule—Resolve the type use

without making any assumptions about the context
in which it occurs.

Type resolution consists of a controlled application of
these rules. For example, resolution must try the single-
type import rule before trying the on-demand import rule.
The on-demand import rule can be tried before the im-
plicit import rule. It is worth mentioning that between the
single-type and on-demand import rules is a package re-
solution rule that attempts resolution within the package
but outside of the CU to which the context belongs.

On a more conceptual level, control over the applica-
tion of resolution rules is governed by the following fac-
tors: 1) the presence/absence of a type declaration within
a given context, 2) the visibility properties that hold be-
tween the context in which the type use occurs and the
location where the type is declared, and 3) whether or not
the resolution of a qualified id has partially succeeded
(type resolution does not involve backtracking).

5. Findings

We have developed test cases that require type resolution
to make a distinction between each type of rule. For ex-
ample, the code in Figure 2 distinguishes between the
direct-resolution rule and the absolute-resolution rule.
The interesting thing about this example is we have not
been able to find a “real” Java program in which the dis-
tinction between these two rules is actually made. The
code base we have (automatically) analyzed using our
tool is the jdk1.6.0_18 which consists of over 2 million
lines of code distributed across 7197 files. In the code
base, the direct resolution rule is never needed and the
absolute resolution rule is need only a tiny fraction of the
time. In Section 5.1 we discuss some of our findings.

5.1. Metrics

At present we are focusing our migration efforts on a key

2In Eclipse, focusing (F2) on a type use will resolve the type to its
canonical form.
3The implicit import rule implicitly imports java.lang to all packages.

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

150

Figure 2. The distinction between the direct and absolute
resolution rules.

subset of the Java SE library; specifically, the 23 pack-
ages whose prefixes can be matched with java.io, java.
lang, java.math, java.nio, and java.util. The resulting
code base comprises 13.7% (257,163 LOC) of the Java
libraries. Table 2 and Table 3 provide metrics for the
libraries we are currently targeting. These metrics were
automatically collected by our tools.

Table 2 gives a summary of the use-frequency for se-
lected resolution rules for all type uses that are currently
modeled. Things worth noting include: 1) the direct-reso-
lution rule is never used, 2) the use of the absolute-reso-
lution rule is extremely rare, and 3) type uses within
enums, interfaces and anonymous classes are (currently)
not being modeled—this accounts for the discrepancy be-
tween the type use totals in Table 2 and Table 3.

Table 3 gives a breakdown of the targeted libraries
along a variety of metrics. Things worth noting include:
1) virtually all type uses in both fields and class exten-
sions are simple identifiers (i.e., identifiers that do not
contain dots), and 2) it is extremely rare for a class decla-
ration to occur within a method or constructor

5.2. Type Resolution Comparison

Type resolution is an essential function that underlies a
variety of software development activities such as refac-
toring and various other code analysis capabilities provi-
ded by Eclipse [15], Netbeans [16] and IntelliJ IDEA
[17]. In the majority of cases, type resolution is straight-
forward and has a semantics similar to the classical static
scoping algorithm. However, implementing an algorithm
capable of performing type resolution in all settings is
deceptively tricky. Some cases are highlighted in this se-

ction.

5.2.1. Netbeans
Figure 3 shows an error in Netbeans involving the use of
classes inside of methods. Java specifies that such classes
are only accessible within the encompassing method. Al-
so according to Java: a use of some class should first at-
tempt to resolve to a corresponding class within the same
scope. Thus when C extends B in Figure 3, B should re-
solve to p1.A.foo().B. However, Netbeans incorrectly re-
solves B to p1.A.B, while Eclipse and IntelliJ resolve it
correctly. Netbeans printed “0”, whereas the other tools
printed “1”.

One thing especially bad about this bug is that it com-
piles without any warning, and running it from Netbeans
gives the wrong answer, however using the jar file gen-
erated by Netbeans and running from the command line
gives the correct answer.

Figure 4 shows an error in Netbeans—this time in-
volving duplicate class declarations. In Java, one is not
allowed to have two files with the same name within a
package. This includes package-private classes within
other java files.

However Netbeans does not catch a duplicate class
name if it is hidden inside a different ‘.java’ file. Fortuna-

Table 2. Syntax-based metrics for core Java library.

