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ABSTRACT 
In sparse-angle X-ray tomography reconstruction, where only a small number of projection images are taken 
around the object, appropriate sinogram interpolation has a significant impact on image quality. A novel sino-
gram interpolation method is introduced for extreme sparse tomographic reconstruction where only nine meas-
ured projection images are available. The sinogram is interpolated by solving characteristics of the so-called 
warps, which can be considered as approximation sine waves in a limited region. The numerical evidence sug-
gests that this approach gives superior results over standard interpolation methods when the tomographic data 
are extremely sparse and noisy. 
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1. Introduction 
Three-dimensional (3D) X-ray imaging is typically needed for measuring the inner structures of a patient. For 
example, in implant dentistry where damaged or missing teeth are replaced by artificial teeth, a screw hole with 
accurate depth, angle and diameter is needed for the implant. The hole has to be deep enough to ensure firm 
attachment, but not too deep as nerves might then be damaged. This measurement cannot be based on 
two-dimensional (2D) images since they represent a distorted projection of the tissue. Another clinical 
application of 3D X-ray imaging is solving the superposition problem. Since a pixel of a 2D projection image is 
a sum of attenuation along the path of an X-ray, the overlapping low-contrast tissues are difficult to recognize. 
This can easily lead to misinterpretation and eventually cause a false diagnosis. However, in 3D imaging, the 
viewing angle can be chosen so that the boundaries between tissues can be accurately identified. 

Lately, there has been an increasing interest in sparse-angle tomographic imaging, where fewer projection 
images are taken in order to reduce patient dose and scanning time. Despite that the sparse reconstruction does 
not offer high spatial resolution, it can offer a feasible overview on the imaging target, which extends the use of 
computed tomography (CT) imaging to less serious cases, like minor trauma studies or cosmetic operation 
planning. Moreover, sparse-angle imaging can also be used in pre-scans, where a low-resolution reconstruction 
is generated before the actual scan to verify patient positioning and to define optimal X-ray technique values 
(tube current, voltage, number of projection images) for the final scan. The pre-scan helps to optimize the 
patient dose and avoid re-exposures. 

The challenge of sparse tomographic imaging is insufficient image quality caused by the inadequate number 
of projection images. This lack of data is illustrated in Figure 1 in the spatial, sinogram and frequency domains. 
In the final reconstruction, the missing information can be observed as artifacts in the 2D slice view as well as in 
the 3D volume view. In the slice view, the missing information generates streak artifacts (see Figures 2-4(b)),  
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Figure 1. Representations of two projection images and their relations in (a) spatial, (b) sinogram and (c) frequency 
domain. The distance a is the pixel size, ω is the difference of the frequency components, N is the number of pixels, 
Δθ0 is the angular difference between the projection images and d is the maximum distance between two frequency 
components in adjacent columns. The relation between the spatial and the frequency domain is based on well-known 
Fourier Slice Theorem, which states that one projection image defines frequencies in the 2D frequency domain within 
a single line. This line intersects origin, it has same angle than the imaging angle and it is limited by the Nyquist 
frequency theorem. Books by Kak (2001) and Gonzalez (2008) provide detailed theoretical background of the Fourier 
Slice Theorem. 
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Figure 2. The FBP reconstruction of the Shepp-Logan-phantom with 5%  Gaussian noise. Upper row: (a) The 
original phantom, (b) reconstruction from original data and (c) SINT interpolation. Lower row: FBP reconstruction 
when reference interpolation methods were used; (d) linear; (e) nearest neighbor and (f) spline interpolation. 
 
especially when sharp edges are present [1]. Numerical implementations of the tomographic reconstruction from 
sparse data are introduced for example in articles by Hyvönen et al. (2010), Rantala et al. (2006), Varjonen 
(2006), Siltanen et al. (2003) or Kolehmainen et al. (2003 and 2008) [2-7]. Moreover, the studies by Webber et 
al. (1999) or Cederlund et al. (2009) are illuminating examples of the capability of clinical sparse angle X-ray 
tomography [8,9]. In tomographic imaging, the reconstruction pipeline consists of three stages. The first stage is 
pre-processing, where the unidealities and artifacts are compensated for. In the second reconstruction stage, the 
3D model is calculated based on these manipulated projection images, the known spatial relation of the gantry 
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Figure 3. The FBP reconstruction of the Dental Arc-phantom with 5% Gaussian noise. Upper row: (a) The original 
phantom, (b) Reconstruction from original data and (c) SINT interpolation. Lower row: FBP reconstruction when 
reference interpolation methods were used; (d) Linear; (e) Nearest neighbor and (f) Spline interpolation. 
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(d)                                  (e)                                   (f) 

Figure 4. The FBP reconstruction of the Boxes-phantom with 5% Gaussian noise. Upper row: (a) The original 
phantom, (b) Reconstruction from original data and (c) SINT interpolation. Lower row: FBP reconstruction when 
reference interpolation methods were used; (d) Linear, (e) Nearest neighbor and (f) Spline interpolation. 
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(i.e. mechanical combination of the detector and the X-ray source) and the object. Finally, in the post-processing 
stage, the reconstruction artifacts are reduced and the clinically relevant information is emphasized. A practical 
and clinical overview of the reconstruction process can be found in the book by Hsieh (2009) and more 
theoretical approach in the book by Kak and Slaney (2001) [10,11]. 

