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ABSTRACT 
The use of [1] Box-Cox power transformation in regression analysis is now common; in the last two decades 
there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved 
deletion of influential data cases. The pioneer work of [2] studied local influence on constant variance perturba-
tion in the Box-Cox unbiased regression linear mode. Tsai and Wu [3] analyzed local influence method of [2] to 
assess the effect of the case-weights perturbation on the transformation-power estimator in the Box-Cox unbi-
ased regression linear model. Many authors noted that the influential observations on the biased estimators are 
different from the unbiased estimators. In this paper I describe a diagnostic method for assessing the local influ-
ence on the constant variance perturbation on the transformation in the Box-Cox biased ridge regression linear 
model. Two real macroeconomic data sets are used to illustrate the methodologies. 
 
KEYWORDS 
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1. Introduction 
Deletion diagnostics for assessing the influential cases on the power transformation parameter estimator in the 
Box-Cox linear unbiased regression model has been intensively studied in the last two and half decades (see 
[4-6]). Rather than deleting the influential case, [7] proposed a general method for assessing the local influence 
of minor perturbations of a statistical model. Lawrance [2] adapted Cook’s approach to obtain a diagnostic that 
can be used to examine the local changes of the transformation-parameter estimator caused by small perturba- 
tions on a constant-variance assumption. Tsai and Wu [8] analyzed the case-deletion model directly and obtain a 
more accurate and reliable transformation power estimator in weighted regression model. Also, Tsai and Wu [3] 
applied a case-weights perturbation scheme to obtain an alternative local influence diagnostic that takes into ac- 
count the perturbation effects of the Jacobian.  

In the literature, many authors noted that the influential observations on ridge type estimators are different 
from the corresponding least squares estimate (see [9]). The aim of this paper is to apply local influence of mi- 
nor perturbation of constant variance to biased ridge regression Box-Cox power transformation model. The 
structure of this paper is as follows. Section 2 establishes transformation for ridge regression model for dealing 
with the local influence on the power transformation estimator. Section 3 gives calculation of the maximum lo- 
cal influence for ridge estimator. In Section 4 two real macroeconomic data sets are used to illustrate the metho- 
dologies. In the last section conclusions are given. 
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2. Transformation for Ridge Regression Model 
A parametric family of transformations takes a column of a response vector y into ( )λy , where λ is a scalar 
transformation parameter. It is assumed to be a value λ0 of λ, ensuring that ( )0λy  follows a standard regression 
model, having the design matrix X. Thus, it is assumed that 

( )0
R R

λ = +y Xβ ε                                  (1) 

where ( ) 1T Tˆ
R k

−
= +β X X I X y  is ridge regression estimator (RRE) proposed by Hoerl and Kennard (see. 

[10,11]), X is a known full rank an n p×  matrix and Rε  an 1n×  random error vector of RRE, it has a mul- 
tivariate normal distribution with ( ) 0RE =ε  and ( ) 2Var R σ=ε I  here I is an identity matrix. The Equation 
(1) was originally proposed by Box-Cox [1]. If the Jacobian of the transformation denoted from y  to ( )y λ  by 

( ) ,J λ  defined as ( ) ( ) ( )
1
nz y Jλ λ λ=  and ( )z λ  is the natural scaling of ( )y λ  suggested by the likelihood. 

Local Influence Approach for Power Transformation on RRE 
For assessing the local influence on the power transformation estimator Lawrance [2] has obtained a diagnostic 
by perturbing the constant variance assumption.  

First, here it is to be assumed that the variance of under perturbation is 

( )( ) 2 1Var ,R ω σ −=ε W                             (2) 

where ( )diag=W ω  is a diagonal matrix with diagonal elements of ( )T
1, , .nω ω= ω  Let 0 ,a= + ω ω  

where ω0 = 1, ω denotes the an 1n×  vector of case-weights for the regression, 1a R∈  and   is a fixed non- 
zero vector of unit length in Rq. 