Resolution Rule Count Frequency

single-type import rule 102 2.50%

on-demand import rule 129 3.16%

implicit import rule 312 7.64%

direct-resolution rule 0 0.00%

absolute-resolution rule 11 0.27%

all other resolution rules 3530 86.43%

Total 4084 100.00%

Figure 3. Netbeans Bug I.

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

151

Table 3. Syntax-based metrics for selected core Java library.

 Java Library Total

 java.io java.lang. java.math java.nio. java.util.

Packages 1 6 1 5 10 23

Compilation Units (CUs) 84 169 7 139 232 631

Lines of Code (LOC) (includes comments) 29003 54890 9422 46862 116986 257163

Type Uses in Field Declarations (classes, enums and interfaces)

Simple ids or primitives 392 676 84 215 1802 3169

Total type uses 395 685 85 215 1847 3227

Percentage of simple ids or primitives 99.2% 98.7% 98.8% 100% 97.5% 98.2%

Enums 0 4 1 0 2 7

Interfaces 12 29 0 7 51 99

Classes

Inner classes (non-static) 4 0 0 0 103 107

Static nested classes 23 28 2 7 198 258

Classes within methods 0 1 0 0 0 1

Classes within constructors 0 0 0 0 0 0

Top-level classes 73 132 6 125 191 527

Total 100 161 8 132 492 893

Type Uses in Class Extensions

Type uses consisting of simple ids 65 87 3 110 305 570

Implicit extensions to Object 34 72 5 19 180 310

Type uses consisting of qualified ids 1 2 0 3 7 13

Total 100 161 8 132 492 893

Percentage of simple ids or Object 99% 98.7% 100% 97.7% 98.6% 98.5%

Figure 4. Netbeans Bug II.

nately, Netbeans won’t compile with this error. However,
Netbeans will allow users to run the code from the IDE.
And whichever file was most recently saved is the one
which Netbeans will use during execution. (Thus printing
“5” or “10” depending on which file was saved last).

It is important to note that Netbeans is supposed to use
the same complier as Java: which makes the bugs we
found more interesting. On the Netbeans forum, some of
the bugs were thought to be errors in JDK1.7 javac that
propagated to Netbeans (though Bug II appears to be a
bug strictly local to Netbeans). The current released JDK
at the writing of this paper is ‘java 1.6update21’. Though
at present, Java also has the ‘JDK 7 project’ which acces-
sible but is still considered to be in the ‘build’ stages.
Netbeans, since it is directly associated with Oracle and
Java, is using a preliminary version of JDK 1.7 javac. We
have found that both Netbeans 6.8 and the latest version
6.9 have Bug I, yet when we downloaded the current
binaries for JDK7 (build 99), Bug I did not occur. We
therefore assume that Netbeans used an early version of
JDK7 that had the problem, but we expect that future

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

152

releases of JDK7, as well as Netbeans, will have fixed
this problem.

5.2.2. Eclipse
Figure 5 reveals a bug in Eclipse. According to the Java
specification, “fields obscure classes”. Thus when given
the choice between a class and a field with the same name
in the context where they both could be used, resolution
should favor the field over the class. This is what Eclipse
appears to be doing. However, in this case the field B is
not visible in package p1 since it’s access is package-pri-
vate. Therefore, B in the print statement should refer to
the class. Unfortunately, Eclipse refers to the field (which
is not visible), and results in the error shown.

Interestingly, IntelliJ has the same bug while Netbeans
correctly identifies the class B as the resolvent.

Figure 6 reveals another bug in Eclipse. This time the
problem occurred with import statements. The Java lan-
guage specification [5] Section 7.5.1 states:

A single-type-import declaration d in a compilation
unit c of package p that imports a type named n shadows
the declarations of:
 any top level type named n declared in another

compilation unit of p.
 any type named n imported by a type-import-on-

demand declaration in c.
 any type named n imported by a static-import-on-

demand declaration in c.
The specification [5] Section 7.5.2 goes on to say, “A

type-import-on-demand declaration never causes any oth-
er declaration to be shadowed.” Therefore, if an import-
on-demand contains a class that is also in a single-type-
import, the single-type-import would take precedence.

