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ABSTRACT 
Ewald summation method, based on Non-Uniform FFTs (ENUF) to compute the electrostatic interactions and 
forces, is implemented in two different particle simulation schemes to model molecular and soft matter, in clas-
sical all-atom Molecular Dynamics and in Dissipative Particle Dynamics for coarse-grained particles. The me-
thod combines the traditional Ewald method with a non-uniform fast Fourier transform library (NFFT), making 
it highly efficient. It scales linearly with the number of particles as ( )log N N , while being both robust and ac-
curate. It conserves both energy and the momentum to float point accuracy. As demonstrated here, it is straight- 
forward to implement the method in existing computer simulation codes to treat the electrostatic interactions 
either between point-charges or charge distributions. It should be an attractive alternative to mesh-based Ewald 
methods. 
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1. Introduction 
Computer modeling and simulation of molecular systems is an established discipline rapidly expanding and 
widely used from Materials Science to Biological systems. At finite temperatures and normal pressures, 
molecular compounds are in continuous rapid motion. In liquids and solutions, molecules collide and interact 
with each other at close distances. They also interact with external fields. In computer simulations of molecular 
systems, mechanistic ball and spring models are commonly employed to give a simple picture of atoms with 
specific sizes and masses bonded together with covalent bonds. Molecular equilibrium geometries and 
interactions are defined by so-called force fields where a somewhat arbitrary division between intramolecular 
and intermolecular interactions is made, because this partitioning is a simplification of the more detailed and 
fundamental understanding furnished by a quantum mechanical description. 

Intramolecular interactions are normally described by bond stretching, angle bending and torsional angle 
motion terms. These interactions involve the closest bonded atoms described by two-, three-, and four-body 
terms, respectively. The bond and angle terms are normally given as harmonic wells while the torsion term is 
most often expressed as a Fourier sum. 

Intermolecular interactions are those between separate molecules but also include all interactions within the 
same molecule beyond the bonded interactions. Non-bonded interactions are further divided between short- 
ranged and long-ranged interactions. The short-range interactions mimic the Van der Waals type of forces, while 
the long-range interactions are electrostatic interactions. The electron distributions around atoms are approxi- 
mated by fixed point charges, and their interactions are treated by using Coulomb’s law. 
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The effective range of short-range interactions is limited to a specified cut-off. By assuming a uniform beyond 
the cut-off, correction terms to the energy can be obtained by integrating over the non-zero part of the inter- 
actions [1-3]. Thus the fast-decaying short-range interactions can be accurately approximated by truncation at 
the cut-off distance in most calculations. 

Artificially collecting and dividing the diffuse and fluctuating electron densities inside and around molecules 
on single atomic sites are a crude but conceptually simple and effective approximation, since Coulomb’s law can 
be invoked. However, this simplification comes at a price since the interactions between point charges stretch 
over very long distances. Furthermore, these long-range interactions cannot be truncated without introducing 
simulation artifacts [4-7]. 

As the system size grows, calculating the electrostatic interactions becomes the major computational 
bottleneck. Methods based on Ewald summation [8,9] are still considered as the most reliable choice, and a large 
variety of schemes to compute them in computer simulations have been proposed [10-16]. There is also a 
multitude of alternative methods for representing electrostatic interactions. Examples are methods based on a 
cut-off [17-19], tree and multipole based methods [20-25], multigrid methods [26-28], reaction field methods 
[29-31], the particle mesh method [32,33] and the isotropic sum method [34]. 

In this paper, we describe an approach to Ewald summation based on the non-uniform fast Fourier transform 
technique. We use the acronym ENUF-Ewald summation using Non-Uniform fast Fourier transform (NFFT) 
technique. Our method combines the traditional Ewald summation technique with the NFFT to calculate 
electrostatic energies and forces in molecular computer simulations. In the paper, we show that ENUF is an 
easy-to-implement, practical, and efficient method for calculating electrostatic interactions. Energy and 
momentum are both conserved to float point accuracy. By a suitable choice of parameters, ENUF can be made 
to behave as traditional Ewald summation but at the same time gives a computational complexity of 

)log( NN , where N  is the number of electrostatic interaction sites in the system. Weighing all these 
properties together, we believe that ENUF should be an attractive alternative in simulations where the high 
accuracy of Ewald summation is desired. 

In the next section, we summarize the basic methodology to apply Ewald summation to computing the 
electrostatic energies and forces within periodic boundary conditions. In Section 3, we introduce the Ewald 
method where the reciprocal space part is calculated based on non-uniform FFTs and discuss the underlying 
concepts and use of the libraries. We also give general guidelines to implement the method in existing 
simulation programs. In Section 4, we discuss its implementation in a general purpose atomistic Molecular 
Dynamics simulation package M.DynaMix giving its scaling characteristics in a standard desktop computer. In 
Section 5, we demonstrate its implementation in Dissipative Particle Dynamics package. This method is applied 
to simulating soft charged mesoscopic particles. It is necessary to use charge distributions in order to avoid 
non-physical aggregation of soft charged particles if point charges are used. This issue is discussed further in 
Section 5. 

2. Electrostatic Interactions 
We start by describing a model system of charged particles which captures the most salient features of 
electrostatic interactions in general MD systems. The electrostatic potential of a system with periodic boundary 
conditions (PBC) is first stated; we follow with the manipulation of the basic formulas to the form in which they 
are commonly written; this Section ends with a summary of expressions for both energy and forces. 

2.1. Ewald Summation 
Consider a cubic simulation box with edge length L , containing N  charged particles, each with a charge iq , 
located at ir . The boundary conditions in a system without cut-off is represented by replicating the simulation 
box in all directions. The total electrostatic potential energy of the charge-charge interactions is then given by 

†

1 1 0 1 1 1 1

1 1 ,
2 2

N N N N N N
i j i j i j

qq
i j i i j i jij ij ij

q q q q q q
U

L L= = + ≠ = = = =

= + =
+ +

∑ ∑ ∑∑∑ ∑ ∑∑
n nr r n r n

                   (1) 

where ij i j= −r r r , and r  denotes the length (2-norm) of the vector r . Because of the long-range nature of 
the electrostatic interactions, qqU  includes contributions from all replicas, but exclude self-interactions, which 
is expressed in the triple sum in Equation (1). The outer sum is taken over all integer vectors  
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( )1 2 3, ,  such that each in n n n Z= ∈n . The †  symbol on the first summation sign in Equation (1) indicates that  
the self-interaction terms should not be included, i.e., when 0  then the i j= =n  terms are omitted. 

The sum in Equation (1) is not an absolutely convergent series, but rather conditionally convergent. As a 
consequence, the order of summation affects the value of the series. In fact, it was discovered by Riemann that 
any conditionally convergent series of real terms can be rearranged to yield a series which converges to any 
prescribed sum [35]. In a sense, this is a situation very similar to the case when a linear equation has an infinite 
number of solutions because it is under-determined; by adding a set of conditions a unique solution may be 
defined. For the specific case of Equation (1), a physically relevant summation order has to be prescribed and 
the boundary conditions of the surrounding media have to be specified. 

The lattice sum of Equation (1) can be calculated by a method that was first developed in 1921 by Ewald [8]. 
He used it to calculate lattice potentials in solids. In the context of Molecular Dynamics, there are several 
different derivations of the Ewald summation method that are more recent; a small selection is given by [3,9]. In 
the following discussion we mainly follow the work of de Leeuw et al. [9,36,37]. 

