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ABSTRACT 
In this paper, we suggest that a toy model of our universe is based on FRW bulk viscous cosmology in presence 
of modified Chaplygin gas. We obtain modified Friedman equations due to bulk viscosity and Chaplygin gas and 
calculate time-dependent energy density for the special case of flat space. 
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1. Introduction 
It is found that our universe expands with acceleration 
[1-5]. The accelerating expansion of the universe may be 
explained in context of the dark energy [6]. Due to nega- 
tive pressure, the simplest way for modeling the dark 
energy is the Einstein’s cosmological constant. On the 
other hand, the study of the cosmological constant is one 
of the important subjects in the theoretical and experi- 
mental physics [7-10]. Another candidate for the dark 
energy is scalarfield dark energy model [11-19]. How- 
ever, presence of a scalar field is not only requirement of 
the transition from a universe filled with matter to an 
exponentially expanding universe. Therefore, Chaplygin 
gas is used as an exotic type of fluid, which is based on 
the recent observational fact that the equation of state 
parameter for dark energy can be less than −1. 

On the other hand, we know that the viscosity plays an 
important role in the cosmology [20]. In another word, 
the presence of viscosity in the fluid introduces many 
interesting pictures in the dynamics of homogeneous 
cosmological models, which is used to study the evolu- 
tion of universe. In Ref. [21], the exact solutions of the 
field equations for a five-dimensional space-time with vis- 
cous fluid were obtained. Also in Ref. [22] a cosmologi-
cal model with viscous fluid in higher-dimensional space- 
time was constructed. Then, in Ref. [23] the exact solu-
tions of the field equations for a five-dimensional cos-

mological model with variable bulk viscosity were ob-
tained. The isotropic homogeneous spatially flat cosmo-
logical model with bulk viscous fluid was constructed in 
Ref. [24]. The bulk viscous cosmological models with con-
stant bulk viscosity coefficient were constructed in Ref. 
[25]. In the recent work [26] the FRW bulk viscous cos-
mology was considered and bulk viscous coefficient was 
obtained in the flatspace, and then extended to non-flat 
space [27]. In this work, we consider both bulk viscous 
effect and Chaplygin gas in FRW cosmology in flat space. 

2. Equations 
The Friedmann-Robertson-Walker (FRW) universe in 
four-dimensional space-time is described by the follow- 
ing metric [28,29], 

( )
2

2 2 2 2 2
2

dd d dΩ
1

rs t a t r
kr

 
= − + + 

− 
       (1) 

where 2 2 2 2dΩ d sin dθ θ φ= + , and ( )a t  represents the 
scale factor. The θ  and φ  are the usual azimuthal and 
polar angles of spherical coordinates. Also, constant k
denotes the curvature of the space. In this paper we con- 
sider the case of 0k =  only, which is corresponding to 
flat space. In that case the Einstein equation is given by, 

1 Λ
2

R g R T gµν µν µν µν− = +            (2) 
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where we assumed 1c =  and 8π 1G = . Also the ener- 
gy-momentum tensor corresponding to the bulk viscous 
fluid and modified Chaplygin gas [30-35] is given by the 
following relation, 

( )T p u u pgµν µ ν µνρ= + −             (3) 

where ρ  is the energy density and uµ  is the velocity 
vector with normalization condition 1u uµ ν = − . Also, 
the total pressure and the proper pressure involve bulk 
viscosity coefficient ζ  and Hubble expansion parame- 
ter H a a=   are given by the following equations 
[36-42], 

3p p Hζ= −                 (4) 

and, 

Bp αγρ
ρ

= −                 (5) 

with 0B >  and 0 1α< ≤ . The equation of state γ  is 
one of the most important quantity to describe the fea- 
tures of dark energy models. It is clear that the parameter 
ζ  shows bulk viscosity and B shows effect of Chaply-
gin gas. In the Ref. [43] the dynamics of FRW cosmolo-
gy with modified Chaplygin gas as the matter formulated. 
Then the nature of the critical points are studied by eva- 
luating the eigenvalues of the linearized Jacobi matrix for 
the special case of 0.6α = . In this paper we consider 
special case with 0.5α =  and extend the Ref. [43] to 
including bulk viscous coefficient. 