Consider for a moment package p1 in Figure 6; the
import statements p2.Bar.B and p3.Foo.* imply that any
use of B should come from p2.Bar and not from p3.Foo.
However Eclipse does the opposite. In general Eclipse
handles resolution involving import statements correctly,
but the case shown in Figure 6 is more complicated in
two ways: 1) one of the imports is a static import, and 2)
there exists field-class name clash. A static import allows
a CU to import static members of a class, which can in-
clude: static fields, static methods, and even static classes.
Thus, import static p2.Bar.B is importing both the class
and the field B. In addition, p2.Bar contains a field and a
class whose identifier is B. As was mentioned earlier, the
rules of obscuring states that a field should be chosen
over a class if they both could be used in this context and
if they have the same name. It is true that fields and clas-
ses can be used inside a print statement; however, fields
are not classes and therefore do not have a .class to be
accessed. We believe that the cause of the error is be-
cause Eclipse first obscures the class B with the field B

Figure 5. Eclipse and IntelliJ Bug I.

Figure 6. Eclipse Bug II.

inside p2.Bar. Then it sees the complete context require-
ing a class and the only class B it can find is within
p3.Foo.* since the class within p2.Bar was obscured—
this is incorrect—since it must be a class in this context,
the field B should not obscure the class.

Netbeans, IntelliJ, and the Java compiler correctly de-
termine first that the context requires a class—and there-
fore choose p2.Bar.B since it was imported using a sin-
gle-type-import.

5.2.3. IntelliJ IDEA
Aside from the bug pointed out in Figure 5, Figure 7
reveals another bug in IntelliJ regarding accessing private
classes from subclasses. The Java language specification
Section 8.4.8 states:

A class C inherits from its direct superclass and direct
superinterfaces all non-private methods (whether abstract
or not) of the superclass and superinterfaces that are pub-
lic, protected or declared with default access in the same

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

153

Figure 7. IntelliJ Bug II.

package as C and are neither overridden nor hidden by a
declaration in the class.

Also, the specification states:
A private class member or constructor is accessible

only within the body of the top level class that encloses
the declaration of the member or constructor.

Based on this latter rule, class B2 in Figure 7 should
be able to access the private class D1 when qualified by
the inherited class C1. On the other hand, class B2 should
not be able to access the private inner class C2 in its su-
perclass B1. Instead, the reference to C2 should resolved
to the single type import extra.C2. IntelliJ correctly re-
solves the reference to C1.D1 as A.B1.C1.D1, but incur-
rectly resolves C2 to A.B1.C2, which should not be visi-
ble. Eclipse, NetBeans and the Java compiler correctly
resolve both references.

5.3. Discussion

These findings illustrate the Pareto Principle at work in
code analysis and manipulation. Type resolution is strai-
ghtforward in most cases as an overwhelming number of
type uses are simple identifiers. However, for the few in-
stances where qualifiers are used, resolution quickly be-
comes complicated and there are a few cases where even
established tools resolve types incorrectly. Such situa-
tions could lead to hard-to-detect faults when these incor-
rectly resolved types are further manipulated, e.g., throu-
gh refactoring. For example, an operation to rename all
occurrences of a particular type may cause the wrong set
of occurrences to be renamed.

Investing significant additional efforts in testing and
fixing such problems in code analysis and manipulation
tools exacerbates an already complicated development
process for embedded processor environments. As em-
bedded processors are used to control safety- and busi-
ness-critical systems, there is little margin for error for
software development, let alone the tools used to support
the development process.

6. Related Work

6.1. Library Migration

Rayside and Kontogiannis [18] discuss a process to ex-
tract Java library subsets for supporting embedded sys-
tems applications by removing unused components from
the library. They have the capability to produce library
subsets having certain properties: 1) a space optimized
subset, 2) a partial space optimized subset, and 3) a space
reduced subset. The production of a subset is application
specific with the space optimized subset being the most
aggressive. The space optimized subset is created by re-
moving all fields and methods that are not referenced by
a given application. This is slightly different than the mi-
gration goals we are pursuing in which we want to uni-
versally prohibit access to fields and methods depending
on features that are not supported by the target platform
(i.e., the SCORE). Furthermore the class loader for the
SCORE [19] already has similar removal capabilities to
the space optimized subset produced by Rayside and
Kontogiannis. In particular, when processing the class
files for a given application the class loader for the
SCORE removes all methods (but not fields) that are not
referenced.