In [9], de Leeuw et al. developed a technique using convergence factors that transforms the sum of a 
conditionally convergent series into a series with a well-defined sum. Furthermore, they showed that applying a 
specific convergence factor is equivalent to a certain summation order. Assuming an overall charge neutral 
system, 0iiq =∑ , and summing the terms in Equation (1) over all integer vectors n  in concentric spherical 
order, they showed that the electrostatic potential energy can be written as 

( )
( )

2
2

3
1 1

2π ,
2 2 1

N
i j ij

qq r i i
i j N i ir

q q r
U q q

L L L L
ξ

≤ < ≤ =

   = Ψ + +   +   
∑ ∑ ∑ ir


                    (2) 

when the surrounding media of the periodically replicated cell is a uniform dielectric with dielectric constant r  
and distances are calculated with the minimum image convention. When the surrounding media is a conductor 
( )r = ∞ , the energy can be written as 

( ) ( )
( )

2
2

3
1 1

2π .
2 2 1

N
i j ij

qq r i qq r i i
i j N i ir

q q r
U q U q

L L L L
ξ

≤ < ≤ =

   = ∞ = Ψ + = −   +   
∑ ∑ ∑ r 


        (3) 

From Equation (3) it is clear that the boundary conditions, vacuum or conductor, have an effect on the energy 
of the system. Depending on the simulated system and the properties of interest, the choice of boundary 
conditions can affect the obtained results [38,39]. 

The function Ψ  is given by 

( ) ( ) ( )22 2

2
0

exp 2π πerfc 1 ,
π | |n

ι αα

≠

⋅ −+
Ψ = +

+∑ ∑
n

n r nr n
r

r n n
                       (4) 

with the two error functions defined as ( ) 2 2

0

2 2erfc 1 e d e d
π π

x t t
x

x t t
∞− −= − =∫ ∫  and ( ) ( )erf 1 erfcx x= − . The 

number ξ  used in Equations (2) and (3) is defined as 

( ) 22 2π

2
0 0

erfc 1 e 2 ,
π π

αα αξ
−

≠ ≠

= + −∑ ∑
n

n n

n
n n

                                      (5) 

where > 0α  is a free parameter. 
Equations (2) and (3) are not in a form that is appropriate for efficient numerical calculations and in the case 

of Molecular Dynamics simulation we also need expressions for the forces. To arrive at a more suitable form we 
make the necessary analysis for the electrostatic energy and forces in the following Sections. 

2.2. Energies in Ewald Summation 
To rearrange and expand Equation (2) we first insert ijr L  in Equation (4) 
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22 2

2
0

22 2

2
0

erfc exp 2π π
1
π

2πerfc exp π
1 .
π

ij ij

ij

ij

ij ij

ij

n
L L

L
L

L
L LL

L

α ι α

α ι α

≠

≠

   
+ ⋅ −         Ψ = + 

  +

   + ⋅ −   
   = +

+

∑ ∑

∑ ∑

n n

n n

r r
n n

r
r nn

r n n r n

r n n

                    (6) 

Next we rescale α  by making the substitution Lα α→  in Equations (5) and (6) to get 

( ) ( )2 22

2
0

2πexp πerfc 1
π

ij
ijij

n ij

LL LL
L L

ι αα

≠

 ⋅ − +   Ψ = + 
+ 

∑ ∑
n

n r nr nr

r n n
                 (7) 

and 
( ) ( )2 22π

2
0 0

erfc 1 e 2 .
π π

LL Lαα αξ
−

≠ ≠

= + −∑ ∑
n

n n

n
n n

                           (8) 

Inserting Equations (7) and (8) into Equation (2) we get 

( )
( ) ( )

( ) ( )

( )

2 22

2 22

2
1 0

2π
2

2 3
0 0

2πexp πerfc 1
π

erfc1 1 e 2 2π .
2 π 2 1π

ij
ij

qq r i j
i j N ij

L

i i i
i ir

LL LU q q
LL

L Lq q
L L

α

ι αα

α α

≤ < ≤ ≠

−

≠ ≠

  ⋅ −  +  = + 
+ 

  
    + + − +  +    

∑ ∑ ∑

∑ ∑ ∑ ∑

n n

n

n n

n r nr n

r n n

n
r

n n





       (9) 

Note that the summation in Equation (9) is for <i j  in the first sum. We make further simplifications by 
studying the terms on the right hand side of Equation (9) for 0n =  and 0n ≠ . 

When 0n =  we have the following terms 

( )
( )

( ) ( )

2
2

3
1

2
† 2

3
,

erfc 2π
2 1π

1 2πerfc
2 2 1π

ij
i j i i i

i j N i irij

i j
ij i i i

i j i irij

q q q q
L

q q
q q

L

α α

αα

≤ < ≤

 − +  +  

 = − +  +  

∑ ∑ ∑

∑ ∑ ∑

r
r

r

r r
r





                       (10) 

with the terms independent of n included. The †  symbol indicates that the i j=  terms are excluded from the 
daggered sum. 

When 0n ≠  we get 

( ) ( )

( ) ( )

( ) ( )

2 22

2 22

2 22

2
1 0 0

π
2

2
0 0

π

2
, 0

2πexp πerfc 1
π

erfc1 1 e
2 π

erfc1 1 e 2πexp
2 π
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ij

i j
i j N ij

L

i
i

L
ij

i j ij
i j ij

LL Lq q
LL

L
q

L

L
q q

L LL

α

α

ι αα

α

α ι

≤ < ≤ ≠ ≠

−

≠ ≠

−

≠

  ⋅ −  +  + 
+ 

  
  + + 
  

 +  = + ⋅  +  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

n n

n

n n

n

n

n r nr n

r n n

n
n n

r n
n r

r n n
.



  

           (11) 
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The factor 1 2  in Equation (11) comes from changing the summation from <i j  to all pairs i  and j , 
and using the symmetry induced by ij ji= −r r  and ±n . 

By combining Equations (10) and (11) we identify the real-space term real
qqU , the reciprocal-space term recip

qqU , 
the self-interaction term self

qqU , and the boundary-condition term bc
qqU . The real-space term is given by 

( ) ( ) ( )

( )

2

1 0 0

†

,

erfc erfc erfc1
2

1 erfc ,
2

ij ijreal
qq i j i

i j N i j iij ij

i j
ij

i j ij

L L
U q q q

LL

q q
L

L

α α α

α

≤ < ≤ < ≠ ≠

+
= + +

+

= +
+

∑ ∑∑ ∑ ∑

∑∑

n n

n

r r n n
nr r n

r n
r n

        (12) 

and the reciprocal-space term is 

( ) ( )2 22 22 2π π

2 2
0 0

1 e 2π 1 eexp .
π 2π

L L
recip
qq i j ij i i

i j i
U q q q q

L L L

α αι− −

< ≠ ≠

 = ⋅ + 
 

∑∑ ∑∑
n n

n n
n r

n n
          (13) 

However, with the symmetries generated by ij ji= −r r  and ±n , we get 

( ) ( )

( )

2 22 22 2

2 22

π π

2 2
0 0

π

2
0 ,

1 e 2π 1 eexp
2π 2π

1 e 2πexp .
2π

L L
recip
qq i j ij i i

i j i

L

i j ij
i j

U q q q q
L L L

q q
L L

α α

α

ι

ι

− −

≠ ≠ ≠

−

≠

 = ⋅ + 
 

 = ⋅ 
 

∑∑ ∑∑

∑∑

n n

n n

n

n

n r
n n

n r
n

         (14) 

Furthermore, we have 

2 ,
π

self
qq i

i
U qα

= ∑                                          (15) 

( )

