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Abstract 
 
Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network 
collaborate in detecting targets and transmitting their information to the base-station continuously, which 
leads to data implosion and redundancy. To reduce traffic load of the network, a data compressing based 
target tracking protocol is proposed in this work. It first incorporates a clustering based data gather method to 
group sensor nodes into clusters. Then a novel threshold technique with bounded error is proposed to exploit 
the spatial correlation of sensed data and compress the data in the same cluster. Finally, the compact data 
presentations are transmitted to the base-station for targets localization. We evaluate our approach with a 
comprehensive set of simulations. It can be concluded that the proposed method yields excellent perfor-
mance in energy savings and tracking quality. 
 
Keywords: Wireless Sensor Networks, Target tracking, Compressing 

1. Introduction 
 
Target tracking is an important problem of wireless sen-
sor networks (WSNs). It has been applied in various areas 
such as disaster predication, emergency response, battle-
field surveillance, home and office control, etc. Many 
target tracking protocols have been proposed to support 
long-term surveillance by using large scale WSNs [1-5].  

In the applications of target tracking with WSNs, the 
users are often interested in observing where the target is 
at each time interval and figuring its trajectory. In such 
cases, continuous information reporting of the target is 
required. In continuous surveillance, sensor nodes in the 
network collaborate in detecting the target, measuring 
the signal the target emitting and transmitting measure-
ments to the base-station for further processing. However, 
the limits of WSNs including limited bandwidth, pro- 
cessing capabilities and energy supply challenge the re-
search of target tracking. 

To minimize the volume of information transmission, 
we can process the information of targets in a distributed 
way in the network and transmit localization results to 
the base-station. In-network localization is an effective 
idea to reduce the volume of transmitted data, but is ra-
ther infeasible for multiple targets tracking that need 
high complexity computation, such as Kalman filter, 

Particle filter and Bayesian transforms in targets decom-
position. The limited computation capacity of sensor 
nodes may not be sufficient to perform complex opera-
tions at nodes.  

Considering the scenarios of target tracking, sensor 
nodes generate sensed data of targets by measuring the 
signal they emit. Most physical signals decay with dis-
tance, thus readings of the sensor nodes have similar 
pattern if their distances to a target are approximately 
same. In other words, sensed data for targets usually ex-
hibits a large degree of redundancy. Approximation is an 
efficient mean of data reduction, in which sensed data 
with similar patterns is replaced by an approximate value, 
and only the approximate values are transmitted to the 
base-station. Approximation can reduce the amount of 
sensed data that need to be transmitted with allowable 
accuracy scarifying. 

In this paper, we present a data compressing based 
target tracking protocol, which incorporates data ap-
proximation algorithm in the procedure of targets track-
ing. The characteristic of sensed data over sensor nodes 
surrounding interested targets is exploited, replaced as a 
series of approximate values. Compact descriptions of 
these readings are transmitted to the base-station, where 
targets location is implemented on the compact descrip-
tions directly. Given an error bound, we try to compress 
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readings for the same target maximally by grouping the 
original data and approximating them falls within the 
error bound around estimated values. The proposed ap-
proach can release the traffic load and reduce energy 
consumption for data transmission efficiently. However, 
this often comes at the price of loss in tracking quality, 
which is equivalent to a loss in data precision and locali-
zation accuracy. We analyze the error of tracking results 
and discuss the determinations of parameters in the paper. 
In addition, the proposed compressing provides a low 
overhead, which makes it practical for overhead sensitive 
applications with WSNs. 

The contributions of this paper are as follows: 
 We introduce a new approximation scheme that 

makes full use of correlations among data of mul-
tiple sensor nodes. It exploits the spatial correlation 
of targets information to implement data reduction. 

 We incorporate the idea of data reduction into tar-
get tracking, which shrinks the volume of trans-
mitted data efficiently with guarantee of tracking 
quality. It is an efficient solution for prolonged 
network lifetime. 

 We explore the trade-off between energy savings 
and tracking quality. We aim to design a tracking 
system in an energy-efficient manner at the price of 
allowable accuracy sacrificing. 

 We provide an extensive experiments and analysis 
of our framework using a simulated sensor network. 
Experimental results show that our approach achie- 
ves well performance in terms of tracking quality 
and energy conservation. 