The distribution function for RRE linear model random error is 

( ) ( )2 T
22

1 1; , , exp
22π

R R Rf Y Jβ σ λ λ
σσ

 = −  
ε ε ,                 (3) 

where ( )J λ  Jacobian of the transformation. 
The perturbation of the distribution in Equation (3) becomes 

( ) ( ) ( )( ) ( )( ) ( )2

1 T
2

2; , , 2

1 1exp
22πR

R RY
f Jλ λ

β σ λ
ω λ

σσ
 = − − −  

W Y Xβ W Y Xβ          (4) 

The corresponding log-likelihood function for the untransformed observation y is 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
T2 2

2
1

1 1; , , log 2π log log log .
2 2 2 2

n

R i R R
i

n nL Y Jλ λβ σ λ σ ω λ
σ=

   = − − + − − − +   ∑ y Xβ W y Xβ

(5) 
Thus the profile likelihood function for λ  is obtained when maximizing RRE Rβ  and 2σ  for given data 

set y.  
The maximum likelihood estimator (MLE) of Rβ  is ( ) 1T Tˆ . R k

−
= +β X X I X y  Also, the MLE of 2σ  is 

2σ̂  this has to be estimated from the Equation (5) as 

( ) ( )
2 2

T
2 2 4

1

; , , 1 0
2 2 i

nR
i i R

i

L Y n y xλ
β σ λ

ω β
σ σ σ =

∂
= − + − =

∂ ∑  

( ) ( )T2

1

1 ˆ ˆˆ .R Rn
λ λ

ω
σ

=
   = − −   y Xβ y Xβ  

But, 

( ) ( )( ) ( )1T Tˆ ,R Rk λ λ−
= + =Xβ X X X I X y H y  

where the ( ) 1T T
R k

−
= +H X X X I X  is “hat” matrix of RRE. Therefore, the estimator of 2σ̂  is 

( ) ( ) ( ) ( ) ( ) [ ] [ ] ( )T T2 T1 1ˆ .R R R Rn n
λ λ λ λ λ λσ    = − − = − −   y H y y H y y I H I H y  
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From the above results the likelihood function for transformed observation y with perturbation can be written 
as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

TT

1

T

1

1

1log 2π log log log log ,
2 2 2 2 2

1log 2π log log log log
2 2 2 2 2

1log 2π log log , log log
2 2 2 2 2

n

R R i
i

n

i
i

n

i
i

n n n nL n J

n n n nn J

n n n nn J

λ λ
ω

λ λ

λ ω ω ω λ

ω ω λ

λ ω ω λ

=

=

=

 = − + − − − + − +        

 = − + − + − + 

= − + − + − +  

∑

∑

∑

z I H I H z

z B z

A

(6) 

where ( ) ( ) ( )T
R Rω ω ω= − −      B I H I H  is symmetric and ( ) ( ) ( ) ( )T, .λ λλ ω ω=A z B z  

The resulting MLE ω̂λ  of λ  can be found by minimizing Equation (6). Furthermore, the estimator ω̂λ  can 
be regarded as a surface with Euclidean coordinates ω . A curve over this surface is mapped from a straight-line 
path that passes through the point of the null perturbation. The direction and location of this path are specified 
by 1 alω = +  passing through the null point, where the quantity “a” measures distance along the line and 

( )1, , nl l l=   are the direction cosines of Lawrance’s local influence diagnostic. 
The partial differentiation of Equation (6) with respect to λ  is then the result will be arrived as, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

T TT
T,

0
L λ λ λ λ

λ λωλ λ ω ω
ω ω

λ λ λ λ λ
   ∂ ∂ ∂ ∂ ∂

= = = + =      ∂ ∂ ∂ ∂ ∂   

A z B z z zB z B z  

But it is known that ( ) ( )T ,ω ω=B B  therefore, the above equation becomes 
( ) ( ) ( )T