2

3

2π ,
2 1

bc
qq i i

ir

U q
L
 =  +  
∑ r


                                (16) 

and finally 

( ) .real recip self bc
qq r qq qq qq qqU U U U U= + − +                           (17) 

The reciprocal-space part, Equation (14), can be expanded in two different forms. The first form is in terms of 
the structure factor ( )S n , 

( ) 2πexp ,i i
i

S q
L
ι = − ⋅ 

 
∑n n r                                (18) 

and is given by 

( )

( )
( )

( )
( )

( ) ( )

2 22

2 22

2 22

π

2
0 ,

π

2
0

π

2
0

1 e 2πexp
2π

1 e 2π 2πexp exp
2π

1 e .
2π

L
recip
qq i j i j

i j

L

i i j j
i j

L

U q q
L L

q q
L L L

S S
L

α

α

α

ι

ι ι

−

≠

−

≠

−

≠

 = ⋅ − 
 

   = ⋅ ⋅ −   
   

= −

∑ ∑

∑ ∑ ∑

∑

n

n

n

n

n

n

n r r
n

n r n r
n

n n
n

           (19) 

Now for a fixed n , the structure factor ( )S n  is just a complex number a , and the simple fact that 
( ) ( )2 2Re Imaa a a= + , gives the real form of Equation (14) 
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( )

( )

( )

2 22

2 22

π

2
0 ,

2 2π

2
0

1 e 2πexp
2π

1 e 2π 2πcos sin .
2π

L
recip
qq i j i j

i j

L

i i i i
i i

U q q
L L

q q
L L L

α

α

ι−

≠

−

≠

 = ⋅ − 
 

       = ⋅ + ⋅       
        

∑ ∑

∑ ∑ ∑

n

n

n

n

n r r
n

n r n r
n

        (20) 

The first form in Equation (19) is used in our fast approach to calculating the reciprocal-space part. The last 
form in Equation (20) is the most common point-of-departure when implementing the reciprocal-space part. 

2.3. Forces in Ewald Summation 
Now that we have calculated the electrostatic energy of the system we can easily compute the electrostatic 
forces iF  that act on each particle i . Splitting the forces in the same way as we have split the energy and using 
Equation (17) we get the total electrostatic force by finding the negative of the gradient of the electrostatic 
energy 

0 .real recip self bc real recip bc
i i qq i qq qq qq qq i i iF U U U U U F F F = −∇ = −∇ + − + = + − +            (21) 

The subscript i  on the ∇  operator indicates that we take the partial derivatives with respect to the position 
of particle ir  and the 0  in Equation (21) comes from the self-interaction term in Equation (15) being 
independent of ir . Before we do this calculation we note a couple basic, but helpful, formulas for calculating 
derivatives 

( )

( ) ( )

3

22

  

1

2erfc exp
π

2π 2π 2πexp exp

2π 2π 2πexp exp

i ij i i j

ij
i

ij ij

ij
i ij

ij

ij
i ij ij

ij

i ji ji

i ij ij

L L L

L L L

αα α

ι ι ι

ι ι ι

∇ ⋅ = ∇ ⋅ − =

∇ = −

∇ =

∇ = − −

   ∇ ⋅ = − ⋅   
   

   ∇ ⋅ = + ⋅   
   

n r n r r n

r

r r

r
r

r

r
r r

r

n r n n r

n r n n r

                       (22) 

With above formulas, it is straightforward to find the different terms of iF . The contribution from the 
real-space term, real

iF , becomes 

( )

( ) ( )

†

,

† 22
2

1 erfc
2

erfc 2 exp ,
π

i jreal real
i i qq i ij

i j ij

ijij
i j ij

j ijij

q q
F U L

L

LL
q q L

LL

α

α α α

 
 = −∇ = −∇ +

+  

 ++  = + − +
 ++  

∑∑

∑∑

n

n

r n
r n

r nr n
r n

r nr n

             (23) 

such that when 0n ≠  include all j  and otherwise only '' the daggered saviour ''j i≠ − . Equation (20) is 
convenient to use when calculating the reciprocal-space contribution because it is expressed in terms of charge 
locations ir  rather than relative distances ijr . Thus the reciprocal-space force is given by 
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( )

( )
( )( ) ( )( )

2 22

2 22

2 2π

2
0

π

2 2
0

1 e 2π 2πcos sin
2π

2 e 2π 2πsin Re cos Im .

recip recip
i i qq

L

i i i i i
i i

L
i

i i

F U

q q
L L L

q
S S

L LL

α

α

−

≠

−

≠

= −∇

         = −∇ ⋅ + ⋅       
          

    = ⋅ + ⋅        

∑ ∑ ∑

∑

n

n

n

n

n r n r
n

n n r n n r n
n

       (24) 

Finally, the contribution that depends on the boundary condition 

( ) ( )

2

3 3

2π 4π .
2 1 2 1

bc
i i i i i j j

i jr r

F q q q
L L

  = −∇ = −  + +   
∑ ∑r r

 
                    (25) 

2.4. Formulas for Energy and Forces in Ewald Summation 
Consider a periodically replicated system, with the central box consisting of N  point charges iq  and 

0iiq =∑ . Assume that the surrounding media at the boundary of the periodically replicated system is a uniform 
dielectric with dielectric constant r . The cubic box has edge length L ; each charge iq  is located at ir , and 
distances are calculated with the minimum image convention. After expansion and rearrangements of Equation 
(2), rescaling Lα α→  and using symmetries induced by ij ji= −r r  and ±n , the total electrostatic energy of 
the system can be written as 

( ) real recip self bc
qq r qq qq qq qqU U U U U= + − +                             (26) 

with the different terms given by 

( )
†

,

1 erfc ,
2

i jreal
qq ij

i j ij

q q
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L
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+
∑∑
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r n
                                    (27) 
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        (28) 

2 ,
π

self
qq i

i
U qα

= ∑                                                        (29) 

( )

2

3

2π .
2 1

bc
qq i i

ir

U q
L
 =  +  
∑ r


                                               (30) 

Note that > 0α  is a free parameter. The structure factor ( )S n  is defined as 

( ) 2πexp .i i
i

S q
L
ι = − ⋅ 

 
∑n n r                                   (31) 

The total electrostatic force, iF , on each particle is 

.real recip bc
i i i iF F F F= + +                                     (32) 

Each of the force terms given by 
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( ) ( )† 22
2

erfc 2 exp ,
π

ijijreal
i i j ij

j ijij
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α α α
 ++  = + − +
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( ) 3

4π .
2 1

bf
i i j j

jr

F q q
L

= −
+ ∑ r


                                                          (35) 

The positive number α , the so called Ewald convergence parameter, is chosen for computational con- 
venience. Observe that ( ) 2

erfc e xx −≈  for large values of x . By choosing α  large enough in Equation (27), 
we can ensure that the only terms that contribute in the real-space sum is when 0=n . This may be expressed so 
that all terms with < cutnn  should be included. 

Choose a cut-off in both real-space and reciprocal-space so that the neglected terms in the real-space and 
reciprocal-space parts are of the same order δ , or less. The truncation in real-space implies that a sufficient 
number of terms must be included in the reciprocal-space sums, Equation (28). 

Given a required accuracy δ , cutn  is fixed by 

( ) ( )
22 2πe log ,

π
cutn L

cut
Lnα αδ δ− ≤ ⇒ ≥ −                            (36) 

and cutr  is determined by 

( ) 2 2

2

π
erfc e .cutr cut

cut cut
n

r r
L

αα δ
α

−≈ ≤ ⇒ =                             (37) 

We have two conditions and four parameters. With a required δ  we may just as well pick a suitable value 
for cutn  and let the above two equations determine α  and cutr . 