A sinogram is a 2D representation of an X-ray CT scan, where each column represents a single row in the 
projection image arranged in increasing angular order. Typically, the horizontal axis represents the angle of the 
X-ray detector and the vertical axis, the distance from the rotation center in the detector row. Each volume 
element generates a sine wave in the sinogram when the X-rays are orthogonal to the detector (parallel beam 
geometry). Therefore, the sinogram consists of a number of overlapping sine functions, whose amplitude and 
phase depend on the location of the voxel and the grayvalue equals to the grayvalue of the volume element while 
the wavelength is constant ( 2π ). As a simple example of a two-point sinogram seen in Figure 5, Figure 1 
illustrates the relation between spatial and sinogram domains, and the upper row in Figure 6 is an example of a 
sinogram arising from sparsely sampled data. See chapter 5.11.3 in the book by Gonzalez and Woods (2008) for 
more information about sinogram representation [12]. 

In this study, we focus on interpolating new sinogram columns without modifying the measured sinogram 
columns. This scenario is consistently called in this paper as sinogram interpolation. In the literature, there are 
also a number of other interpolation routines related to sinogram manipulation which should not be confused 
with the sinogram interpolation scenario. One of them is the projection image interpolation, where new values 
are generated between the data values to avoid Moire artifacts. This is typically handled by the standard nearest- 
neighbor or linear interpolation [1]. Another example is needed for an interpolation routine in helical CT device 
for gaining uniform sampling in the azimuthal direction or metal artifact removal processes [13-18]. 

Also, the sinogram extrapolation can be used for solving the truncation problem as indicated for example by 
Sze and Shum (1996), Gilland et al. (2000) or Baojun and Jiang (2007) to expand the projection data in limited 
angle tomography [19-21]. Moreover, sinogram extrapolation can be used for expanding the truncated sinogram 
in a local tomography situation, where some of the attenuations take place outside the modeled volume (see 
Zamyatin and Nakanishi (2006) and references therein [22]). 

Sinogram interpolation itself has been studied since the innovation of the medical CT system in the 1970’s. 
For example, Brooks et al. (1978) studied both interpolating new data in projection images and interpolating 
new projection images to attenuate Moire effects [1]. Also, Lahart (1981) studied a similar problem and used a 
least-squares approximation to interpolate projection images when the external shape of the object was known 
[23]. However, in those days, the computational resources were very limited and therefore the spatial resolution 
as well as the image quality was not equivalent to today’s de-facto standards. Nevertheless, these studies 
illuminate the limitations of sparse and limited angle tomographic imaging and therefore can be considered as 
fundamental studies of sinogram estimation (see also [24-27]). 
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Figure 5. Example of sinogram presentation. Left is the original object with two non-zero points. Middle is the 
sinogram presentation of the same object when nine images are taken from 20 to 180 degree angles. Each point 
generates a sine shaped wave so that the amplitude is proportional to the distance between the point and the center of 
the object (i.e. rotation axis). Right is the reconstruction done from the projection data by using back projection 
algorithm. 
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Figure 6. The original sinograms (top row) and their SINT interpolations (bottom row). Left sinogram from Shepp- 
Logan-phantom, middle from Dental Arc-phantom and right from Boxes-phantom. 
 

Lately, there have appeared several studies on dedicated directional sinogram interpolation algorithms. For 
example, Zhe et al. (2003) successfully combined the Huesman algorithm with Principle Component Analysis in 
PET imaging, and Köstler et al. (2006) applied PDE-based methods for interpolation and the Neumann boun- 
dary condition for defining missing columns in the sinogram [28,29]. In this study, about 60%  of the sinogram 
columns were interpolated. Similarly, in the study by Penbel et al. (2005), only 50%  of the sinogram columns 
were interpolated by using cumulant functions instead of linear interpolation [30]. Moreover, Bertram et al. 
(2004 and 2009) utilized tensors to gain directional interpolation based on sinogram data and achieved im- 
pressive results [31,32]. 

Also, interesting approaches for sinogram interpolation in ill-posed situations are the usage of Stackgrams by 
Happonen (2005) and the usage of object geometry estimation for sinogram interpolation by Prince et al. (1993) 
[33,34]. The advanced general directional interpolation methods are also considered by Gerchberg (1974), 
Papoulis (1975) as well as La Riviere and Pan (1999) [35-37]. Finally, Dong et al. (2013) introduced very 
promising results when combining the sinogram interpolation with the wavelet cost function [38]. For more 
general information about different sinogram related extrapolations and interpolations, see for example Brooks 
et al. (1978), Lahart (1981) or Kak and Slaney (2001) and references within [1,11,23]. 

In this paper, we introduce a new approach, called Sinogram Interpolation Technique (SINT) for estimating 
new sinogram columns between known, measured sinogram columns in the extremely sparse situation of only 
nine known sinogram columns. 

This article is organized as follows: In Section 1.2, the theoretical background of the SINT method is 
described. Secondly, in the Section 1.3, the capability and limitations of SINT by three different numerical 
examples with additional noise are demonstrated. Finally, in the Section 1.4, we discuss the computational and 
clinical aspects of SINT and its possible future applications. Also, we analyze the failure of standard 
interpolation methods in extremely sparse imaging situations. 

