
Creative Education
2014. Vol.5, No.1, 53-62
Published Online January 2014 in SciRes (http://www.scirp.org/journal/ce) http://dx.doi.org/10.4236/ce.2014.51010

OPEN ACCESS 53

Exploring Second Life as a Learning Environment for
Computer Programming

Atul Sajjanhar1, Julie Faulkner2
1Deakin University, Burwood, Australia
2Monash University, Clayton, Australia

Email: atuls@deakin.edu.au, julie.faulkner@monash.edu

Received August 27th, 2013; revised September 27th, 2013; accepted October 4th, 2013

Copyright © 2013 Atul Sajjanhar, Julie Faulkner. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited. In accordance of the Creative Commons Attribution License all
Copyrights © 2013 are reserved for SCIRP and the owner of the intellectual property Atul Sajjanhar, Julie
Faulkner. All Copyright © 2013 are guarded by law and by SCIRP as a guardian.

Computer programming can be challenging for beginners because of the need to understand abstract pro-
gramming concepts. In this paper, we study the use of the Second Life (SL) virtual world for learning
computer programming concepts. We conduct an empirical study for learning computer programming in
SL by addressing affordances of SL for experiential problem-based learning pedagogies. We present pre-
liminary findings, the promises and the limitations of Second Life as an environment for learning com-
puter programming.

Keywords: Problem Based Learning; Computer Programming; Experiential Learning; Second Life

Introduction
Failure to grasp computer programming skills can lead to de-

motivation of computer science students (Jenkins, 2001). Some
students who struggle with programming may drop out of the
course while others might choose a career path which does not
involve programming (Miliszewska & Tan, 2007; Stamouli et
al., 2004).

Learning computer programming requires a hierarchy of
skills (Sloane & Linn, 1988). Skills required for computer pro-
gramming are broadly divided into high level skills and low
level skills. High level computer programming skills are: ana-
lytical skills for problem analysis and developing a conceptual
solution (Esteves et al., 2009). Low level computer program-
ming skills are used to generate syntactically correct computer
programs, i.e. articulate conceptual solutions in a programming
language. The focus of this paper is on high level computer
programming skills. High level skills require a comprehension
of abstract programming concepts which tend to be difficult to
grasp, because they lack real life analogies (Dunican, 2002).

Environments, such as ALICE (Dann, Cooper, & Pausch,
2000), JELIOT (Ben-Bassat Levy et al., 2003), BlueJ (Kölling,
Quig, Patterson, & Rosenberg, 2003) and RAPTOR (Carlisle,
Wilson, Humphries, & Hadfield, 2005) have been used to teach
introductory computer programming. In these environments,
blocks of code are dragged and dropped into a canvas to create
visual representations of a computer program. Isolating the pro-
grammer from intricacies of programming syntax means that
these environments do not have a steep learning curve which is
conducive for student engagement. These environments are
suitable for teaching high level computer programming skills.
However, the drawback of these environments is that they do
not inherently support collaboration.

Guzdial et al. (1996) and Menchaca et al. (2005) suggest that
collaboration is an effective approach for computer program-
ming. According to Casamayor et al. (2009), collaboration is
significant, because it stimulates learning, promotes feelings of
belonging to a team, encourages creativity, eases communica-
tion and increases achieved personal satisfaction. Collaborative
environments can offer important support to students in their
activities for computer programming. According to Newman
(1989), collaboration in problem solving not only provides an
appropriate activity but also promotes reflection, a mechanism
that enhances the learning process. Reflection encourages the
act of articulating and ordering thoughts, organizing them in a
coherent form to provide fresh insights into practices and moti-
vations. Britzman (2003) argues the importance of “second
thoughts”, running through and over ideas in multiple and re-
petitive ways in order to draw more from the ideas and consider
how something could be done differently.