With an optimal choice of parameters the computational effort of the Ewald method becomes ( )3 2N  [36] 
giving a considerable improvement over the ( )2N  computational complexity implied by the “infinite” reach 
of the Coulomb interactions. 

3. ENUF: A Fast Method for Calculating Electrostatic Interactions 
In Section 2 we summarized known results and prepared the ground for the development of a fast method for 
Ewald summation using the discrete nonuniform fast Fourier transform (NDFT). 

3.1. Discrete Fourier Transforms for Non-Equispaced Data 
The fast Fourier transform for nonuniform data-points (NFFT) [40] is a generalization of the FFT [41]. Several 
similar approaches have been proposed; some examples are [42-50] with comparisons in [47,51,52]. 

The basic idea of NFFT is to combine the standard FFT and linear combinations of a window function that is 
well localized in both the spatial domain and the frequency domain. A controlled approximation using a cut-off 
in the frequency domain and a limited number of terms in the spatial domain results in an aliasing error and a 
truncation error, respectively. The aliasing errors is controlled by the oversampling factor sσ , and the 
truncation error is controlled by the number of terms, m , in the spatial/time approximation. For a number of 
window functions (Gaussian, B-spline, Sinc-power, Kaiser-Bessel), it has been shown that for a fixed over- 
sampling factor, > 1sσ , the error decays exponentially with m  [53]. 

3.1.1. Problem Definition 
We wish to calculate the discrete Fourier transform for nonequispaced data. The problem can be stated as 
follows. For a finite number of given Fourier coefficients ˆ ∈kf   with MI∈k  we want to evaluate the  
trigonometric polynomial ( ) ( )ˆ exp 2π

MIf x f ι
∈

= −∑ kk kx  at each of the given nonequispaced points  

( ), 0, , 1d
j j N∈ = −x  . In the literature, points are often called knots. We use the two terms synonymously. 
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Obviously, the details of an NDFT depend on the definitions of a sampling set for knots, d , and an index 
space MI . More in-depth discussions and further details can be found in [53,54]. The presentation that follows 
is mainly drawn from these sources. 

3.1.2. Underlying Concepts 
Consider a d-dimensional domain d  in which the set of nonequispaced knots, or data points, are located. Let 

( ) 0, , 1

1 1: : , 0, , 1 ,
2 2

d d
t tt d

x x t d
= −

 = = ∈ − ≤ < = − 
 

x                   (38) 

and the set of N  data points { }( ): : 0, , 1d
j j N= ∈ = −x  . For the application we have in mind d  is 

usually 2 or 3. Let   be a function space of trigonometric polynomials with degree ( )0, , 1tM t d= −  in 
dimension t ; the function space   can be defined as 

( ){ }2π: :   such that  span e : .d
Mf f Iι− ⋅= ∈ ∈k k                       (39) 

The dimension of this function space is ( ) 1
0dim , where  d

ttM M M−
Π Π =

= =∏ . The frequencies MI∈k  
with the index set MI  are such that 

( ) 0, , 1
: : , 0, , 1 .

2 2
d t t

M t tt d

M M
I k k t d

= −

 = = ∈ − ≤ < = − 
 

k                 (40) 

3.1.3. Matrix-Vector Formulation 
With these preliminary definitions we carry on with the problem of calculating the discrete Fourier transform for  
nonequispaced data. For a finite number of given Fourier coefficients f̂ ∈k   with MI∈k  we want to 

evaluate the trigonometric polynomial ( ) ( )ˆ exp 2π
MIf x f ι

∈
= −∑ kk kx  at each of the given nonequispaced  

knots in  , where the product kx  is the usual scalar product of the two vectors k  and x  as 
0 0 1 1: d dk x k x− −= + +kx . Consequently, for each j ∈x  , we evaluate ( ) ( )ˆ: exp 2πj j jIf f f ι

∈
= = −∑

k kkx kx . 
This may be reformulated in matrix-vector notation by setting 

( )
( )
( )

0, , 1

2π

0, , 1;

: ,

: e ,

ˆ ˆ:

j

M

M

j j N

j N I

I

f f

f f

ι

= −

−

= − ∈

∈

=

=

=

kx

k

k k

A





                                (41) 

and writing ˆf f= A . 

3.1.4. Related Matrix-Vector Products 
A number of related NDFT matrix-vector products can also be defined. To write them down we let A  be the 
complex conjugate of the elements of the matrix A  and TH =A A  the transposed complex conjugate of the 
matrix A . Using these conventions we can name and summarize the related NDFT matrix-vector products and 
their component representation as 

( )ˆ ˆ, exp 2π .
M

j j
I

f f f f ι
∈

= = −∑ k
k

A kxRegular :                              (42) 

( )
1

0

ˆ ˆ ˆ, exp 2π .
N

H
j j

j
f f f f ι

−

=

= = ∑kA kxAdjoint :                              (43) 

( )ˆ ˆ, exp 2π .
M

j j
I

f f f f ι
∈

= = ∑ k
k

A kxConjugated :                               (44) 

( )
1

T

0

ˆ ˆ ˆ, exp 2π .
N

j j
j

f f f f ι
−

=

= = −∑kA kxTransposed :                              (45) 
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3.1.5. NDFT, FFT and NFFT 
From the different NDFT products written in matrix-vector form, as in Equations (42)-(45), it is clear that it 
takes ( )NMΠ  arithmetic operations to transform between the Fourier-samples and the Fourier-coefficients.  
This is simply because the matrix A  is N MΠ× , with ( ) 1

0dim d
ttM M−

Π =
= =∏ . 

However, for the special case of ( )0, , 1t t dM M = −=


 and dN M=  equispaced knots ( )MI∈kx k , the 
Fourier-samples fk  can be calculated from the Fourier-coefficients f̂k  by the fast Fourier transform (FFT) 
with ( )logN N  arithmetic operations. 

The fast Fourier transform for nonequispaced knots (NFFT) is a generalization of the FFT. The essential idea 
is that of combining a window function with the standard FFT. The window function is a well localized function 
in both the space domain and frequency domain. Several different window functions and similar approaches 
have been proposed. The resulting algorithms are approximate and some of them have been shown to have a 
computational complexity of ( )( )log log 1M M NΠ Π +  , where   is the desired accuracy [53]. 

3.2. Fast Ewald Summation 
Using optimal parameters in the Ewald summation method implies that the time to calculate the real-space part 
and the reciprocal-space part are approximately equal. As the number of particles in the system grows we would 
like to combine the calculation of the short-range part of the potential with the real-space part. This implies that 
we need to choose a real-space cut-off about the same size as the short-range cut-off. With this nonoptimal 
choice, the reciprocal-space parts of the Ewald summation method become the most time-consuming to 
calculate [55]. 

To show how a fast Ewald summation approach may be obtained from the regular Ewald method, described 
in Section 2, we focus on the reciprocal-space parts. In Section 3.1, we gave the details of the discrete Fourier 
transform (DFT) for data that is nonuniformly spaced (NDFT). Based on these definitions we get a number of 
useful algorithmic primitives. First we reformulate the reciprocal-space part of the regular Ewald method in 
terms of the NDFT primitives. Then we show how the fast Fourier transform for nonequispaced (NFFT) can be 
applied, yielding an Ewald method based on the nonuniform fast Fourier transform. 

3.2.1. Reciprocal Space Terms as DFT 
We apply the generalized DFT, described in Section 3.1, to the calculation of the reciprocal-space energy and 
forces. This allows us to formulate the standard Ewald method for calculating the reciprocal energy and forces 
in terms of the NDFT primitives. 