6.2. Java Type Resolution

Type resolution can be generalized into identifier lookup
where the use (or access) of an identifier (e.g., variables,
types, methods, etc.) is matched to its declaration. Shafer,
et al. [20] discussed identifier lookup issues in the con-
text of automatic support for identifier renaming in Java
programs. Identifier renaming requires precise identifica-
tion of lookups and accesses. Making the prerequisite
conditions too weak would lead to unsound renaming
(the renaming is carried out incorrectly). Making the con-
ditions too strong would disallow certain potential rena-
ming operations from being carried out. Complex name
lookup rules and addition of new language features ex-
acerbates the difficulty of defining correct renaming rules.
To address the shortcoming, the authors proposed a re-
verse lookup strategy, an approach which is very similar
to a name lookup implemented for a compiler. The inver-
ted lookup rules ensures the preservation of the binding
structure between identifier access and declaration and
that preconditions that are too weak are avoided. Secon-
dly, the direct correspondence between the inverted loo-
kup rules and direct access makes it possible for the re-
factoring tools to cope with evolution in a language. In
comparison, our process of transforming a type use to its
canonical form is similar to defining the lookup and ac-
cess function binding, though it is unclear whether their
solution differentiates between direct and absolute refer-
ences.

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

154

The introduction of parameterized types or generics
further complicates the type resolution process. Our type
resolution algorithm currently leaves type arguments
alone. To correctly resolve type arguments, the ability to
perform type inference is needed. Just as implementa-
tions of type resolution have problems, we take note that
type inference algorithms can also work incorrectly, as
Smith and Cartwright [21] point out in the case of the
Java 5 compiler. Some of the problems arise from cons-
cious engineering decisions and others from the heuristic
nature of the algorithm. Their solution, while not com-
pletely backwards compatible with the current language
definition, solves many of the bugs and makes it possible
to address extensions like first-class intersection types and
lower-bounded type variables.

7. Conclusions

In this paper we have argued that the type resolution
rules for Java are complex and make semantic distinc-
tions along some dimensions that virtually never arise in
practice. Nonetheless, the level of dependability needed
by critical embedded applications necessitate that tools
supporting the development processes of such applica-
tions must be able to handle such cases when they do
occur.

Our experiences with Java type resolution lend support
to the premise that an extreme case of the Pareto princi-
ple applies to language design. The presence of the Pare-
to principle has a number of implications on the analyz-
ability of a language:
 Infrequently used parts of a language are not as

comprehensively vetted by the programming com-
munity at large as their mainstream counterparts.
As a result, in such settings compilers and develop-
ment tools are not as mature as they are in more
standard settings.

 Infrequently used parts of a language are also de-
ceptive with respect to level-of-effort estimates for
tool development. For example, it may be relatively
easy to develop a prototype that correctly analy-
zes a construct in a standard setting. When (casual-
ly) tested, this prototype may successfully analyze
the construct in virtually all cases. However, the
ease in developing this prototype does not imply
that development of a comprehensive analysis of
the construct, handling all corner cases, also requi-
res a similar level of effort. When the Pareto prin-
ciple is in effect, a tool developer doesn’t know
how hard it is to develop a tool for analyzing a con-
struct until they have implemented it in its entirety.
Extrapolating the Balmer memo from Section 1
suggests half of the development effort may lie in
the implementation of the last one percent.

In this article, we argued that if a programming lan-
guage contains language constructs that are complex and
infrequently used, then this can present significant obsta-
cles to the development of reliable tools for that language.
We believe this kind of problem is a serious one to which
language designers of the future should be more cogni-
zant. With this in mind we introduce the following new
language design principle.

Design Principle 1. Regular Use—a language design
principle such as uniformity or generality is achieved
only to the extent that it is used by the programming
community for that language.

Generality and uniformity are commonly accepted
principles belonging to the theory of good language de-
sign [22]. However, to truly achieve its goals such theory
should be reflected in practice: A design principle not
used is not a design principle at all.

REFERENCES
[1] V. Pareto, “Manuale di Economia Politica,” Piccola Bib-

lioteca Scientifica, Milan, 1906. English Translation by A.
Schwier, “Manual of Political Economy,” Kelley Pub-
lishers, New York, 1971.

[2] S. Ballmer, “Connecting with Customers,” 2002.
http://www.microsoft.com/mscorp/execmail/2002/10-02
customers.mspx.