There are several vendors which provide Multi-User Virtual
Environment (MUVE) or virtual world environment for teach-
ing/learning. Virtual worlds provide a collaborative learning
environment which affords a contextual embodied experience
and has the potential to offer student engagement aligned
with real-world experiences (Sajjanhar, 2012). Second Life
(http://secondlife.com/) is a 3D virtual world developed by
Linden Lab which was founded in 1999. Another vendor of 3D
virtual world is Active Worlds (www.activeworlds.com). 3D
virtual worlds have already been used as pedagogical media
(Dickey, 2003). In this paper, we focus on Second Life (SL),
because it is the most mature of virtual world platforms, i.e. it is
robust and feature-rich which is reflected by its high usage
figures compared with other competing platforms (Warburton,
2009; Dalgarno, 2010). SL is used in pedagogy (Journal of

http://www.scirp.org/journal/ce�
http://dx.doi.org/10.4236/ce.2014.51010�
mailto:atuls@deakin.edu.au�
mailto:julie.faulkner@monash.edu�
http://secondlife.com/�
http://www.activeworlds.com/�

A. SAJJANHAR, J. FAULKNER

 OPEN ACCESS

54

Virtual Worlds Research, 2009): it is used in medical and
health education (Boulos, Hetherington, & Wheeler, 2007); it is
used for teaching languages, including Arabic (Kern, 2009) and
Chinese (Henderson et al., 2010); it is also used for researchers
to collaborate (Novak, 2010).

The aim of this paper is to investigate the potential of SL as
an enabling environment to acquire the disparate skills re-
quired for computer programming. The research question ad-
dressed is: To what extent does SL facilitate understanding of
computer programming concepts? We conduct an empirical
study in which academics and students provide relevant feed-
back about SL; data from the study are used to draw inferences
about SL in the context of a programming learning environment.
The rest of the paper is organized as follows: Section 2 de-
scribes the proposed approach including pedagogies of interest;
evaluation is documented in Section 3. Conclusions are given
in Section 4.

Proposed Approach
SL has a proprietary scripting language, namely, Linden

Scripting Language (LSL); it is used to control the behavior and
interactivity of virtual entities. LSL can be used to manifest
concepts in the virtual world. Hence, LSL can be used to ac-
quire higher level computer programming skills such as prob-
lem analysis and conceptualization. SL provides a means for
educators to use various pedagogies suitable to teach computer
programming, namely, problem-based learning and experiential
learning. In this section, we address these pedagogies in the
context of SL as a learning environment for computer pro-
gramming.

Experiential Learning
Experiential learning is proposed by Kolb (1984). According

to Wrzesien et al. (2010), the aim of experiential learning the-
ory is to engage learners in direct experience. Experiential
learning as defined by Kolb (1984) consists of a cycle of the
following stages: concrete experience, reflect on experience,
abstract conceptualization and an active experience.

Girvan et al. (2013) have mapped stages of experiential
learning to the stages in creating programmable artefacts in SL.
LSL is the native programming tool in SL but has a steep learn-
ing curve for a novice. Barriers to engagement are lowered by
providing a low-floor tool i.e. a tool which does not require a
steep learning curve. Scratch for Second Life (S4SL) was de-
signed by Rosenbaum (2008) as a low-floor and high-ceiling
(powerfully expressive) programming tool for SL. It is a visual
environment which employs the drag-and-drop approach to
create blocks of script outside SL; the code from S4SL is pasted
into an object in SL to add behavior and interactivity to other-
wise static objects. Although Girvan et al (2013) use SLurtle
for creating artefacts, the mapping is identical when S4SL is
used as the programming tool as shown in Figure 1.

According to Girvan et al. (2013), the experiential learning
cycle of Figure 1 provides learners with concrete experience
which they can observe and reflect upon. The learners can re-
assess the code by comparing the visualization at the concrete
experience stage with the original plan.

Problem Based Learning

This paper is inspired by experiential learning theory and

Reflect on experience

Export from
S4SL to LSL

Abstract
conceptualization

Active
experimentation

Concrete
experience

Figure 1.
Stages of experiential learning and stages to create pro-
grammable artefacts in SL. Adapted from Girvan et al.
(2013).

PBL. Torp and Sage (2002) highlight the similarity between
these pedagogies by defining PBL as focused, experiential
learning organized around the investigation and resolution of
messy, real-world problems.