3.2.2. Reciprocal Energy 
In the case of the electrostatic energy we have from Equation (28) 

( )
( ) ( )

2 22π

2
0

1 e ,
2π

L
recip
qqU S S

L

α−

≠

= −∑
n

n
n n

n
                     (46) 

with the structure factor ( )S n  defined as 

( ) 2πexp .j j
j

S q
L
ι = − ⋅ 

 
∑n n r                              (47) 

By comparing the definition of the transposed NDFT in Equation (45) and the structure factor in Equation (47) 
we note that they have the same structure; after a renumbering of the location indexes, the summation limits are 
also the same. In fact, by setting the normalized locations, j j L=x r , and the samples, ˆ

j jq=f , we see by 
inspection that Equation (47) is a 3D instance of Equation (45) with ( )ˆ S=nf n . Furthermore, assuming that the 
MD simulation box is centered around the origin, the normalized locations can be assumed to be in the domain 

d  as defined in Equation (38). 
Consequently, we can use the NDFT approach to calculate each of the components of the structure factor. 

From a computational point of view this means that we can also expect to utilize an NFFT based algorithm to 
calculate the components of the structure factor ( )S n , rather than the straightforward summation normally used 
in the Ewald method. 
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Recasting Equation (46) in terms of Fourier-components 

( )
( ) ( )

( )2 22 22 2π π 2

2 2
0 0

1 e 1 e ˆ .
2π π z

L L
recip
qqU S S

L L

α α− −

≠ >

= − =∑ ∑
n n

n
n n

n n f
n n

           (48) 

Calculating the energy, recip
qqU , using Equation (48) means that we 

1) calculate all ˆ
nf  using the transposed NDFT, 

2) scale each 
2ˆ

nf  with a factor given by Equation (48), 

3) sum all the scaled components. 

3.2.3. Reciprocal Forces 
We calculate the contribution from the reciprocal-space forces using a similar approach as for the energy. In the 
formula below, ( )Re ⋅ , and ( )Im ⋅ , denote the real and imaginary part of the arguments, respectively. From 
Equation (24) we have that 

( )
( )( ) ( )( )

2 22π

2 2
0

2 e 2π 2πsin Re cos Im .
L

recip i
i i j

q
F S S

L LL

α−

≠

    = ⋅ + ⋅        
∑

n

n
n n r n n r n

n
       (49) 

Now, the structure factor ( )S n  is just a complex number so the expression in the brackets in Equation (49) 
can be written as the imaginary part of a product 

( )( ) ( )( ) ( )2π 2π 2πsin Re cos Im Im exp .i i iS S S
L L L

ι      ⋅ + ⋅ = ⋅            
n r n n r n n r n          (50) 

Inserting Equation (50) this into Equation (49) gives 
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                  (51) 

Note that Equation (51) is a vector equation. Furthermore, each of the three components has the same 
structure as the conjugated NDFT of Equation (44). By setting the normalized locations, j j L=x r , and the 
samples, 

( )
( )

2 22π

2

eˆ   for 0,
L

S
α−

= ≠
n

ng n n  n
n

                                 (52) 

we see, again, by inspection that each component of Equation (51) is a 3D instance of Equation (44). Assuming 
that n  is in the index set MI  of Equation (40), MI∈n , and setting 0 0=g , we can formulate recip

iF  directly 
in Fourier-terms 

( )2π
2 2

2 2ˆIm e Im .i

M

recip i i
i i

I

q q
F

L L
ι ⋅

∈

 
= = 

 
∑ n x

n
n

g g                           (53) 

Calculating the reciprocal-space force recip
iF  on particle i , using Equation (53), means that we 

1) start with the structure factor components, ( )S n , already obtained when we calulated recip
qqU , 

2) scale each ( )S n  using Equation (52), 
3) giving a new set of Fourier-coefficients that are transformed back to real-space, via Equation (53), using 

the conjugated NDFT, and finally 

4) with Equation (53), taking the imaginary part of coefficient ig  and scaling it with 2

2 iq
L

 gives the 
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reciprocal force on particle i . 
Thus we can use the NDFT approach to calculate each of the components of the reciprocal forces. Again, 

from a computational point of view this means we can expect to utilize an NFFT based algorithm to find the 
respective components. 

3.2.4. Combining the Ewald Method and NFFT 
The reformulation of recip

qqU  and recip
iF  as in Equations (48) and (53) shows the central role of the transposed 

and conjugated NDFT in calculating the reciprocal-space energy and forces. Starting with the location of the 
charged particles, the structure factor ( )S n  is calculated via a transposed NDFT. In the language of Ewald 
summation, we transform from real-space to reciprocal-space. Scaling the absolute value of the Fourier- 
components and summing gives recip

qqU . To find recip
iF  we go back from the reciprocal-space to the real-space 

by first calculating the Fourier-components of the forces and then performing a conjugated NDFT. 
An implementation of Ewald summation uses cut-offs, in reciprocal-space, cutn , and real-space, cutr ; with 

α  large enough and with a required accuracy, δ , truncate the sums Equation (27) and Equation (28) at the 
respective cut-offs so that the last term added δ≤ , in each of the sums. When cutn  is fixed by 

( ) ( )
2 22π 1 3e log .

π
L

cut cut
Ln n L Nα αδ δ− ≤ ⇒ ≥ − ⇒ ∝ ∝n                  (54) 

Then cutr  is determined by 

( ) 2 2

2

π
erfc e .cutr cut

cut cut
n

r r
L

αα δ
α

−≈ ≤ ⇒ =                                 (55) 

We have recast recip
qqU  and recip

iF  in terms of Fourier-components and set 2t s cutM nσ= , where sσ  is the  

oversampling factor. This gives 1
0

d
ttM M−

Π =
=∏ . In general the computational complexity of the NFFT method  

is ( )( )log log 1M M NΠ Π +  , where   is the desired accuracy in the approximation used within NFFT [53].  

Using Equation (54) and the above defintion of MΠ , we see that the complexity becomes 
( )( )log log 1N N N+  . Note that   is a function of m , for a fixed oversampling factor. With a controlled 

approximation of the structure factor via the use of nonuniform fast Fourier transform, the original 
computational complexity of ( )3 2N  becomes ( )logN N . 

At this stage, the path to a fast Ewald method should now be clear. By specifying an accuracy δ , we replace 
the transposed and conjugated NDFT with the corresponding operations using the NFFT algorithm. Thus 
Equations (48) and (53) become a concise procedure to calculate approximations of recip

qqU  and recip
iF . Most of 

the mathematical details can be kept separate and hidden in a set of library routines and the remaining formulas 
pertain to the physics of the problem. Furthermore, with a library implementation based on a state-of-the-art 
FFT-library, we have good reason to expect it to be efficient. 

3.2.5. Implementation and Results 
In a first implementation [56,57], we used the libraries FFTW [58] and NFFT [54]. Details of the accuracy and 
scaling properties can be found in reference papers. 

Basing the implementation on libraries has a number of advantages. It makes the implementation task easier 
and introduces a convenient division of labor in the program code: the mathematical aspects are mainly 
concentrated to the libraries while the physical aspects of the problem remain. Also, since the code becomes 
quite compact without becoming convoluted, it becomes easier to check, understand, and explain. Improvements 
and optimizations of the libraries can be easily included in the program, usually by just relinking the program. 
For example, the customization of the window function used in the NFFT algorithm---Gaussian functions, dilated 
cardinal B-splines, Sinc functions, or Kaiser-Bessel functions---is currently achieved by recompiling the NFFT 
library and relinking the application. Due to the comparatively small size of the NFFT library this is very quick. 
Furthermore, improvements in either theory or implementation of the used libraries will be easily accessible. 