The remainder of this paper is organized as follows. 
Related work is shown in Section 2. We give the network 
model in Section 3. A data compressing based tracking 
protocol is detailed in Section 4. We analyze the perfor-
mance of proposed technique in Section 5. Section 6 
presents detailed simulations. Finally, we conclude this 
paper in Section 7. 
 
2. Related Work 
 
In recent years, many research works have been provided 
in the area of target tracking using WSNs. The important 
issues studied mainly include energy efficient tracking 
and accurate tracking. 

The authors in [6-9] adopt binary sensor model to 
track targets. The output of each binary sensor is only 
one bit (0 or 1). The binary sensor nodes based tracking 
can conserve the energy for data transmissions efficiently. 
However, this kind of nodes does not have the capacity 
of calculation, and any loss of packets may affect the 
tracking accuracy evidently. Some works address the 
problem of energy efficiency by reducing the number of 

nodes participating in working. In [10], a distributed 
tracking algorithm using dynamic conveying tree struc-
ture is presented, which optimizes the problem of target 
tracking by building a convoy tree sequence with high 
tree coverage and low energy consumption. The work of 
[11] proposes an information-driven tracking approach 
by deciding the collaboration of sensor nodes consider-
ing the constraints of information and resource consump-
tion.  

The authors in [2] propose a minimal contour-tracking 
model to minimize the number of nodes involved in 
tracking. It searches for the minimal tracking area based 
on the vehicular kinematics to minimize working nodes. 
In [12], the problem of tracking mobile nodes is ad-
dressed by measuring the Doppler shifts of the transmit-
ted signal. Moreover, the extended Kalman filter is 
adopted to remove the effects of the measurement errors 
in sensor networks with uncertainty. The distributed al-
gorithms for in-network tracking and range queries are 
proposed in [13], they use differential one-form in the 
application of target tracking to search for a given identi-
fiable target with low time complexity. The proposed 
approaches are also flexible to network changes and 
node mobility.  

The above tracking techniques focus on reducing 
transmission amounts or the number of nodes participat-
ing in work.  

To further reduce energy consumption in the long- 
term surveillance, nodes scheduling is applied in moving 
target tracking systems [4,14,15]. A real-time target 
tracking system with WSNs is designed in [3,4], which 
adopts an energy management scheme to make sensor 
nodes rotate in active and sleep state to conserve energy 
of the network. Moreover, some scheduling and wake-up 
topics are analyzed. In [14], an optimal node sleep sche-
duling protocol for rare-event detection is proposed. A 
deterministically rotating sensory coverage with con-
strains of detection delay is developed. The authors of 
[15] study the problem of network deployment and de-
sign an efficient scheduling protocol. It wakes up and 
shuts down sensor nodes with certain spatial and tem-
poral preciseness.  

These existing techniques mainly focus on the tracking 
and searching of a single target, it is not adaptable to 
multiple targets tracking. The authors of [2] study fault 
tolerant tracking. The Gaussian mixture model is intro-
duced to capture the characteristics of the target signal. 
In addition, a temporally adaptive variant of the approach 
is proposed to track dynamic multiple targets under 
changing environments, with noisy considering. While 
the focus of [2] is accurately tracking moving targets 
with noise considering. In this paper, we propose a real 
time target tracking protocol with energy savings and 
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tracking quality guarantee. We seek to exploit the re-
dundancy of tracking information, compress the sensed 
data, and transmit the compressed data to the based-station. 
Our method not only reduces data transmission to the 
base-station, but also implements localization in com-
pressed data structure directly. 
 
3. Network Model 
 
This section describes the network model used in this 
paper. To simplify the presentation, we give the network 
model based on following assumptions.  
 A monitored area is covered by a large number of 

homogeneous sensor nodes with redundant density. 
Each node gets its own location via GPS or a cer-
tain localization technique. 

 All sensor nodes in the monitoring area have the 
same sensing range, denoted as R. The sensing area 
of each sensor node is a disk centered at the node 
with radius R. 

 Nodes in the network are organized as an adaptive 
clustering hierarchy [16]. Under the clustering 
based routing protocol, sensed data is routed to the 
destination.  

Figure 1 gives an example of the network model. 
There are one cluster head node and multiple member 
nodes in each cluster. When a member node detects the 
target, it transmits sensed data to its cluster head. The 
cluster head node processes packets from its member 
nodes to obtain a compact data structure, which is trans-
mitted the base-station. 
 