PBL was first introduced in medical education over 30 years
ago; however, it has since been used in a wide range of disci-
plines (Savery, 2006). Problem based learning (PBL) is consid-
ered effective for programming courses (Hwang et. al., 2008).
Savery (2006) summarized the characteristics of PBL and notes
that the key to success is the selection of ill-structured problems
and a teacher who guides the learning process. PBL is de-
scribed as facilitated problem-solving by Hmelo-Silver (2004).
In PBL, problems once articulated by the teacher act as cata-
lysts that initiate the learning process (Duch, 2001). Effective
problems engage students and motivate them to gain a deeper
understanding (Duch, 2001) by allocating more responsibility
to the students (Esteves, Fonseca, Morgado, & Martins, 2009).

PBL in computer programming is afforded in SL by virtual
objects. A programming tool in SL is used to define the behav-
ior of these objects; learners analyze the behavior of these ob-
jects. Problems are formulated around computer programming;
students are tasked to replicate or enhance the behavior of vir-
tual objects by using a programming tool in SL. Visualization
plays an important role in confirming the successful solution to
a problem; the highly visual feedback allows the students to
relate the program to the behavior of the object (Esteves, Fon-
seca, Morgado, & Martins, 2010). If the behavior of an object is
not as expected then the student has an opportunity to reflect
and revisit the problem.

Evaluation
In order to address the research question, SL is evaluated as a

learning environment for computer programming concepts. The
instrument is described in Section 3.1. Experimental Setup is
described in Section 3.2. Data collection and data analysis is
addressed in Section 3.3.

Instrument
It is proposed that content experts evaluate the system before

it is made available to learners. Technology Acceptance Model
(TAM) proposed by Davis (1989) is widely used for evaluating
acceptance of end-user computing technologies. Theoretical
grounding of TAM is the theory of reasoned action (TRA)
proposed by Fishbein and Ajzen (1975). According to TRA,
beliefs influence attitudes, which in turn lead to intentions,

A. SAJJANHAR, J. FAULKNER

OPEN ACCESS 55

which generate behaviors. The relationship between belief,
attitude, intent, and behavior is adapted by TAM.

The premise of TAM are: first, users tend to use technology
if they believe that it will help them perform better; second,
potential users who believe in the usefulness of the technology
may still reject it if they find that it is not easy to use (Chen,
Chiu, & Wu, 2010). Based on these premise, Davis (1989) pro-
posed two constructs, namely, perceived usefulness (PU) and
perceived ease-of-use (PEOU) as indicators of intent to use a
technology i.e. technology acceptance (TA); he used an ex-
periment with email and graphics to validate TAM. Constructs
proposed in TAM have been further validated in a number of
studies, for example, Matheison (1991), Adams, Nelson and
Todd (1992), and Chau (1996). TAM constructs are comprised
of items listed below for PU and PEOU.

PU and PEOU (Table 1) are adapted to evaluate SL/S4SL as
a learning environment for computer programming concepts;
the adapted items are shown in the Data Analysis section (Sec-
tion 3.3). Job Performance item in PU is regarded irrelevant;
hence, it is removed from the questionnaire.

Cronbach’s α is used as a measure of internal consistency re-
liability of the items in PU and PEOU. High values of alpha are
used as evidence that the items have an underlying correlation.
Cronbach’s alpha is computed as below.

()1
N c
N c

α
υ

⋅
=

+ − ⋅
 (1)

Here N is equal to the number of items, c is the average
inter-item covariance among the items and υ equals the av-
erage variance. Cronbach’s α of 0.8 is considered high en-
ough in most social science experiments (Carmines & Zeller,
1979).

Experimental Setup
Faculty members and students at a large Australian univer-

sity were invited to participate in an empirical study about the
use of SL as a learning environment for computer programming.
The potential participant did not need prior experience of SL,
although some programming knowledge was required. Student
participants were given a $30 Kmart ™ voucher as incentive to
participate.