0λ λω ′ = z B z                                     (7) 

where 
( )

( )
λ

λ

λ
 ∂ ′=  ∂ 

z z  is first derivative of ( ) .λz  The transpose of Equation (7) can be written as 

( ) ( ) ( )T
0.λ λω  ′ = z B z                                   (8) 

The local influence diagnostic is the slope of the curve on the ω̂λ  surface at the point of null perturbation, at 
0.a =  If it is 0 small perturbations have no effect in the path points to the data cases being perturbed; the 

weighted set of cases that are most sensitive to local perturbations are thus specified by the direction that makes 
the path slope, 

( ) ( ) 1

ˆ
ˆ ˆ, ,al

a
a

a
λ

λ λ +

∂
=

∂
                               (9) 

the greatest at the null point a = 0. This is the key idea in the local-influence approach. It is not principally the 
value of the slope, but the direction of maximum slope that is important and that forms the main diagnostic.  

This description is the basis of Cook’s presentation when just one parameter is being considered; there is then 
no need to use a likelihood-displacement measure of the distance between ω̂λ  and ˆ.λ  This also removes the  

need to consider curvature of the likelihood displacement, and avoids a loss of sign in connection with 
( )ˆ a
a

λ∂
∂

 

at a = 0. 

3. Calculation of the Direction of Maximum Local Influence in RRE 
In this section it is tried to develop a method which is the direction that maximizes the slope of ( )ˆ aλ  at the 
origin of no perturbation is obtained.  

Consider 
( )ˆ a
a

λ∂
∂

 for a = 0 in an arbitrary direction .l  Let W in Equation (2) have diagonal entries  

( )1 alω = +  and be denoted by ( )aW  for fixed ;l  denote ( )ωB  with ( )1 alω = +  by ( )aB . Let L de- 
note the diagonal matrix with diagonal entries ( )1, , nl l l=  . The maximum likelihood estimator ( )ˆ aλ  satis- 
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fies Equation (8) where each term is a function of a . Hence, differentiate the Equation (8) with respect to a  
first differentiating with respect to ( )ˆ aλ  when dealing with the variables ( )λZ  and ( ) .λ′Z  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

T Tˆ ˆ
0

a a a a
a a

a a a a

λ λ

λ λ λ λ λ λλ λ  ′∂ ∂ ∂ ∂       ′ ′ ′ ′ ′′= + + =     ∂ ∂ ∂ ∂

z B z B
z B z z z z B z  

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

T

ˆ
a

a a
a a a

λ λ

λ λ λ λ

λ
∂  ′∂   ∂= −

∂   ′ ′ ′ ′′+   

B
z z

z B z z B z
                    (10) 

where ( )λ′′z  is second order derivative of ( )λz  with respect to ,λ  and can be called the second constructed 
variable; all ( )λz  terms in Equation (10) are used at ( )ˆ .aλ λ=  

Let consider ( ) ( ) ( )T
R Ra a a= − −      B I H I H ; where ( ) 1T T

R k
−

= +H X X X I X .  

Therefore, the perturbation matrix ( )aB  becomes 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

1 1
1T T2 2

1 1
1 1T T T T2 2

2

2

.

R R R R Ra a a a a a

a a k a

a a k a a k a

−

− −

= − − = − +      

 = − + 

   + + +   

B I H I H I H H H

I W X X W X I X W

W X X W X I X W X X W X I X W

 

Now, partial differentiate ( )aB  with respect to ,a  then it gives 

( ) 2 2 2 2

0

1 13 ,
2 2

a

a
a

=

∂
= − + − + − − +

∂
B

LA ALA AL LA ALA A LA A L  

where ( ) 1T Tk
−

= +A X X X I X . 

Let ( )
0a

a
a

=

∂
=

∂
B

M  is a square matrix hence, the Equation (10) becomes 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

T
0

ˆ

a

a
a a a

λ λ

λ λ λ λ

λ

=

  ′−∂  =
∂   ′ ′ ′ ′′+   

z Mz

z B z z B z
                    (11) 

The direction maxl  of maximum slope is now determined by the Equation (11) and it gives the following re- 
sults. 