4. Compressing Based Target Tracking  

Protocol 
 
In this section, we first illustrate the general framework of 
data compressing based target tracking protocol (DCTTP), 
then present its working procedure in details. 
 
4.1. General Framework of DCTTP 
 
Target tracking is a procedure that nodes in the network 
collaborating in detecting and locating the given targets. 
When targets show up in a local area, nodes surrounding 
them (targets are insider their sensing range) detect the 
targets via measuring the signal they emit, generate 
sensed data and send it to cluster head nodes. After re-
ceiving packets from member nodes, the cluster heads 
suppress these data maximally with guarantee of tracking 
quality, and then transmit a compact data description to 
the based station for further processing to locate targets. 
DCTTP can be divided into four phases: 1) data collec-
tion, 2) data compressing, 3) data transmission and 4)  

 

Figure 1. An example of the network model. 
 
targets localization. 
 
4.2. Data Collection 
 
Sensor nodes in the network are organized as a hierarchy 
of clusters. The entire network is divided into multiple 
clusters, and there are one cluster head node and multiple 
member nodes in each cluster. Each cluster head keeps a 
list of its member nodes. As soon as a target appears in a 
local area, all nodes receive the signal emitted by the 
target generate sensed data, then transmit it to their clus-
ter head nodes, respectively. 

When a cluster head receives the packet from a mem-
ber node, it fires a waiting timer Tw. Before reporting 
sensed data to the base-station, it waits for Tw time to 
collect packets from member nodes that have sent mes-
sages to it. This timer scheme can release packets lost 
resulted by data collision in a certain degree. A larger Tw 
would allow larger latency in collecting sensed data and 
obtaining tracking results for the base-station. On the 
other hand, a larger Tw gives the cluster heads more 
chances to collect enough data to locate targets with cer-
tain precision. Thus, the trade-off exists between tracking 
latency and precision. We thus allow applications to set 
an upper bound for this delay. In other words, applica-
tions can choose the trade-off adaptively. 

After Tw time, cluster heads begin to process data re-
ceived from member nodes. 
 
4.3. Data Compressing  
 
We assumed that a cluster head has m members, which 
have been sorted as node id ascending in member list 
stored over the cluster head and base-station, respective-
ly. The data received from member nodes is represented 
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as       1 1, , , , , , ,j j m mNX n X n X n X   , where nj 
is the node id and j is the serial number of node nj in 
member list,  1,j m . Xj is a d-dimensional vector 
 1 , , , ,j kj djx x x  , where d is the number of targets in 
the monitoring area and xkj is the reading of target k, 

 1,k d . If the cluster head does not receive data of 
target k from node nj, it sets 1kjx  . 

The cluster head compresses data from its member 
nodes as a compact structure with three entries: 
 mean: it defines the mean value of data from all 

member nodes. 
 bitmap: it is a map indicating if the sensed data of a 

sensor node can be approximated to mean within a 
given compressing error bound  . The ith bit (i = 
1, 2, ) is used to indicate if the data from ith node 
can be approximated by mean. If it is, set the value 
of bit i 1, else keep it as 0. For example, a cluster 
has four member nodes and their sensed data is 30, 
32, 30, 34. Their expected value (mean) is 31.5. If 
the given compressing error is 2, then bitmap is 1 
(0001 in binary). As the first three data falls with 
  around mean, they can be replaced by mean, 
and the last value falls outside   of mean, the 4th 
bit of bitmap is updated to 1. 

 variance: it is an active array to store the variance 
of data when it falls more than the specified error 
constraint   away from mean. 

After time Tw, the cluster head initializes bitmap as 0. 
To simplify the presentation, we use b1b2  bm to 
represent the bits of bitmap, where bi{0,1}, it is the 
value of ith bit of bitmap. 

Since the compressing mechanism is applied indepen-
dently for each target, we only consider the sensed data 
of target k for simplicity. First, the expected value of all 
data in NX is computed, and then the cluster head vali-
dates whether the data in NX can be replaced by mean 
with guarantee of compressing error. For each data k

jx , 
if it is –1, it means that the data of node nj is not received, 
then set bi 1 and write 0 to variance. Otherwise, its va-
riance of mean 2

kj is calculated. If 2
kj  , the cluster 

head replaces k
jx  by mean. Otherwise, set bi 1 and write 

kj  to variance sequentially. We observe that the num-
ber of 1 in bitmap shows the number the values have 
been written to variance. 