Robins et al. (2003) proposed a three-pronged comprehen-
sive approach to teach/learn programming, addressing knowl-
edge required to design, generate and evaluate programs. Here,
we focus on reinforcing programming concepts rather than
comprehensive programming. Therefore, the proposed experi-
ments do not require students to generate programs. The focus
is removed from programming language syntax and directed
towards evaluating programs i.e. reviewing programs and giv-
ing comments (Lister & Leaney, 2003). The empirical study
implicitly addresses knowledge of program design.

The staircase example of Rosenbaum (2008) is used to de-
velop experiments for the empirical study. Rosenbaum (2008)
uses S4SL to create LSL; the script is embedded in an object in
SL. When the object is touched by an avatar, it creates a stair-
case. The final resting position of the object is at the end of the
staircase. Visualization of the staircase example of Rosenbaum
(2008) is shown in Figure 2.

Experiments to address programming concepts of variables,
iterations and conditional statements are described below. Vis

Table 1.
TAM constructs.

Perceived Usefulness Perceived Ease Of Use

Work more quickly Easy to learn

Job Performance Clear and understandable

Increased Productivity Easy to become skillful

Effectiveness Easy to use

Makes job easier Controllable

Useful Flexible

Figure 2.
Staircase is created when the object is touched by an
avatar.

ualization is used to confirm that the correct solution is achie-
ved for each problem and multiple attempts may be required to
obtain the correct solution.

Variables
Variables are used for temporary storage of data. A variable

is demonstrated by defining a scenario in which after comple-
tion of the staircase, the virtual object returns to the position it
had at the start. The psuedocode for implementing this scenario
is the following:

variable (namely, variable_location) is used to record the
position of the object

create a pair of stairs
object is returned to position specified by variable_location
Two blocks of code highlighted in Figure 3 demonstrate the

use of variables. set home to here assigns the current coordi-
nates of the object to a variable; go home will return the object
to the location stored in the variable. LSL generated from Fig-
ure 3 is embedded in an object in SL. When the object is
touched by an avatar, the script responds by creating a staircase;
after creating the staircase the object returns to its initial posi-
tion as shown in Figure 4.

Iteration Statement
An iteration statement is used in computer programming to

implement an iterative task. The psuedocode for iteration
statement is:

for variable = initialvalue to finalvalue
statement 1

...
statement k

end

A. SAJJANHAR, J. FAULKNER

 OPEN ACCESS

56

Record position of object

Restore position of object

Figure 3.
Restore position of object after staircase is created.

Figure 4.
Visualization of the experiment.

In the staircase example of Rosenbaum (2008), when an ob-

ject is touched, it creates a single pair of stairs (Figure 2). In
this section, multiple pairs of stairs are created. The psuedocode
for implementing this scenario is the following:

for variable = initialvalue to finalvalue
create single pair of stairs

end
The number of pairs of stairs will depend on initialvalue and

finalvalue in the psuedocode above. The scenario is imple-
mented in S4SL by using repeat as shown in Figure 5. The
number of stairs is controlled by the counter supplied to the
repeat statement.

LSL generated from Figure 5 is embedded in an object in SL.
When the object is touched by an avatar the script responds by
creating a staircase. Visualization of the experiment is shown in
Figures 6 and 7.

Conditional Statement
A conditional statement is executed when a predefined con-

Figure 5.
Create a staircase using an iteration statement.

Figure 6.
Visualization of the experiment.

Figure 7.
Visualization of the experiment.

Stairs are created
iteratively

A. SAJJANHAR, J. FAULKNER

OPEN ACCESS 57

dition holds good. The psuedocode for conditional statement is:
if (condition exists) then (execute statements)
Hence, an expression is evaluated to decide if a pre-defined

condition holds good; if the condition holds good, a set of
statements is executed otherwise the set of statements is ig-
nored.