In summary, we claim that the ENUF method is 
• efficient and concise, and 
• has a clear separation of concerns between mathematical and physical details. 

In a sense it can be said that we get the best of two worlds: a concise and efficient algorithm. The separation 
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of mathematical concerns is a bonus that has the potential to simplify implementation and further developments 
due to the fact that they may occur independently of each-other. 

4. ENUF Implemented in M.DynaMix 
M.DynaMix is a highly modular general purpose parallel Molecular Dynamics code for simulations of arbitrary 
mixtures of either rigid or flexible molecules. It was released by Lyubartsev and Laaksonen in late 90’s [59]. 
Most common force fields can be used in simulations with a variety of periodic boundary conditions (cubic, 
rectangular, hexagonal or a truncated octahedron). Quantum corrections to the atomic motion can be done using 
the Path Integral Molecular Dynamics approach. M.DynaMix has been used in applications from materials 
design to biological processes. 

M.DynaMix deals with particle system interacting by a force field consisting of Lennard-Jones, electrostatic, 
covalent bonds, angles and torsion angles potentials as well as of some optional terms, in a periodic rectangular, 
hexagonal or truncated octahedron cell. Rigid bonds are constrained by the SHAKE algorithm [60]. In case of 
flexible molecular models the double time step algorithm is used [61]. Algorithms for NVE, NVT and NPT 
statistical ensembles are implemented, as well as Ewald sum approach for treatment of the electrostatic 
interactions. An option to calculate free energy by the expanded ensemble method with Wang-Landau 
optimization of the balancing factor is included in later versions. For its features and capabilities, M.DynaMix is 
diffused in a large modeling and simulation community. Written in FORTRAN 77, it can be run on a wide 
variety of hardware architectures both in sequential and parallel execution. The entire program source code 
consists of a number of FORTRAN files (modules), made of blocks of subroutines, performing different tasks or 
groups of tasks. 

4.1. Framework Overview 
The situation outlined for M.DynaMix is very common in the field of computational science: a package created 
in late 90’s that is still at work in spite of new innovations in computing platforms. In a situation like this, each 
upgrade requires a trade-off between the need to preserve the existing structure and the wish to obtain as much 
efficiency as possible. 

To take the best advantage from latest programming techniques and tools, we decide to use C language to 
create some of the new code segments. On one hand, modules in FORTRAN and C can easily coexist in the 
same code, just taking account of a few mild guidelines [62]; on the other hand, C language provides several 
enhancements related to intrinsic features (dynamic memory allocation and direct pointers reference) and 
possibility to set up complex data structures; furthermore, it allows a more plain access to a large amount of 
external routine libraries written in C. From a general point of view, M.DynaMix code has been projected with a 
good modularity degree and has been possible to make the most part of upgrades just switching a block 
(subroutine) with a new one. 

4.2. Input Parameters 
To use ENUF method for treating long range interactions, M.DynaMix user needs to set the proper key string in 
the input file [63]; parameters to specify are the Ewald convergence factor α  and the number of points for FFT 
grid in x , y  and z  direction; starting from them, the program automatically sets proper values for 
over-sampling factor sσ  and approximation parameter p . 

4.3. Implementation 
Ewald-like methods for computing electrostatic energies typically replace part of the summation in real space 
with an equivalent summation in Fourier space; among M.DynaMix modules, there is one devoted to this 
reciprocal space duty. In the starting setup, this module was present in M.DynaMix in a version related to the 
full Ewald algorithm; ENUF implementation involved the creation of a second instance of this module. 

A scheme of the ENUF module as implemented in M.DynaMix is presented in Table 1; the module in this 
case is a group of files, part of them written in FORTRAN and part in C; each file contains routines related to 
the algorithm steps. The table displays for each step the programming language used to write corresponding file; 
Some files make calls to external libraries, typically used to perform non uniform Fourier transform and its 
inverse. 
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Table 1. ENUF algorithm scheme: for each step is listed the language of the related routines and the presence of calls 
to external libs. 

Step Language Lib Calls 
1: Coordinate scaling F77 No 
2: Adjoint FFT C Yes 
3: Energy evaluation F77 No 
4: Factor rescaling F77 No 
5: Regular FFT C Yes 
6: Forces evaluation F77 No 

4.3.1. Coordinate Scaling and Adjoint Transform 
In the first step of the algorithm, particle coordinates are rescaled respect to the simulation box, in order to 
obtain the proper set of nonequispaced knots as required in Equation (38). Knots are stored in the 
unidimensional FORTRAN array X , in consecutive way, saving coordinates in reverse component order 
{ }, ,z y x  for each knot. Particle charges are located in unidimensional array Q . 

At the next step, a C routine performs the 3-dim adjoint transform of charges Q  located at knots X . C 
routine access to 1-dim FORTRAN vectors X  and Q  as three dimensional arrays; the reverse component 
order adopted in X  vector filling is related to this and depends on the different way to arrange multi- 
dimensional arrays in memory: by columns for FORTRAN, by rows for C. Transformed data are stored in the 
complex array S . 

4.3.2. Energy, Regular Transform and Forces 
In this stage, energy is evaluated by a sum, according to formula (48). Then, the transformed array S  is 
rescaled using Equation (51); starting from S , three complex rescaled arrays are created, xS , yS  and zS ,  
one for each direction in the reciprocal space. A C routine back transform complex data set xS , yS  and zS   
related to the same set of knots X . In this step, three independent back transformations are performed, 
producing complex arrays xF , yF  and zF . Forces contributions for each particle are obtained according to 
Equation (53); components in x , y  and z  directions are evaluated using the imaginary part of arrays xF , 

yF  and zF . 

4.4. External Libraries 
To perform Fourier transform on nonequispaced data, our current implementation make use of an external 
existing function library. Among the available resources, we select the library NFFT [54]. NFFT is a widely 
diffused C subroutine library for computing nonequispaced discrete Fourier transform in one or more 
dimensions, of arbitrary input size and of complex data; it is based on FFTW [58]. 

4.5. Validation 
In the original version of M.DynaMix the working method for the treatment of long range interactions is the full 
direct Ewald summation. Using a cross-check approach, namely comparing ENUF method to the stable one, it 
has been possible to debug every step of the algorithm implementation and check its correctness in deep way. 

After the implementation, the same cross-check mechanism has been used to investigate ENUF precision and 
efficiency. Figure 1 displays the execution time spent for long range interactions evaluation respect to the 
number of particles N, when full Ewald and ENUF are used. In the simulation, of 100  iterations, the system is 
composed by 50 +Na  ions and 50 Cl−  ions in water solution in a cubic cell. The number of water molecules 
is increased from 310  to 325 10×  in seven discrete steps, keeping constant the density to 1.02 3g/cm . The 
simulation run on a Intel Xeon workstation, 1.86 GHz, with ram 8 Gb. 

The full Ewald method has been taken as reference; for each system size, ENUF parameters have been tuned 
to obtain the same Ewald precision, evaluated in terms of the electrostatics energy contribution, tolerating a 
maximum divergence of 2%. 