Algorithm 1 describes the compressing algorithm. The 
cluster head computes the expected value of all received 
data for the same target and assigns it to mean. For each 
data kjx , if it is within   of mean, then it can be fil-
tered out. Otherwise, the jth bit of bitmap is set 1, 
meanwhile the variance of k

jx and  is written to va-
riance [getIndex(j)]. getIndex() is a function returns the 
corresponding subscript of kj  in variance by counting 
the number of 1 in b1bm. 

Algorithm 1: Compressing algorithm  

Input: 1) the set of data NX = {(n1, X1),…, (nj, Xj),…, (nm, Xm)} 

2) compressing error bound   

Output: a compact data description  

//initialization 

1:  set bitmap = 0 

2:  computer mean of all received data 

//main loop  

3:  for each data k
jx  in NX 

4:    if (
kjx == -1) 

5:       set bj to 1 

6:      append 0 to variance[ getIndex(j)] 

7:    else  

8:      compute its variance of mean 2

kj  

9:       if ( 2

kj  ) 

10:         set bi to 1      

11:         append 
kj to variance[getIndex(j)] 

12:       end if 

13:    end if 

14:   end for 

15: return a compact structure <mean, bitmap, variance> 

 
Now, we analyze the complexity of Algorithm 1. As 

the time complexity of function getIndex() is decided by 
the order of k

jx  in NX. For the best case, it runs in O(1) 
time, while for the worst case, it runs in O(m), thus the 
average time complexity of function getIndex() is O(m/2). 
In Algorithm 1, computing the expected value of all re-
ceived data requires O(m) time, and sentences 3 to 14 run 
in O(m/2 + m × m/2) time, so the time complexity of the 
algorithm is O(m2/4) . 
 
4.4. Data Transmission 
 
After processing all packets from member nodes, the 
cluster head obtains a series of compact representation of 
sensed data for each target, which are transmitted to the 
base station. 
 
4.5. Targets Localization 
 
When the base-station has received the compressed data 
from a cluster head, it begins to locate targets. Most ex-
isting localizations algorithms can be incorporated with 
our protocol. Without generality, we adopt Centroid lo-
calization algorithm, which is attractive for its simplicity. 
Centroid localization algorithm computes the average 
location of all sensor nodes detecting the target as the 
location of the target. While its quality may be not good 
enough as it assigns equal weight to each node without 
considering its distance to the target. Instead of treating 
all nodes equally, we compute the weighted average of 
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participant nodes’ locations. Sensor nodes are weighted 
under its distance from the target. Thus, a sensor close to 
the target will be assigned a higher value. 

Upon receiving a compact data description Gk, target 
localization is implemented to locate target k. As the 
base-station keeps the member list of each cluster, we 
can scan Gk.bitmap to identify if a node in the list has 
contributed sensed data of target k, moreover if its value 
has been replaced by Gk.mean.  

Algorithm 2 presents the algorithm of targets localiza-
tion on Gk, the algorithm is implemented on the com-
pressed data directly. F(.) is a function converting the 
signal strength a sensor samples into the distance be-
tween the sensor and moving target emitting signal. We  

use 
 
1

d

iF x
 to denote the weight of node ni, where xi is  

the sensed data generated by ni, exponent d is typically 
set as 1. Algorithm 2 runs in O(m) time. 
 

Algorithm 2. Target localization algorithm  

Input: 1) the member list N = {n1, n2,…} 2) Gk  

Output: (xk, yk) 

//initialization 

1: set count = 0, index = -1, w = 0, xk = 0, yk = 0 

//main loop  

2: for each node nj in member list 

scan Gk.bitmap 

3:    if ith bit of Gk.bitmap is 0 

4:      count++ 

5:      
 

.

.
i

dk k

k

n x
x x

F G mean
        

7:      
 

.

.
i

dk k

k

n y
y y

F G mean
   

 //( ni.x, ni.y) is the location coordinate of ni 

8:        
 

1

.
d

k

w w
F G mean

    

9:     else 

10:      index++ 

11:      if variance[index]!=0 

12:         
  

.