We consider a scenario which is an enhancement of the prob-
lems in Sections 3.2.1 and 3.2.2. In this scenario, when a virtual
object is touched, it creates a staircase similar to Section 3.2.2;
however, after completion of the staircase, the virtual object
returns to the position it had at the end of the second iteration.
The psuedocode for implementing this scenario is the follow-
ing:

1. variable_counter is initialized to 0
2. for variable_loop = 1 to finalvalue
3.. variable_counter is incremented
4. create single pair of stairs
5. if (variable_counter equals 2)
then (remember the current position)
6. end
7. object returns to the position which was stored in line 5
LSL generated from Figure 8 is embedded in an object in SL.

When the object is touched by an avatar, the script responds by
creating a staircase. After the staircase is created, object returns
to the position it held at the end of the second iteration.

To assess SL in the context of the research question, tasks
were implemented in-world based on the experiments described
in Section 3.2. The tasks are included in the Appendix. Partici-
pants were required to complete these tasks in-world. It was
possible to observe the actions of the participant’s avatar in-
world and also provide in-world assistance. Participants docu-
mented their experience by completing a questionnaire. The
questionnaire comprised four parts: Part 1 obtained background
of the participant regarding their programming experience;
Parts 2 and 3 had Likert-scale questions which were adopted
with adaptation from the TAM questionnaire; Part 4 was used
for qualitative data collection and comprised open-ended ques-
tions about the participant’s experience.

Data Collection and Analysis

A total of 12 people participated in this study. They were all
post-graduate students with 75% males and 25% females. Data
from completed questionnaires is analyzed to derive conclu-
sions about SL as a learning environment for computer pro-
gramming concepts. Results from the Likert-scale questions in
the questionnaire are summarized in Tables 2 and 3.

Cronbach’s α of 0.868 is obtained for the 11 Likert-scale
questions. Some feedback from open-ended questions in the
questionnaire is given below.

Q: Did you find the tasks interesting?
i. The activities are interesting and very useful for beginners

who want to clear the concepts of programming.
ii. I have been doing programming for two months and I am

amazed to see what we can do with programming.
iii. It is easy to learn programming by visualization.
iv. It is more interesting than just write down or read code.
v. It is user friendly for beginner to learn programming
Q: Do you expect the virtual presence of the teacher to be

helpful for completing activities in this environment?
i. At the time of the activity, I had doubts and the virtual

presence of the teacher clarified my doubts.

At the end of the iteration:
i. Check if it is the second iteration;
ii. If yes, record position of object

Increment the value of the
variable in each iteration

Initialise a variable

Figure 8.
Record the position of the object at the end of the second iteration;
return the object to this location after all stairs are created.

ii. I do favor the concept of a teacher because sometimes you
need help when you are stuck and programming needs some
help in one way or the other

iii. Virtual presence of the teacher is helpful as teacher can
always guide or give the solution if any doubt or problem is
there.

iv. It is really good to have virtual presence of someone who
can guide.

v. Virtual presence of teacher could help me to improve my
skills because I am not nervous when I encounter the virtual
presence of the teacher.

vi. Yes, I think it is helpful. When I have questions, I can
chat with the virtual presence of the teacher.

Q: Do you expect the virtual presence of the peers to be
helpful for completing activities in this environment?

i. It is really interesting to learn with peers in this environ-
ment.

ii. Virtual presence of peers may distract the learner from
his/her task.

iii. Yes, SL provides a good social community. Peers could
learn programming and share what they learn.

Q: Any other comments
i. It can explain more programming concepts visually and we

can learn fast. It is interesting to learn here.
ii. SL is good platform for understanding programming con-

cepts as well as for entertainment.
iii. It is really useful to understand programming fundamen-

tals but implementing or understanding the logic is all up to the
learners

iv. I have not experienced SL but after doing the tasks, I am

A. SAJJANHAR, J. FAULKNER

 OPEN ACCESS

58

Table 2.
Perceived ease of use.