The plot shows that execution time for long range interactions that represents the efficiency bottleneck in the 
original M.DynaMix version, has been drastically reduced saving the same numerical precision. The plot also 
shows the different trend for execution time vs N  in the two methods; the point set for the full Ewald scheme 
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Figure 1. Execution time for long range interactions vs. number of particles N, for Ewald and ENUF. System is 
composed by 50 Na+ and 50 Cl− in H2O solution in a periodic cubic cell. Number of water molecules is increased from 
103 to 25 × 103 keeping density to 1.02 g/cm3. 
 
is well fitted using the well-known theoretical behavior ( )2N ; data points related to ENUF correspond quite 
well to the expected ( )logN N . 

5. Implementation of ENUF Method in Dissipative Particle Dynamics Scheme 
The Dissipative Particle Dynamics (DPD) simulation method, originally proposed by Hoogerbrugge and 
Koelman, is a particle-based simulation method to simulate hydrodynamic phenomena at mesoscopic level [64, 
65,66]. In DPD model, several atoms or molecules are grouped together to form coarse-grained particles. The 
interactions between any pair of DPD particles i  and j  are normally composed of three pairwise additive 
forces: the conservative force ,C DPD

ijF , the dissipative force ,D DPD
ijF , and the random force ,R DPD

ijF  

( ), , , ,C DPD D DPD R DPD
ij ij ij ij

i j≠

= + +∑f F F F                            (56) 

with 
( ), ˆ ,C DPD C

ij ij ij ijrα ω=F r                                       (57) 

( )( ), ˆ ˆ ,D DPD D
ij ij ij ij ijrγω= − ⋅F v r r                                 (58) 

( ), ˆ ,R DPD R
ij ij ij ijrσω θ=F r                                       (59) 

where ij i j= −r r r , ij ijr = r , îj ij ijr=r r , and ij i j= −v v v . The parameters ijα , γ , and σ  determine the 
strength of the conservative, dissipative, and random forces, respectively. ijθ  is a randomly fluctuating variable, 
with zero mean and unit variance. 

The pairwise conservative force is written in terms of a weight function ( )C
ijrω , where ( ) 1C

ij ij cr r Rω = −  
is usually chosen for ij cr R≤  and ( ) 0C

ijrω =  for >ij cr R  such that the conservative force is soft and 
repulsive. The unit of length cR  is related to the volume of DPD particles. Two weight functions ( )D

ijrω  
and ( )R

ijrω  for dissipative and random forces, respectively, are coupled together through the fluctuation- 
dissipation theorem 

( ) ( )
2 2and 2D R

Br r k Tω ω σ γ = =                           (60) 

to form a thermostat and generate naturally the canonical distribution (constant number of particles, N, volume, 
V, and temperature, T) [67]. In most applications, the weight function ( )D rω  adopts a simple form as [68] 
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( ) ( ) ( )

( )

2

2 1
.

0

D R c
c

c

r r R
r r R

r R

ω ω

 
 − ≤  = =   
 >

                          (61) 

In the original DPD model, one critical advantage is the soft repulsive nature of conservative potential, which 
enables us to integrate the equations of motion with large time step. However, such advantage restricts the direct 
incorporation of electrostatic interactions in DPD model. The main problem is that dissipative particles carrying 
opposite point charges tend to collapse onto each other, forming artificial ionic clusters due to the stronger 
electrostatic interactions than soft repulsive conservative interactions. 

In order to avoid such unphysical phenomena, point charges at the center of dissipative particles are usually 
replaced by charge density distributions meshed around particles to remove the divergency of electrostatic 
interactions at 0r =  [69,70]. In our implementation [71,72], a Slater-type charge density distribution is 
considered with the form of 

( )
2

3 e ,
π

e

r

e
e

qr λρ
λ

−

=                                         (62) 

in which eλ  is the decay length. The integration of Equation (62) over the whole space gives the total charge 
q . 

The electrostatic potential ( )rφ  generated by Slater-type charge distribution ( )e rρ  can be obtained by 
solving Poisson’s equation 

( ) ( )2

0

1 ,e
r

r rφ ρ∇ = −
 

                                     (63) 

in which the variables 0  and r  are the permittivity of vacuum space and the dielectric constant of water at 
room temperature, respectively. In spherical coordinates, the Poisson’s equation becomes 

( ) ( )2
2

0

1 1 .e
r

r r r
r rr

φ ρ∂ ∂  = − ∂ ∂   
                             (64) 

By solving Poisson’s equation, the electrostatic potential field ( )rφ  can be analytically expressed by 

( )
2

0

1 1 1 e .
4π

e

r

r e

q rr
r

λφ
λ

−  
 = − +     

                            (65) 

The electrostatic energy between two interacting charge density distributions i  and j  is the product of the 
charge density distribution i  and the electrostatic potential generated by charge distribution j  at position ir  

( ) ( )
2

,

0

1 1 1 e .
4π

ij

e

r
i j ijE DPD

qq ij i j i
r ij e

q q r
r q r

r
λφ

λ

−   = = − +    
U

 
                  (66) 

The electrostatic force on charge distribution i  is the negative of the derivative of the potential energy 
,E DPD

qqU  respect to its position ir  

( ) ( )

( )

, ,

2 2 22

2 2
0

2 21 1 e e e .
4π

ij ij ij

e e e

E DPD E DPD
i ij i qq ij

r r r
i j ij ij

r e eij

r r

q q r r

r
λ λ λ

λ λ

− − −

= −∇

  = − − − 
  

F U

 

               (67) 

By defining parameter *
cr r R=  as the reduced center-to-center distance between two charge distributions 

and dimensionless parameter c eRβ λ= , respectively, the reduced electrostatic energy and force between two 
Slater-type charge distributions are given by 
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( )
( )

( ){ }*2, * *
1*0

1 1 1 e ,
4π

ijri jE DPD
qq ij ij

r c ij

q q
r r

R r

ββ −= − +U
 

                      (68) 

( )
( )

( )( ){ }*2, * * *
2*0

1 1 1 2 1 e .
4π

ijri jE DPD
i ij ij ij

r c ij

q q
r r r

R r

ββ β −= − + +F
 

              (69) 

Comparing to the electrostatic energy and force between point charges in atomistic simulations in previous 
section, we can find that the electrostatic energy and force between two Slater-type charge distributions in DPD 
simulations are scaled with corresponding correction factors as 

( ) ** 21 1 e ,r
UB r ββ −= − +                                     (70) 

( )( ) ** * 21 1 2 1 e .r
FB r r ββ β −= − + +                             (71) 

The similarities between electrostatic energy and force between point charges and counterparts between 
charge density distributions imply that once we get electrostatic energy and force between point charges, from 
which the electrostatic energy and force between Slater-type charge density distributions in DPD simulations 
can be directly rescaled with corresponding correction factors. 

For the electrostatic energy and force between point charges, we know that both of them do diverge when the 
relative distance between point charges is close to 0. While for the electrostatic energy and force between charge 
density distributions, in the limit of * 0ijr → , the reduced electrostatic energy and force between charge density 
distributions are, respectively, described by 

( )
*

, *

0 0

1 ,lim 4πij

i jE DPD
qq ij

r r c

q q
r

R
β

→
=U

 
                              (72) 

( )
*

, *

0
0.lim

ij

E DPD
i ij

r
r

→
=F                                         (73) 

It is clear that the adoption of Slater-type charge distribution in DPD simulations removes the divergence of 
electrostatic interactions at * 0ijr = , which means that both electrostatic energy and force between charge 
distributions are characterized with finite quantities. 

By matching the maximum electrostatic energy between charge distributions at * 0ijr =  with Groot’s previous 
work [69] gives 1.125β = . In our detailed implementations, we adopted a particular coarse-graining scheme 
[73] with 4mN =  and 4ρ = , in which the former parameter means 4  water molecules being coarse-grained 
into one DPD particle and the latter means there are 4  DPD particles in the volume of 3

cR . With this 
particular scheme, the length unit cR  is given as 33.107 7.829c mR Nρ= = Å . From the relation of 

c eRβ λ= , we can get 6.954 eλ = Å , which is consistent with the electrostatic smearing radii used in 
González-Melchor’s work [70]. 