Throughout this paper, capital letters are used for matrices. Moreover, for indicating a single element in a 
matrix, the standard [row][column]-order is applied. For example, ,k hS  indicates the element located at the 
k th row and h th column in the matrix S . Notwithstanding the aforesaid, a single subscript is used for 
referring to columns: hS  denotes the h th column of the matrix S . Superscripts in brackets are used for 
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additional information, like iteration round, special restrictions or relations. See Table 1 for the definition of 
each notation used in this work. 

We systematically use the term known sinogram column for the columns that are based on actual measured 
X-ray projection images. The interpolated sinogram columns are called estimated columns since they are a 
priori unknown. Furthermore, the known sinogram columns adjacent to an estimated column are called known 
neighbor columns. See also Figure 7 for an illustration of this terminology. 

We use the term volume for the target object and image for the projection data, although in our examples the 
phantoms are two-dimensional and projection images are one-dimensional. Similarly, we use the terms voxel 
and pixel to describe the volume and image elements to be consistent with other tomographic literature and 
references. Finally, in this study, we are focusing on 2D parallel beam imaging situations, where all X-rays are 
perpendicular to the detector. Also, we are covering only cases where the whole object is covered in each 
projection image, and therefore the so-called local tomography problem is excluded from this study. 

2. The SINT Method 
In this Section the theoretical background of the SINT method is discussed. Firstly, in Section 2.1 two new 
concepts, called warp and weight factor, are introduced. Secondly, in the Section 2.2 a new method for defining 
the grayvalues in single sinogram column located between two a priori known neighbor columns is proposed. 
Finally, in Section 2.3 the method is summarized and extended to cover all sinogram columns in the sinogram 
domain. 
 

Table 1. Parameters used in this article. 

parameter definition explanation 

a  a∈  pixel size, see Figure 1 

A  2N LA ×
+∈  Relation grayvalue matrix, see Equation (1.14) 

d  d ∈  maximum distance between adjacent columns, see Figure 1 

G  2L LG ×
+∈  Eigenvector matrix, see Equation (1.18) 

h  1 h H≤ ≤  index of the sinogram matrix column or angle vector 

H  H ∈  Number of projection images 

,i j  ,i j∈  general purpose indexes 

k  k∈  warp index 

L  L∈  Number of warps 

N  N ∈  Number of pixels in projection image 

N̂  ˆ0 < N N≤ ∈  Number of non-zero pixels in projection image 

R  
ˆ ˆ 21 2N N LR ×

+∈ , { }, 0,1i jR =  Rule matrix, see Equation (1.20) 

S  N HS ×
+∈  sinogram, see Equation (1.1) 

( )pv  ( )p Lv +∈  Eigenvector of Λ  with eigenvalue of one, see Section 2.2 

w  2Lw +∈ , 0 1w≤ ≤  weight vector, see Section %d.1.2.2 

( )kW θ  k +∈  Warp function, see Equation (1.9) 

α  Lα +∈  Warp factor vector, see Equation (1.18) 

β  β +∈  regularization parameter, see Equation (1.24) 

κ  > 1κ  interpolation factor, see Equation (1.28) 

Λ  2 2L L×
+Λ∈  used for generating the matrix G , see Equation (1.15) 

,µ ν  ,µ ν ∈  arbitrary warp indexes 

θ  ,0 < πHθ θ+∈ ≤  imaging angle vector, see Equation (1.2) 

Φ  3L×
+Φ∈  Warp matrix, see Section 2.2 

Ψ  2N L×
+Ψ∈  Relation index matrix, see Section 2.2 

ω  ω +∈  distance between frequency components, see Equation (1.26) 
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Figure 7. Outline of the warps. A single warp (thick line) connects sinogram elements ,1 1i hS − , ,2i hS  and ,3 1+i hS  to an 
estimated element (light gray box). Related weight factors are also indicated. 

2.1. Definitions of the Key Concepts 
2.1.1. Weight Factor 

In this study a sinogram is considered as a matrix N HS ×
+∈  with one unknown column ( )hS . That is 

( ) ( ) ( ) ( )1 2 3 1 1 .h h h HS S S S S S S S− +
 =                                 (1.1) 

and known projection angles corresponding to the columns of S  as a vector 

[ ]1 2 3 1 1 ,h h h Hθ θ θ θ θ θ θ θ− +=                                     (1.2) 

where Hθ +∈  and 1 2 30 < < < < πHθ θ θ θ≤ < . 
The purpose of the sinogram integration is to generate a feasible approximation for hS  when other columns 

and vector θ  are known. In this method the grayvalues of each unknown sinogram element 
2 ,i hS  are 

approximated as weighted sums of nearby sinogram elements in the adjacent columns 1hS −  and 1hS + . This can 
be determined in two ways, each producing the same result for hS ; either based on the column 1hS −  as 

( )
( )

2
2 1 1

1

1 ,
, , 1

1

N
h i

i h i i h
i

S w S−
−

=

= ∑                                  (1.3) 

or based on the column 1hS +  as 

( )
( )

2
2 3 3

3

1 ,
, , 1

1

N
h i

i h i i h
i

S w S+
+

=

= ∑                                  (1.4) 

where ( )21,h i Nw ±
+∈  are called as the weight factors. The first upper index of weight factors indicates the 

known column index and the second indicates the sinogram element index in the estimated column h . The 
Equations (1.3) and (1.4) clearly indicate that if the weight factors are known, then an estimate for the 

2 ,i hS  can 
be generated. Moreover, if the weight factors for all elements in hS  are generated, an estimate for the whole 
sinogram column hS  is gained. 