In that case the Friedmann equations are given by, 
2

3
a
a

ρ  = 
 



                (6) 

and, 
2

2a a p
a a

  + = − 
 

 

             (7) 

where dot denotes derivative with respect to cosmic time 
t . The energy-momentum conservation law obtained as 
the following, 

( )3 0a p
a

ρ ρ+ + =


            (8) 

In the next section we try to obtain time-dependent  

density by using above equations. 

3. Solutions 
Using the Equations (4)-(6) in the conservation relation 
(8) we have, 

( )
3
23 1 3 3 0Bρ γ ρ ζρ+ + − − =        (9) 

If we set 0ζ = , then one can extract energy density 
depend on scale factor [43], 

( )
( )

2
3

9 1

1
1

ca B
a γ

ρ
γ +

  
 = +  +   

          (10) 

where c is an integration constant. Here we also consider 
bulk viscous coefficient and would like to obtain energy 
density depend on time. In order to solve Equation (9) we 
use the following ansatz, 

2 ebtA E ht C
tt

ρ = + + +              (11) 

where constants A , E , h , C  and b  should be de- 
termined. Substituting relation (11) in the Equation (9) 
gives us the following coefficients, 

3h B=                   (12) 

( )2

4
3 1

A
γ

=
+

              (13) 

( )2

2
1

E ζ
γ

=
+

              (14) 

( )
( )

( )2 42

3 2

1 3 18 3
4 161

C
γ γζ

ζγ

 + +
= − 

+  
       (15) 

If we neglect both bulk viscosity and presence of 
Chaplygin gas then, 

( )2 2

4
3 1 t

ρ
γ

=
+

                (18) 

which is agree with results of the Refs. [27,43] where 
2tρ −∝  established. On the other hand for the large bulk 

viscosity coefficient one can find that 0b <  and hence 
tρ ζ∝  obtained. Also for the case of infinitesimal ζ   

 

( ) ( ) ( )

( ) ( )

3 4

74

9 27 1 93 1 1 Ο
2 32 8 16

38 1 3 1
128

nB
b

ζ ζ γ γ ζ γ ζ γ

γ ζ γ

    + + − + + + +        =
 + − + 
 

                     (16) 

where, 

( ) 8 7 6 5 4 3 227 27 189 189 945 189 189
256 32 64 32 128 32 64

nγ γ γ γ γ γ γ γΟ ≡ + + + + + +                   (17) 
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one can obtain constant negative energy density. In the 
general case, Equation (11) with coefficients (12)-(16) 
tells us that the energy density is decreasing function of 
time. Such behavior happen for the Hubble expansion 
parameter which is discussed below. 

By using time-dependent density in the relation (6) 
one can obtain Hubble expansion parameter. In that case 
we draw plot of Hubble expansion parameter in the Fig- 
ure 1 for 1 3γ  . 

In that case the modified Chaplygin gas model de- 
scribes the evolution of the universe from the radiation 
regime to the Λ-cold dark matter scenario, where the 
fluid behaves as a cosmological constant, so there is an 
accelerated expansion of the universe. 

It is possible to study deceleration parameter of this 
theory which obtained by the following relation, 

21 Hq
H

 
= − + 

 



               (19) 

Numerically we draw deceleration parameter in terms 
of time in the Figure 2. 

4. Conclusions 
In this work, we studied the FRW bulk viscous cosmolo- 
gy with modified Chaplygin gas as the matter contained. 
We obtained the modified Friedmann equations due to 
bulk viscous and Chaplygin gas coefficients. Then tried 
to solve equations and found time-dependent energy 
density. Therefore, we could extract Hubble expansion 
and deceleration parameters. 
 

 
Figure 1. Hubble expansion parameter in terms of time for 

3.4=B , 1=ζ , and 0.3=γ . 

 
Figure 2. Deceleration parameter in terms of time for 

3.4=B  and 0.3=γ . Solid, dotted, dashed and dash dot- 
ted lines represent 0.2,0.4,0.6,1=ζ  respectively. 
 

For the future work, it is possible to repeat calculation 
of this paper for the case of arbitrary α or non-flat un- 
iverse where 0k ≠ . In that case one deals with the fol- 
lowing equation, 

( )3 1 3 0BH Hαρ ρ γ ζ
ρ

 
+ + − − = 

 
         (20) 

where 2
23

kH
a

ρ
= − . 
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