Figure 2 shows the representation of reduced electrostatic energy and force with respect to the relative 
distance between Slater-type charge distributions. For a better comparison, we also include the typical soft 
conservative potential and force between dissipative particles, as well as the standard Coulombic potential and 
force between point charges, both of which do diverge at 0r = . In short range length scale, both the 
electrostatic energy and force are characterized with finite quantities, which attribute to the adoption of 
Slater-type charge distributions instead of point charges. In long range length scale, both the electrostatic energy 
and force are consistent with counterparts between point charges, which implys that the ENUF-DPD method can 
capture essential characteristics of electrostatic interactions at mesoscopic level. 

Combining electrostatic force ,E DPD
iF  and soft repulsive conservative force ,C DPD

iF  gives the total 
conservative force *C

iF  on particles i  in DPD simulations. The total conservative force *C
iF , together with 

dissipative force ,D DPD
iF  and random force ,R DPD

iF , as well as the intramolecular bonding force ,S DPD
iF  for 

polymers and surfactants, act on dissipative particles and evolve the whole simulated system toward equilibrium 
conditions before taking statistical analysis. 

As the number of charged DPD particles in the simulated system grows, the calculation of the reciprocal 
space electrostatic interactions will become the most time-consuming part. Using suitable parameters in  
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Figure 2. Electrostatic potential and force between two charge density distributions in DPD scheme calculated from 
the ENUF and Ewald summation methods with reference parameters. For a better comparison, the standard 
Coulombic potential and force, both of which diverge at 0r = , and the typical conservative potential and force in 
standard DPD method are also included. Both the electrostatic potential and force expressions are plotted for two 
equal sign charge distributions. 
 
ENUF-DPD method assures that the time to calculate the real space summations is approximately the same as 
the time to calculate the reciprocal space summations, thereby reducing the total computational time. Herein we 
try to explore the ENUF-DPD related parameters and get a set of suitable parameters for further applications. 

As addressed in Section 3.2, the implementation of ENUF-DPD method uses the Ewald convergence 
parameter α , required accuracy ( ) 1δ  , and two cut-offs ( cutr  for real space and cutn  for reciprocal space 
summations). These parameters are correlated with each other through two conditions shown in Equations (54) 
and (55). With required accuracy parameter 41.0 10δ −= × , it is more convenient to pick a suitable value for 

cutn . Then one can determine α  and cutr  directly from Equations (54). However, due to the fact that cutn  
should be integer and cutr  should be a suitable value for the cell-link list update scheme in DPD simulations, 
we adopt another procedure to get suitable parameters. 

During the calculation of real space summation and self-interaction parts of electrostatic energy and force 
between point charges, we can directly multiply corresponding correction factors to get the electrostatic energy 
and force between slater-type charge density distributions. However, it is not accessible for the calculation of 
reciprocal space summation since we cannot rescale the NFFT transformation results. But if we choose suitable 
real space cutoff cutr , beyond which two correction factors UB  and FB  converge to unit, one can directly 
adopt NFFT transformation result without any corrections. We find that electrostatic energy and force between 
charge density distributions are consistent with counterparts between point charges when the relative distance 
between two distributions is larger than cR3.0 . Hence in our simulations, 3.0cut cr R=  is taken as the cutoff for 
real space summations of electrostatic interactions. 

By evaluating the Madelung constant of a face-centered cubic (FCC) lattice, we adopt the Ewald convergence 
parameter with the value of 10.20 α −= Å , which can generate accurate Madelung constant for FCC lattice 
structure and keep considerable accuracy. Then we perform coarse-grained simulations on bulk electrolyte 
system to explore suitable values for cutn , and approximation parameter p  in NFFT. It is specified that 
approximation parameter 2p =  and cutoff 7cutn =  for reciprocal space summations can generate consistent 
electrostatic energy and force in comparison with those obtained from traditional Ewald summation method with 
reference parameters. Larger p  values can further increase the accuracy of electrostatic interactions in 
ENUF-DPD method, but also the total computational time in treating electrostatic interactions increases. By 
compromising the accuracy and computational speed in the ENUF-DPD method, we adopt 2p =  and 7cutn =  
in following simulations. 

With the set of explored optimized parameters, we address the computational complexity of ENUF-DPD 
method in treating electrostatic interactions. The computational complexity of ENUF-DPD method is appro- 
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ximately described as ( )logN N , which shows remarkably better computational efficiency than the tradi- 
tional Ewald summation method with acceptable accuracy in treating long-range electrostatic interactions 
between charged particles at mesoscopic level. 

The ENUF-DPD method is then validated by investigating the influence of charge fraction of polyelectrolyte 
on corresponding conformational properties [71]. With the increase of charge fraction on polyelectrolyte, both 
the intramolecular correlations between charged beads on polyelectrolyte chain and the intermolecular correla- 
tions between charged beads on polyelectrolyte and counterions are enhanced. The conformation transition of 
polyelectrolyte chain from collapsed state to fully extended conformation can be visualized from simulations. 
Meanwhile, the dependence of the conformations of fully ionized polyelectrolyte on charge valency and 
concentration of added salts are also studied in details. Counterions with larger valency show stronger conden- 
sations on polyelectrolyte chains. Such counterions can induce polyelectrolyte chains from extended confor- 
mation to compact state, and then to swollen conformation with the increase of counterion concentrations. 

With the ENUF-DPD method, we further investigate the specific binding structures of dendrimers on 
amphiphilic bilayer membranes [74]. We construct mutually consistent coarse-grained models for dendrimers 
and lipid molecules, which can properly describe the conformation of charged dendrimers and the surface 
tension of amphiphilic membranes, respectively. Systematic simulations are performed and simulation results 
reveal that the permeability of dendrimers across membranes is enhanced upon increasing dendrimer sizes. The 
negative curvature of amphiphilic membrane formed in dendrimer-membrane complexes is related to dendrimer 
concentration. Higher dendrimer concentration together with the synergistic effect between charged dendrimers 
can also enhance the permeability of dendrimers across amphiphilic membranes. 

With these two typical and representative applications, we can see that the newly implemented ENUF-DPD 
method can capture the essential characteristics of electrostatic interactions at mesoscopic level. This method 
has all capabilities of ordinary DPD method, but includes applications where electrostatic interactions are 
essential but previously inaccessible, hence can be used to study charged complex systems at mesoscopic level. 

6. Summary and Conclusions 
Treatment of electrostatic interactions based on Ewald summation techniques is reviewed. While Ewald- 
summation is still considered as the most accurate scheme to compute the long-ranged interactions, it is also the 
part slowing down simulations. The scaling for large systems makes the computations very time-consuming. In 
particular, the reciprocal part of Ewald becomes a bottle-neck. As an attractive alternative approach to mesh- 
based schemes which show a linear scaling, we introduce an Ewald method based on non-uniform fast Fourier 
transforms (ENUF) giving examples of two implementations in already existing software packages, for ato- 
mistic Molecular Dynamics and Dissipative Particle Dynamics. We demonstrate that the implementation be- 
comes straight-forward as we rely on NFFT library. We discuss the optimization of convergence parameters and 
window functions. 

The ENUF method scales linearly as ( )logN N  and conserves both the energy and momentum to float 
point accuracy making it a very robust and accurate method. 
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