The Equations (1.3) and (1.4) are combined by defining 2L  approximation for the 
2 ,i hS  as 

( )
( )

2
2 2

2

1 ,
ˆ, , , 1, 1 2

ˆarg min ,
N

h i
i h i h i i hSi h i

S S w S±
±

=

= −∑                        (1.5) 

whose solution is given by 
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( ) 2
2

1 ,
, , 1

1

1
2

N
h i

i h i i h
i

S w S±
±

=

= ∑                                  (1.6) 

We end this chapter by highlighting two important identities related to weight factors. Firstly, consider a 
single sin wave that intersects the sinogram elements 

1, 1i hS − , 
2 ,i hS  and 

3 , 1i hS +  and consists of two weight 
factors ( ) 2

1

1 ,h i
iw −  and ( ) 2

3

1 ,h i
iw + . Then we have 

( ) ( )2 2
1 31 3

1 , 1 ,
, 1 , 1.

h i h i
i h i hi iw S w S− +

− +=                              (1.7) 

Secondly, because the total sum of each sinogram column is constant, the sum of all weight factors related to 
the same known sinogram component in columns 1h −  and 1h +  is always one, i.e. 

( )2

2

1, 1  for each  .h i
j

i
w j± =∑                                 (1.8) 

2.1.2. Warp 
In extremely sparse-angle tomographic situation, the number of sine functions and their characteristic 
parameters (amplitude, grayvalue and phase) cannot be uniquely defined from the sinogram. For that reason, a 
new concept called warp is introduced. The warp can be considered as a sum of all the sine waves that intersects 
two sinogram elements 1hS −  and 1hS +  (see Figure 7). The most essential features of warps are: 

1) Each warp has the shape of a sine wave and a wavelength of 2π . Therefore, the phase and amplitude of 
the warp are uniquely defined by two points. 

2) Each warp connects two sinogram elements in known neighbors columns 1hS −  and 1hS +  to a single 
sinogram element in the estimated column hS  by two strictly positive weight factors. 

3) Each warp intersects only strictly positive sinogram elements in the whole sinogram domain. 
4) All non-zero sinogram elements are associated with at least one warp and all weight factors are associated 

with exactly one warp. 
Our interpolation strategy is to define the estimated sinogram column hS  by defining the amplitude, phase 

and so-called warp factor (will be explained in the Section 2.2) for each warp. We will show that by defining 
these values we can define the weight factors and thereby obtain an estimate for the sinogram column hS . 
Although the above warp-based approach does not completely characterize the underlying sine waves and 
provide an exact solution to the interpolation problem, it does give a feasible and stable approximation in 
limited-data situations as demonstrated in Section 1.3. 

2.2. Definition of the Crucial Matrices 
In this Section we will introduce three matrices to determine the connection between the warps and grayvalues 
of the estimated sinogram ( )hS . These matrices are: 

1) Matrix A  to define the relation between the estimated and neighbor known sinogram elements based on 
the Equation (1.6) 

2) Matrix G  to fulfill the requirement in the Equation (1.7) 
3) Matrix R  to limit the weight factors related to the same known sinogram based on the Equation (1.8) 
We also build two temporary matrices Ψ  and Φ  to simplify the numerical implementation. All these 

matrices should be generated for each sinogram column separately as described in Section 2.3. 

2.2.1. Warp Matrix Φ 
The purpose of the warp matrix 3L×

+Φ∈ , where L  is the number of warps, is to simplify the creation of 
other matrices. The warp matrix Φ  defines all warps related to the estimated sinogram column hS  such that 
each row represents a single warp as follows: The first element in the row is the row index 1i  of the known left 
point 

1, 1i hS − , the second element is the row index 2i  of the estimated sinogram column 
2 ,i hS  and finally the 

row index 3i  is the right known point 
3 , 1i hS + . 

To define the value 3i  the warp function ( )kW θ  is defined for all angles θ  based on two points in the 
sinogram ( ( )1 , 1i hS −  and ( )3 , 1i hS + ) and the their angular values ( 1hθ −  and 1hθ + ). 

Since the warp has the shape of a sine wave with a frequency of one and an offset of ( )1 2N + , it can be 
defined as 
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( ) ( ) ( )sin 1 2k k kW Nθ ϑ θ φ = − + +                               (1.9) 

where the amplitude kϑ  and phase kφ  depend on the known angles 1hθ ±  as follows: 

( )( )
2

1sin
k

kh

q
ϑ

θ φ+

=
−

                                          (1.10) 

and 

( ) ( )
( ) ( )

2 1 1 1

2 1 1 1

cos cos
arccot ,

sin sin
h h

k
h h

q q
q q

θ θ
φ

θ θ
+ −

+ −

 −
=   − 

                         (1.11) 

where 

( ) ( )1 1 2 31 2   and  1 2 .q N i q N i= + − = + −                         (1.12) 

If ( ), > 0
k jW j

S
θ

 is for each ( ) ( ){ }1,2,3, , 1 , 1 , ,j h h H= − +  , then the warp is valid (see the requirement  

item 3 in the Section 2.1) and finally ( )2 k hi W θ =    where [ ]⋅  is the rounding operator. Because of this 
limitation, the height of the matrix Φ  typically smaller than NN . The procedure for generating the warp 
matrix Φ  is described in the Algorithm 1. 