[3] L. Hendren and G. Gao, “Designing Programming Lan-
guages for Analyzability: A Fresh Look at Pointer Data
Structures,” Proceedings of the International Conference
on Computer Languages, Oakland, 1992, pp. 242-251.
doi:10.1109/ICCL.1992.185488

[4] V. L. Winter, “The TL System,” 15 November 2010.
http://faculty.ist.unomaha.edu/winter/TL/TL_index.html

[5] J. Gosling, B. Joy, G. Steele and G. Bracha, “The Java
Language Specification,” Third Edition, Addison-Wesley,
Boston, 2005.

[6] G. L. Wickstrom, J. Davis, S. E. Morrison, S. Roach and
V. L. Winter, “The SSP: An Example of High-Assurance
System Engineering,” Proceedings of the 8th IEEE In-
ternational Symposium on High Assurance Systems En-
gineering (HASE), Tampa, March 2004, pp. 167-177.

[7] T. Lindholm and F. Yellin, Ed., “The Java Virtual Ma-
chine,” Second Edition, Addison-Wesley, Boston, 1999.

[8] Z. Chen, “Java Card™ Technology for Smart Cards: Ar-
chitecture and Programmer’s Guide,” Prentice-Hall, Up-
per Saddle River, 2000.

[9] Oracle Sun Developer Network, “Java Card Platform
Specification 2.2.2,” 15 November 2010.
http://java.sun.com/javacard/specs. html

[10] V. L. Winter and J. Beranek, “Program Transformation
Using HATS 1.84,” In: R. Lämmel, J. Saraiva and J. Vis-
ser, Ed., Generative and Transformational Techniques in
Software Engineering (GTTSE), LNCS Vol. 4143, Sprin-
ger, Berlin, 2006, pp. 378-396.
doi:10.1007/11877028_15

The Tyranny of the Vital Few: The Pareto Principle in Language Design

Copyright © 2011 SciRes. JSEA

155

[11] V. L. Winter, A. Mametjanov, S. E. Morrison, J. A.
McCoy and G. L. Wickstrom, “Transformation-Based
Library Adaptation for Embedded Systems,” Proceedings
of the 10th IEEE International Symposium on High As-
surance Systems Engineering (HASE), Dallas, November
2007, pp. 209-218. doi:10.1109/HASE.2007.38

[12] V. L. Winter, “Stack-Based Strategic Control,” Prepro-
ceedings of the 7th International Workshop on Reduction
Strategies in Rewriting and Programming, Paris, June
2007.

[13] Oracle Corporation, “Code Conventions for the Java Pro-
gramming Language,” 1999.
http://www.oracle.com/tech-network/java/codeconvtoc-1
36057.html

[14] E. Pietriga, “A Toolkit for Addressing HCI Issues in
Visual Language Environments,” IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/
HCC), Dallas, September 2005, pp. 145-152.

[15] Eclipse, “Eclipse,” 21 July 2010. http://www.eclipse.org

[16] Oracle, “NetBeans,” 21 July 2010.
http://www.netbeans.org

[17] JetBrains, “IntelliJ IDEA: The Most Intelligent Java

IDE,” 12 October 2010. http://www.jetbrains.com/idea

[18] D. Rayside and K. Kontogiannis, “Extracting Java Li-
brary Subsets for Deployment on Embedded Systems,”
Science of Computer Programming, Vol. 45, No. 2-3,
November-December 2002, pp. 245-270.
doi:10.1016/S0167-6423(02)00059-X

[19] S. Morrison, “SSP Class Loader Responsibilities,” Tech-
nical Report (Internal), Sandia National Laboratories,
Albuquerque, 2005.

[20] M. Shafer, T. Ekman and O. de Moor, “Sound and Exten-
sible Renaming for Java,” Proceedings of the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming
Systems Languages and Applications (OOPSLA), Orlando,
2008, pp. 277-294.
doi:10.1145/1449764.1449787

[21] D. Smith and R. Cartwright, “Java Type Inference is
Broken: Can We Fix It?” Proceedings of the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming
Systems Languages and Applications (OOPSLA), Orlando,
2008, pp. 505-524. doi:10.1145/1449764.1449804

[22] K. Louden, “Programming Languages: Principles and
Practice,” Cengage Learning, 2003.