The matrix M can be written as =M ELF , where E and F are symmetric matrices. Therefore, 

( ) ( ) ( ) ( ) ( ){ } ( ){ }T T T
.λ λ λ λ λ λ     ′ ′ ′− = =     z Mz z ELFz Ez L Fz  

If the terms ( )λ 
 Ez  and ( )λ ′ Fz  denoted by t  and ′t  containing ( )1, , nt t  and ( )1, , nt t′ ′

 , respec- 
tively. Therefore, the Equation (11) becomes 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1
T

0

ˆ
n

j j j
j

a

t t l
a

a a aλ λ λ λ

λ =

=

′−
∂

=
∂   ′ ′ ′ ′′+   

∑

z B z z B z
                     (12) 

Therefore, the direction of maxl  maximum slope is now easily determined from the Equation (12) that is 

( )max
al
a

λ =  where ( ) ( )( )a λ λ′= Ez Fz  and yields the results for i-th maxi
l  is 

( )
1
22

max
1

, 1, , .
i

n

i i j j
j

l t t t t i n
=

 
′ ′= = 
 
∑                            (13) 
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Finally, consider the slope of ( )ˆ aλ  at a = 0 when just the i-th variance is perturbed; denoting by iλ′ , gives 

( ) ( ) ( ) ( ) ( ) ( )Tˆ , 1, , .i i it t a a i nλ λ λ λλ   ′ ′ ′ ′ ′ ′′= − + =   
z B z z B z                 (14) 

The result in Equation (14) is the local-influence version of computing λ̂  after deleting the i-th data case, an 
operation analogous to the global perturbation 0iω =  and ( )1 ;i j iω = ≠  the global perturbation is itself alge- 
braically intractable without approximation (see [5]). 

4. Examples 
4.1. Macroeconomic Impact of Foreign Direct Investment (MIFDI) in Sri Lanka Data Set 

Sun [12] studied MIFDI in China 1979-1996. Based on his theory, the MIFDI data were collected in Sri Lanka 
form 1978 to 2004 to illustrate the methodologies derived in this paper. The data set consists four regressors 
(Foreign Direct Investment (FDI), Gross Domestic Product Per Capita (GDPPC), Exchange Rate (ER) and In- 
terest Rate (IR)) and one response variable (Total Domestic Investment (TDI)) with 27 observations. The selected 
variables were tested for statistical conditions: 1) Cointegration, 2) Constant Error Variance and 3) Multicolli-
nearity. The test results showed that: 1) Variables are cointegrated with a same cointegration coefficient I(1) at 1% 
level of significance, 2) The estimated Durbin-Watson value for the linear model is 2.0131 so, satisfied the con-
stant error variance condition and 3) The scaled condition number of this data set is 31244, this large value sug-
gests the presence of an unusually high level of multicollinearity among the regressors (the proposed cutoff is 30; 
see [9]). Hence, RRE is more preferable than ordinary least squares estimator to fit model for this data set.  

The transformation parameter λ  is estimated for this data set using the Box-Cox transformation model (ne-
cessary formulas for its implementations are given in the Appendix) is ˆ 0.236.λ =  The 2R  after the scale- 
preserving transformation is 96.6%, the standard deviation σ̂  is 1.23374, and there is hardly any interaction; 
these are considerable improvements over the original values of 95.9% and 12665.3 respectively, and a large in-
teraction. The REE biasing parameter is estimated for this data set that is k = 0.0063. The lmax values are esti-
mated using the Equation (13), the values and corresponding index plot are given in below Table 1 and Figure 
1, respectively. 

From Table 1 and Figure 1, it can be observed that the most five influential cases are 1, 3, 23, 14, and 20 in 
this order in the Box-Cox transformation analysis for RRE in MIFDI data. 