2.2.2. Relation Matrices A and Ψ 
The purpose of this phase is to define two quite similar sparse matrices; Relation Grayvalue Matrix 2N LA ×

+∈ , 
where and Relation Index Matrix 2N L×

+Ψ∈ . The matrix A  includes grayvalues of the known sinogram 
columns 1hS ±  and Ψ  consists of the corresponding row indexes. First we define the Relation Grayvalue 
Matrix A , which specifies the relations between the weight factor vector w  and the sinogram elements in the 
estimated column hS . The Equation (1.6) can be represented in a matrix form as 

,hS Aw=                                           (1.13) 

where the matrix 2N LA ×
+∈  consists of zeros and known neighbor sinogram gray values 1hS ±  multiplied by  

1
2

. However, unlike in Equation (1.6), the vector w  in Equation (1.13) consists only the weight factors that are  

included in warps and therefore the size of the vector w  is 2L . The vector 2Lw +∈  will be called in this 
study as weight vector. 

The relation matrix A  can be constructed from the row vectors ( ) 1 jKjA ×
+∈

  such that each row vector 
( )jA  consists of the grayvalues of known neighbor sinogram columns that are connected to an estimated 

sinogram element 
2 ,i hS  by the warps as described in Section 2.2 and Figure 7. Since each weight factor is 

 

 
Algorithm 1. Generation of the warp matrix Φ. 
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related to exactly one estimated sinogram element, only one non-zero value on each column is allowed. 
Therefore, the matrix A  has the form 

( )

( )

( )

( )

1

2

1

0 0

0 0 0
1 ,
2

0 0 0

0 0

N

N

A

A
A

A

A

−

 
 
 
 =  
 
 
 
 



 





    







 

                         (1.14) 

where 0  are zero row vectors. 
We also need the row indexes of the known points (indicated above as 1i  and 3i ) ordered consistently with 

the structure of the matrix A . Those values will be stored into matrix 2N L×
+Ψ∈ . The procedure for 

generating the matrices A  and Ψ  is described in Algorithm 2. 
At this point the matrices A  and Ψ  have been generated. The matrix A  defines the relation between the 

estimated sinogram column and the weight factors as described in Equation (1.13). The matrix Ψ  plays an 
important role in defining the eigenvector and rule matrices in the following Sections. 

2.2.3. Eigenvector Matrix Λ 
Having constructed the matrix A  appearing in Equation (1.13), we now turn to specifying the weight vector 
w . From the Equation (1.7) can be seen that 

w wΛ =                                      (1.15) 

where 2 2L L×
+Λ∈  such that 

( )

( )

( )

( )

1 3

1 3 3 1

3 1

, 1 , 1
, ,

, 1 , 1

  and  .i h i h
i i i i

i h i h

S S

S S
− +

+ −

Λ = Λ =  

if and only if ( )1 , 1i hS −  and ( )3 , 1i hS +  are related to the same warp, otherwise 
3 1, 0i iΛ =  and 

1 3, 0i iΛ = . 
From the Equation (1.15) can be observed that the weight vector w  is an positive eigenvector for Λ  

related to an eigenvalue of one1. The number of feasible eigenvectors is exactly L  based on the fact that for 
each positive eigenvector, say ( ) 2p Lv ∈ , there is always another eigenvector ( ) 2p Lv ∈

  such that 
( ) ( ), 0p pv v = . Therefore, vector ( )pv   has at least one negative component and it is not therefore feasible 

 

 
Algorithm 2. Generation of the matrices A and Ψ. 

 

 

1This eigenvalue problem always has a solution based on the following fact: Since in each row and column in the matrix Λ  there is exact-
ly one non-zero component and for each non-zero element in Λ  holds 

1 3 3 1, ,1i i i iΛ = Λ , the matrix Λ  is positively semi-definite and or-

thogonal and it has (only) eigenvalues of one. 
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solution. For additional information about matrices, eigenvectors and eigenvalues see Golub and Van Loan 
(1996) or Arfken and Weber (2001) [39,40]. 

Next we will declare that a feasible solution for the Equation (1.15) can also be a linear combination of the 
eigenvectors. The Eigenvector Matrix 2L LG ×

+∈  is defined as 

( ) ( ) ( )1 2 LG v v v =                                     (1.16) 

where ( ) ( ) ( )1 2 Lv v v  are all positive eigenvectors of the matrix Λ  related to eigenvalue of one as discussed 
above. Then for every vector Lα +∈  holds 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2L LG v v v v v v Gα α α   Λ = Λ Λ Λ = =                       (1.17) 

which shows that the linear combination of feasible eigenvectors fulfills the requirement (1.7). 
The vector α  is called as warp vector. Weight vector w  can now be determined from the warp vector α  

by utilizing the Eigenvector Matrix 2L LG ×
+∈  such that 

w Gα=                                         (1.18) 

The procedure for generating the matrix G  is shown in the Algorithm 3. 
By combining the Equations (1.13) and (1.18) we get 

hS AGα=                                        (1.19) 

which indicates that if we can define the warp factors α , we can also determine the grayvalues of the estimated 
sinogram column hS . To calculate the warp factors α  instead of weight factors w  is a twofold benefit; the 
requirement (1.7) is now implicitly implemented and the dimension of the original problem is reduced from 2L  
to L . 