.var
i

dk k

k

n x
x x

F mea G ance index
 


 

13:         
  

.

.var
i

dk k

k

n y
y y

F mea G ance index
 


   

14:         
  

1

.var
d

k

w w
F mea G ance index

 


 

15:     end if 

     end if 

16: end for 

17: output ( ,k kx y

w w
) 

5. Analysis of DCTTP 
 
In this section, we analyze the characteristic of DCTTP, 
and further discuss the trade-off between tracking quality 
and energy conservation.  

We first define two metrics to measure the perfor-
mance of DCTTP. 

Definition 1 (Compressing error): Compressing error 
is the error between the real sample and its estimated 
value.  

Definition 2 (Compression ratio): Compression ratio 
is the size of compact data description over the size of 
original data. 

Let   denote the density of the network. As sensor 
nodes are uniformly and independently distributed in the 
sensing area, the number of sensor nodes located in any 
subarea s, denoted as N(s), follows Possion distribution 
with mean of s , where 

  
 

!

i
s

s
iP N s i e




            (1) 

When a moving target shows up in a local area, only 
nodes of which sensing disk cover the target generate 
sensed data. These nodes locate in the disk centered at 
the location of the moving target with radius R, then the 
number of nodes that can detect the target can be 
represented as: 

  
 2

2

!

i
R

R
iP N s i e




          (2) 

Thus, the number of nodes that can detect the target is 
   2P N s i R  . 

Definition 3 (Detecting area): Detecting area is a local 
area, nodes in which can detect the target. It is a disk 
centered at the target with radius R. 

Definition 4 (Dividing disk) Dividing disk is a disk 
centered at the target with radius r, denoted as DDr. 

shortly. 
Definition 5 (Detecting cirque) Detecting cirque is a 

subarea formed by dividing disk  1iDD   excluding 
dividing disk iDD  , denoted as  1i iDC   . 

According to the design of DCTTP, only the sensed 
data that fluctuates over their expected value can be re-
placed by mean. We divide the detecting area into a sub-
set of areas by a serial of dividing disks with radius  

, 2 , ,
R  

 
  

 , respectively, as shown in Figure 2. 

Nodes in the same subarea trend to have similar sensed 
data, that’s most of them fluctuate over their expected 
values, compressing these data together can obtain better 
compressing ratio.  

In the area of  1i iDC   , there are   22 1i R     
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Figure 2. The figure of the sensing area division. 
 
member nodes. Assume that a units are needed to 
represent the sensed data and node id, thus, a cluster 

head node need transmit   22 2 1a i R    units data to 

report the readings of one target. While with DCTTP, the 
cluster head transmits a compact data description of 

     2 22 1 1 2 1a i R p i R a         units, where 

p is the percentage of the filtered data and 

    21 2 1p i R    is the number of values written to 

variance. a units are used to represent mean and 

  22 1i R    units are used to represent bitmap, re-

spectively. 
The compression ratio of data in  1i iDC   , denoted 

as  1i iCR    can be defined as: 

 
     

 

2 2

1 2

2 1 1 2 1

2 2 1  i i

a i R p i R a
CR

a i R

   
  

    



 

(3) 

Setting a = 64, then we have: 

   1 2

1 1 16

64 2 1i i

p
CR

i R  


  


      (4) 

Thus, the compression ratio of data in the whole de-
tecting area is: 

 

 

2
1

2

1 1 16

64 2 1

16ln
33 32

64 1

R

whole
i

p
CR

i R

R
p R

R



 


  

 
  



 
     

 
         


    (5) 

In formula (5), parameters R and p are fixed when the 
network is being deployed. It is clearly that   and p are 
two key factors decide the compressing ratio, further 
energy conservation of the network. 

In theory, sensed data of nodes in the same detecting 
cirque can be replaced by their expected value with va-

riances less than   However, measurement errors and 
data noisy make variances of parts data beyond  , these 
data has to be stored into the item variance of the com-
pact structures. 

As the measurement error and data noisy at a certain 
node usually follow Gaussian distribution [17]. As p is 
decided by the distribution of data and  , thus com-
pressing ratio is in inverse proportion to the given com-
pressing error bound  . That’s energy conservation is at 
the cost of data quality sacrificing. We can choose ap-
propriate compressing error according to the moving 
mode of targets and experiences to obtain optimal per-
formance of the system. 
 