4.2. Longley Data 
The second data set is [13] to explain the influential observations on the Liu estimator. The scaled condition 
number of this data set is 43,275 (see [14]). This large value suggests the presence severe multicollinearity 
among regressors. Cook [15] used this data to identify the influential observations in ordinary least squares es- 
timator using Cook’s Di and found that cases 5, 16, 4, 10, and 15 (in this order) were the most influential cases. 
Walker and Birch [14] analyzed the same data to detect anomalous cases in ridge regression using global influ- 
ence method. They observed that cases 16, 10, 4, 15 and 5 (in this order) were most influential observations. Shi 
and Wang [16] also analyzed the same data to detect influential cases on the ridge regression estimator using 
 

Table 1. lmax in RRE using Box-Cox transformation. 

Obs. No. lmax Obs. No. lmax Obs. No. lmax 

1 0.950940 10 −0.076263 19 −0.180404 

2 0.067364 11 −0.066919 20 −0.182687 

3 0.224807 12 −0.081785 21 −0.111494 

4 −0.154101 13 −0.107358 22 −0.143976 

5 −0.047689 14 −0.196588 23 −0.216221 

6 −0.039656 15 −0.178989 24 −0.101125 

7 −0.090456 16 −0.092639 25 0.108893 

8 −0.093770 17 −0.069390 26 0.028201 

9 −0.083477 18 −0.023769 27 −0.072669 
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local influence method. They detected that cases 10, 4, 15, 16, and 1 (in this order) were most anomalous obser- 
vations. Researchers [17-22] also studied the same data to identify influential cases in modified ridge regression 
estimator and Liu estimator using global influence, local influence and Cook’s minor perturbation methods and 
they identified 16, 4, 1, 10 and 15 were the most influential cases but the order of magnitude is changed. 

For the Longley data the parameter λ  is estimated using Box-Cox transformation model (necessary formu-
las for its implementations are given in the Appendix) is ˆ 1.475λ = . The adjusted 2R  after the scale-pre- 
serving transformation is 99.3%, the standard deviation σ̂  is 3.42981, and there is hardly any interaction; these 
are considerable improvements over the original values of 99.3% and 16.8976, respectively, and a large interac-
tion. The RRE biasing parameter for Longley data is k = 0.00146. The lmax values are estimated using the Equa-
tion (13) and index plot for these values are given below. 

From the index plot in Figure 2 it can be seen that the most five influential cases are 13, 10, 14, 8, and 12 in 
this order in the Box-Cox transformation analysis for RRE in Longley data. Compare the influential cases de- 
tected by this method and the previous studies, there are some new influential cases were detected. 
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Figure 1. Index plot of lmax in RRE using Box-Cox transformation in MIFDI data. 
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Figure 2. Index plot of lmax for RRE using Box-Cox transformation in longley data. 
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5. Conclusions 
In this paper, I have studied Box-Cox power transformation for biased RRE that seem practical and can play a 
considerable part in RRE data analysis. The local influence measure introduced focus on perturbing the constant 
variance. The influential cases detected by this method for biased RRE are different than the influential cases 
detected in global and local influential method for RRE.  

Although no conventional cut off points are introduced or developed for the RRE Box-Cox power transfor- 
mation diagnostic quantities, it seems that index plot is an optimistic and conventional procedure to disclose in- 
fluential cases. It is a bottleneck for cut off values for the influence method. Also, the issue of accommodating 
influential cases has not been studied. These are additional active issues for future research study. 
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Appendix: Constructed Variables for the Box-Cox Power Family 
A useful class of transformations is the power transformation Y λ , where λ  is a parameter to be determined. 
Box-Cox [1] showed how the parameters of the regression model and λ  can be estimated simultaneously using 
the method of maximum likelihood estimation method. 

The procedure based on the [2] consists of performing a standard least squares fit using 
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constructed variables required for variance perturbations are 
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