2.2.4. Rule Matrix R 
So far we have generated matrices to determine the relations between the warp factors and the grayvalues in the 
estimated column. However, the mission for defining the grayvalues for the column hS  has not been 
accomplished since the warp factor vector α  is still unknown. Therefore, in this Section we introduce a Rule 
Matrix 1 2ˆ ˆ 2N N LR ×

+∈  ( 1N̂  and 2N̂  are number of non-zero elements in column 1hS −  and 1hS + ) to determine 
the actual values of the warp factors. 

As defined in Equation (1.8), the sum of weight factors connected to any known sinogram element , 1i hS ±  
equals to one. To fulfill this requirement, we generate a Rule Matrix R  which sums all weight factors that are 
connected to the same known sinogram element. Then 

1Rw =                                     (1.20) 

where the 1  is a vertical vector of ones with a height of 1 2
ˆ ˆN N . 

The principle of generating the Rule Matrix R  is following; for each known non-zero sinogram element a 
single row to the matrix R , say jR , is generated so that the value of each element , 1j kR =  if weight factor 

kw  is connected to the same known non-zero sinogram element, otherwise , 0j hR = . The order of the rows in 
the matrix R  is irrelevant. The pseudo-code for generating the matrix R  is described in Algorithm 4. 
 

 
Algorithm 3. Generation of the matrix G. 
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Algorithm 4. Generation of the matrix R. 

2.3. Summary of the Method 
We summarize this Section by declaring that the grayvalues of the estimated column can be solved from the 
Equation 

hS AGα=                                         (1.21) 

such that 
1RGα =                                          (1.22) 

which can be easily gained by combining Equations (1.18) and (1.20). 
Since the α  cannot be uniquely defined from the Equation 1.22, the problem is ill-posed and it calls for 

regularization. The Tikhonov regularization algorithm was chosen, since it controls simultaneously residual 
1RGα −  and the norm of the solution α  (see chapter 2.3 in Kaipio and Somersalo (2005) for further 

information [41]). The Tikhonov solution for the Equation 1.22 has a form of 

( )( ) ( )
1T T 1RG RG I RGα β
−

= +                               (1.23) 

where β +∈  is the regularization factor and 1 2ˆ ˆN N LI ×
+∈  is an identity matrix. The regularization factor can 

be based on the fact that in the non-local tomography the sum of each sinogram column is constant for 
throughout the sinogram. Therefore, the relaxation value β  can be calculated from the Equation 

( )ˆ

1arg min .h hS Sββ += −∑ ∑                                  (1.24) 

The complete Algorithm 5 for defining hS  is described in details. 
To calculate The Equation 1.23 less memory consuming, the Singular Value Decomposition (SVD) can be 

implemented for the matrix RG  such that TRG U V= Σ . Then the Equation 1.23 has a matrix-free re- 
presentation 

2 1,n
n n

n n

u v
σ

α
σ β

=
+

∑                              (1.25) 

where n  is the minimum dimension of the matrix Σ . See for example Theorem 2.5 in Kaipio and Somersalo 
(2005) for proof [41]. 

So far we have described how to interpolate a single sinogram column. To interpolate all sinogram columns 
the procedure described in Sections from 2.2 to 2.2 are repeated for each unknown column. To numerically 
compute that, two nested loops are applied; an inner loop where the neighbor columns are fixed and the location 
of the estimated sinogram column varies and an outer loop where we change the neighbor columns. Before 
starting the actual interpolation process, we have to define how many new sinogram columns are needed for the 
isotropic resolution. If we generate too few new sinogram columns, we do not gain isotropic resolution. On the 
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Algorithm 5. Generation of the Sinogram column Sh. Constant ε is a small true positive number. See also Equation 
(1.25) for alternative way to calculate ( )β

hS . 
 
other hand, too many new sinogram columns just increases the computational burden without any improvements 
to the final reconstruction quality. 

From Figure 1(c) we can see that 

( )
2sin ,

2 1 2
d

N
θ

ω
∆

=
−

                             (1.26) 

where θ∆  is the angular difference of the projection images, ω  is the distance between two frequency 
components, and N  is the number of frequency samples. For simplicity, N  is assumed to be odd and θ∆  is 
constant. 

Based on the Fourier Slice Theorem, to gain uniform resolution in the frequency domain, the distance 
between frequency components within measurement ω  should be equal to the maximum distance between 
adjacent frequency components d  as discussed by Kak and Slaney (2001) and more deeply by Natterer (1986) 
[11,42]. Therefore, by defining dω = , we can define Equation for optimal angular difference ( )optθ∆  based 
on the Equation (1.26) as 

( ) 1sin
2 1

opt

N
θ∆

=
−

                                (1.27) 

We introduce an interpolation factor 0 > > 1κ  such that ( )
0

optθ κ θ∆ = ∆  where 0θ∆  is the original angular 
difference in sinogram. Then from the Equation (1.27) we get 

0

12arcsin
1N

θ
κ

 
 ∆

=  
 

− 

                               (1.28) 

where     is the upward rounding operator. 
The angle ( )z

hθ  for interpolated column 
zhS  can therefore be calculated from the Equation 

( )
1

z
h h

zθ θ θ
κ−= + ∆                                 (1.29) 

where 1,2,3, , 1z κ= − . The detailed procedure for whole sinogram interpolation is described in the 
Algorithm 6. 