6. Experiments and Evaluation 
 
In this section, we report our simulation results under 
two scenarios: with data noisy and without noisy. In each 
case, we report the performance of tracking quality and 
energy conservation and our analysis. 

In the simulations, sensors nodes are deployed in a re-
gion of 1000 × 1000 unit field. The locations of nodes 
are known. All sensor nodes have the same sensing ra-
dius. Three electronic cars are simulated as the targets, 
which move along any velocity. For the case with noisy, 
we set the mean and variance of Gaussian noise at each 
sensor node to 1.  

We first define two metrics to measure the perfor-
mance of DCTTP in terms of tracking quality and energy 
conservation, that’s tracking error and energy savings 
ratio. 

Tracking error: It is the average distance between the 
real trace of the moving target and its estimated trace. 

Energy savings ratio: It is defined as the ratio of 
energy savings of DCTTP over the normal tracking sys-
tem without energy conservation mechanisms. 

In each scenario, we explore the impact of some key 
system configurations on the system performance, such 
as network density, sensing range and compressing error. 
 
6.1. Tracking Error 
 
Figure 3 shows the results of tracking error for varying 
network density. Fixing sensing range and compressing 
error, the number of sensor nodes is ranging from 100 to 
1000, and the corresponding density varies from 104 to 
103. As the increasing of network density, tracking error 
decreases obviously. This is because when the network 
density is higher, there are more sensor nodes participat-
ing in locating the targets, which generates more sensed 
data to be involved in locating multiple targets. The in-
fluence of network density on data with noisy consider-
ing is more serious. As more sensed data helps to fix the 
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error of data, which contributes to data that are more 
precise. 

Figure 4 shows the influence of sensing range on 
tracking error. We observe that sensing range is one of 
key factors that influence tracking quality. As the raising 
of sensing range, more sensor nodes can detect the tar-
gets, which provides better tracking performance. It is 
observed that tracking error decrease slightly as the in-
crease of compressing error, especially for data with 
noisy. From the results, we can conclude that: 1) com-
pressing data does not bring obvious tracking error; 2) our 
compressing technique can efficient alleviate the impact 
of data noisy on tracking quality. 

Figure 5 presents the influence of compressing ratio 
on tracking error. It is clear that tracking error is in in-
verse proportion to compressing ratio, while when com-
pressing ratio reaches 50%, the change of tracking error 
approaches to constant. 

 

 

Figure 3. Impact of network density on tracking error. 
 

 

Figure 4. Impact of sensing range on tracking error. 

 

Figure 5. Impact of compressing ratio on tracking error. 
 
6.2. Energy Savings Ratio 
 
Figure 6 depicts the impact of network density on ener-
gy savings. Clearly, applying data compressing algo-
rithm conserves much energy. As the increase of network 
density, energy savings enhances significantly. For in-
creasing network density leads to more sensed data to be 
compressed, more energy of packets transmission is 
saved. 

From Figure 7, we observe that energy saving increases 
monotonically with the raise of sensing range. The rea-
son is that the increase of sensing range leads to more 
sensor nodes detecting the target, and more information 
transmitted to the base station, thus, the advantage of 
data compressing is more remarkable.  

Figure 8 plots the influence of compressing ratio on 
energy savings. It is shown that the degree of data com-
pressing also has influences on energy savings, especially  

 

 

Figure 6. Impact of network density on energy saving ratio. 
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Figure 7. Impact of sensing range on energy savings ratio. 
 

 

Figure 8. Impact of compressing ratio on energy savings 
ratio. 
 
for data with noisy. 
 
7. Conclusions 
 
In this paper, we concentrate on energy efficient tracking, 
dedicated to conserve the whole network energy, as well 
as maintain high tracking quality. We have proposed a 
data compressing scheme to reduce information trans-
mission of targets. In addition, we incorporate the pro-
posed data compressing technique with tracking protocol 
and optimize it to obtain trade-off between energy con-
servation and tracking quality. 

We implement a set of simulations to validate our ap-
proach. The results demonstrate the effectiveness of 
proposed protocol and illustrate influences of several 
parameters on the system. As our future work, we will 
implement our tracking algorithm on real sensor nodes. 
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