3. Results 
We used the GNU Octave program (version 3.2.3) with the imaging toolbox for numerical implementation of  
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Algorithm 6. The SINT algorithm. 

 
the SINT algorithm. The coding and executing environment was Ubuntu distribution version 10.04 including 
GNU/Linux operating system 2.6.32 and GNOME interface version 2.30.2. The computer that we employed for 
this study was a commercial 2.4 GHz dual-processor desktop computer with 8 GB of memory. 

For the numerical implementation we adopted three synthetic phantoms with a size of 128128×  pixels; 
Shepp-Logan, Dental Arc and Boxes. The standard Shepp-Logan phantom was chosen since it is widely used for 
evaluating the reconstruction image quality. The Dental Arc was calculated from full CT reconstruction of an 
artificial head (i.e. real teeth and skull embedded in an acrylic head) and therefore it can be considered as a 
reference for the clinical capability of SINT. Thirdly, the Boxes phantom consists of two isolated homogeneous 
rectangles to demonstrate a simplest possible case. 

Furthermore, these three phantoms were chosen to evaluate the capability of SINT because these phantoms 
generate essentially different kinds of sinogram representations, as shown in Figure 6. Since the Shepp-Logan 
phantom is a relatively isotropic object, it produces a smoothly varying sinogram. Secondly, the Dental Arc is a 
strongly anisotropic object, which produces a narrowing and widening sinogram with significant dynamic range 
in grayvalues. Finally, the Boxes phantom consists of two separate objects generating a branching and merging 
sinogram. 

In all cases, we took nine synthetic projection images from 25  to 185  degree angles by using the built-in 
radon function. This function calculates the sum of pixels along a line with the given angles. The interpolation 
factor was set to 32  based on Equation (1.28), which gave about 0.6  degrees angular differentiation for the 
final interpolated sinogram. We also evaluated the robustness of this method against pixel noise by adding 
Gaussian noise with variation of 5%  of the pixel grayvalue to each known sinogram element. 

As reference interpolation methods, we used linear, cubic spline and nearest neighbor -interpolation methods, 
which are the most common interpolation methods. For further information about these interpolation methods, 
see Section 4.4 in the book by the Gonzalez and Woods (2008) [30]. 

As an interpolation quality metric, we calculated relative 2L  norms against the ground truth. That is 
( ) ( )

( )

int true

2
true

2

100%
S S

S

−
∗                             (1.30) 

where ( )intS  is the interpolated sinogram and ( )trueS  is the noiseless sinogram generated from the original 
phantoms with similar angular difference than the interpolated sinograms. The results are shown in the Table 2. 

We also reconstructed the object from the interpolated data for subjective comparison of reconstruction image 
quality. The reconstruction was executed by the built-in iradon -function, which executes Filtered Back- 
Projection (FBP) reconstruction with a Ram-Lak -filter. The FBP was chosen since since it exposes the artifacts 
caused by interpolation flaws better than iterative methods like Algebraic Reconstruction Technique (ART), 
which have been considered as more suitable algorithms for the ill-posed situations (see for example 
Kolehmainen et al. (2003) or Siltanen et al. (2003)) [6,5]. For post-processing only linear grayvalue mapping 
was used to guarantee fair comparison. The authors prefer Kak and Slaney (2001) and Natterer (1986) for 
further information about the reconstruction algorithms and Gonzalez and Woods (2008) for post-processing 
[11,12,42]. The reconstruction results can be seen in Figure 2. 

OPEN ACCESS                                                                                          AM 



M. KALKE, S. SILTANEN 437 

Table 2. The relative 2L -norm of error in noiseless case and 5% noise added to projection images. The error is 
calculated as in the Equation (1.30). 

 linear spline nearest SINT 

Shepp-Logan 9.16 9.78 11.97 6.80 

Dental Arc 18.51 19.94 24.90 14.00 

Boxes 19.60 20.89 28.27 7.30 

Shepp-Logan with noise 10.01 10.89 13.00 7.09 

Dental Arc with noise 19.02 20.68 25.56 14.15 

Boxes with noise 20.41 21.94 29.03 8.06 

 

 
 

(a)                            (b)                             (c) 

 
 

(d)                            (e)                             (f) 

Figure 8. Profiles of the middle row in Shepp-Logan (top), Dental Arc (mid.) and Boxes (bottom) phantoms. The solid 
line is the profile of the original phantom, dashed is reconstruction with the SINT interpolation and dotted is the 
reconstruction with linear interpolation. Nearest neighbor and spline were not plotted because they produced very 
similar result than the linear interpolation. 

4. Discussion 
The results in this study are very preliminary. However, both qualitative and quantitative results suggest that 
SINT is significantly better than general interpolation routines when the angular data sampling is extremely 
sparse. This can be observed from the metrics as well as comparing the subjective image quality in Figures 2-4. 
See also the profiles in Figure 8.  

In this study, we did not compare the SINT method against any sinogram-dedicated or state-of-the-art interpo- 
lation method for a number of reasons. Firstly, none of them are dedicated to as sparse a situation as our pro- 
posed method. For example, in the studies by Zhe et al. (2003) and Köstler et al. (2006) about 60%  of the 
sinogram columns were interpolated, while in our study over 92%  of the sinogram columns were interpolated 
[28,29]. Similarly, in the study by Penßel et al. (2005) only 50%  of the sinogram columns were interpolated 
[30]. Secondly, part of the methods published recently are not fully documented or they require the right para- 
meter settings for optimal result. Therefore, they cannot be used as reference since we could not guarantee a fair 
comparison. Thirdly, some of the new interpolation methods are designed for specific cases like the studies by Con- 
stantino (2006 and 2009) and earlier by Tam et al. (1990) [43-45]. These studies were limited to a situation where 
only the outer boundaries of isolated objects were modeled, while we concentrated on a more generic sinogram 
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interpolation. Finally, we considered that a comparison with generally known interpolation algorithms gives a 
better understanding of the capability of this method than comparing to specific and dedicated interpolations. 

There are two reasons why generic interpolation routines fail when they are applied to sparse sinograms. First, 
the generic interpolation methods do not take advantage of the characteristics of the sinogram. Second, the 
generic interpolation methods work only when there is a strong correlation between the neighbor sinogram 
values. However, when the distance from the known column increases the correlation between sinogram 
elements decreases. This vanishing correlation generates a whirlpool-shaped pattern which can be seen in the 
lower row of Figures 2-4. To verify these findings, we calculated the absolute error as a function of distance 
from the known sinogram column, i.e.: 

( ) ( )int true

2i i iS Sε = −                               (1.31) 

where i  is the distance from the known column to the interpolated column (with index i  satisfying 
( )1 1 2i κ≥ ≥ − , where κ  is the interpolation factor as defined in Section 2.3). The influence of distance to the 

interpolation error can be seen in Figure 9, which shows that when the distance from the known sinogram 
column increases, the interpolation error of the SINT method increases significantly slower than the 
interpolation error of reference interpolation methods. The disadvantage of the SINT method is execution time, 
which in our examples was about 15 s per interpolation. The most time consuming task was to verify that all 
warps intersect non-zero elements in the known columns as described in Section 2.2. Since every combination 
of the left and right neighbor column elements has to be considered as a warp candidate, the warp tracking 
operation has to be repeated ( )2 1N H κ−  times during the whole interpolation process, where N  is height of 
the sinogram, H  is the number of original sinogram columns and κ  is the interpolation factor. In this study, 
this meant over 4 million warp tracking operations. Another time consuming operation was the calculation of the 
eigenvalues for the matrix G . In this study, we applied the Hessenberg and Schur decomposition based QR 
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Figure 9. The SINT method (solid line), linear (long dash), spline (short dash) and nearest neighbor (dotted line) 
interpolation errors as a function of the distance from the known column for all three cases; Shepp-Logan (left), 
dental-arc (mid) and boxes (right). The error is calculated as described in the Equation (1.31). 
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algorithm, which is a well-known iterative method for defining the eigenvalues without the sorting procedure as 
discussed by Golub and Van Loan (1996) [39]. Since the matrix Λ  was very sparse, positive-definite and 
orthogonal with only eigenvalues of one, the sorting procedure was irrelevant and only few iterations were 
needed. 

There are number of articles indicating that parallel computing radically decreases the execution time in the 
image processing [46-48]. Despite the fact that we used a non-optimized high-level interpreted language in this 
study, the SINT method could easily be coded for a parallel processing environment, such as clustered 
computers or general purpose graphical processing unit (GP-GPU), by using OpenCL, Cuda or other parallel 
computing coding techniques. The parallelization of the SINT method is effective since the interpolated sino- 
gram values are determined only from the original known sinogram columns, which are constant during the 
interpolation process and therefore they can be stored in fast read-only memory before executing the inter- 
polation routine. 

In this study, the SINT method has been proved to work in parallel beam imaging geometry cases in 2D, 
where the X-ray beam is perpendicular to the detector, instead of applying it to fan-beam in 2D or cone-beam in 
3D. This limitation has been implemented partly for simplifying the theory and keeping the focus on the 
interpolation method itself. However, our interest is to expand this study to fan-beam and cone-beam imaging 
geometries in the near future. Our basic strategy for the parallel to fan beam conversion is based on modifying 
the warp matrix Φ  (see Section 2.2). As illustrated by Kak and Slaney (Chapters 3.4 and 3.5) [11], the 
projection angle in fan beam imaging geometry is the sum of the projection angle and the fan angle, i.e.: 

( )ĥ h iiθ θ γ= +                                     (1.32) 

where iγ  is the fan angle, which depends on the sinogram element index. The fan angle can be calculated from 
the Equation 

arctani
q
c

γ =                                      (1.33) 

where c  is the shortest distance from X-ray source point to detector and q  is defined by Equation (1.12). 
This means that the angular value of each column h  is no longer constant, but depends on the row index of the 
sinogram element. Despite that this modification makes generation of the warp matrix Φ  more complex, the 
rest of the algorithm can be utilized per se. Finally, as shown by Kak and Slaney (Chapter 3.6), cone-beam 
geometry can be considered as a stack of fan beam sinograms and the 3D volume can be built by the 
interpolation process in the azimuthal direction. 

5. Conclusion 
Finally, very promising implication of the SINT method is in metal artifact reduction. Since metals are typically 
very radio-dense, they block a major part of the X-rays causing streak artifacts as indicated by Goldman and 
Fowlkes (2000) and Veldkamp et al. (2010) [49,50]. Since metallic areas can easily be seen in the sinogram as 
white regions, they can be identified, and the interpolation process could be used across these regions in the 
sinogram domain as indicated earlier by Ziying and Sze (1998), Yazdi and Beaulieu (2006), Meyer et al. (2009) 
or later by Abdoli et al. (2011) and Karimi et al. (2012) [15-18,51]. 
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