Questions in respect to SL/S4SL tasks. SA A N D SD Mean Std Dev

1). Easy to learn
SL/S4SL provides an easy to learn approach for programming
concepts

41.7% 41.7% 16.7% 0% 0% 4.25 0.754

2). Clear and understandable
SL/S4SL tasks makes the programming concepts clear and
understandable

50% 41.7% 8.3% 0% 0% 4.33 0.888

3). Easy to become skillful
It is easy to become skillful in programming tasks in SL/S4SL 16.7% 50% 25% 8.3% 0% 3.75 0.866

4). Easy to use
SL/S4SL is an easy to use environment for attempting
programming tasks

25% 33.3% 41.7% 0% 0% 3.83 0.834

5). Controllable
SL/S4SL is a controllable environment for attempting
programming tasks

25% 58.3% 16.7% 0% 0% 4.08 0.668

6). Flexible
SL/S4SL provides a flexible environment for learning
programming concepts

41.7% 58.3% 0% 0% 0% 4.42 0.515

SA: Strongly Agree; A: Agree; N: Neither Agree or Disagree; D: Disagree; SD: Strongly Disagree.

Table 3.
Perceived usefulness.

Questions in respect to SL/S4SL tasks. SA A N D SD Mean Std Dev

7). Work more quickly
I can perform the programming tasks quickly in SL/S4SL 33.3% 58.3% 8.3% 0% 0% 4.25 0.621

8). Increased Productivity
SL/S4SL improves my learning efficiency of programming
concepts

50% 33.3% 16.7% 0% 0% 4.33 0.778

9). Effectiveness
SL/S4SL is effective for learning programming concepts 58.3% 41.7% 0% 0% 0% 4.58 0.515

10). Makes job easier
SL/S4SL makes it easier to learn programming concepts
compared with other environments

16.7% 41.7% 41.7% 0% 0% 3.75 0.753

11). Useful
SL/S4SL is useful for learning programming concepts 58.3% 25% 8.3% 8.3% 0% 4.33 0.984

SA: Strongly Agree; A: Agree; N: Neither Agree or Disagree; D: Disagree; SD: Strongly Disagree.

interested in SL.

v. I think this is good for students who pay attention to de-
tails otherwise they are not able to identify the difference be-
tween objects.

Conclusions and Future Work
The research question addressed in this paper is the extent to

which SL facilitates an understanding of computer program-
ming concepts. An empirical study, based on problem-based
learning and experiential learning approaches was conducted.
Participants completed a questionnaire comprising Likert-scale
questions and open-ended questions. Responses to Likert-scale
questions (adopted from TAM questionnaire) paint a positive
picture of SL with regard to PEOU and PU in the context of the
research question. Cronbach’s α of 0.868 is obtained for the
Likert-scale questions; it indicates a high level of internal con-
sistency reliability of the items in PEOU and PU. Responses to
open-ended questions show that participants responded posi-
tively to the experiments; however, few participants got dis-
tracted by the inherent characteristics of virtual worlds, e.g.,

in-world social interactions; in-world entertainment is also a
likely distraction.

In the future, it is proposed that constructivist learning be
incorporated to enhance the learning experience. In construc-
tivist approach, learners build on their existing knowledge by
applying prior knowledge to solve real-world problems (Had-
jerrouit, 2008). This approach to learning focuses on the proc-
ess of creating and sharing artefacts which are personally mea-
ningful (Girvan, Tangney, & Savage, 2013). Girvan & Savage
(2010) have argued the alignment between affordances of SL
and constructivist pedagogies. SL tools which afford the con-
struction of persistent objects use features of this pedagogy
(Girvan, Tangney, & Savage, 2013). In line with improved
pedagogical approaches in computer programming, preliminary
data suggest that SL provides a constructivist environment for
building skills and knowledge.

Acknowledgement
We acknowledge that this paper is financially supported by

Parallel and Distributed Computing Lab., School of Informa-

A. SAJJANHAR, J. FAULKNER

OPEN ACCESS 59

tion Technology, Deakin University, Australia.

REFERENCES
Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived useful-

ness, ease of use and usage of information technology: A replication.
MIS Quarterly, 16, 227-247.
http://dx.doi.org/10.2307/249577

Ben-Bassat Levy, R., Ben-Ari, M., & Uronen, P. A. (2003). The Jeliot
2000 program animation system. Computers & Education, 40, 1-15.
http://dx.doi.org/10.1016/S0360-1315(02)00076-3

Boulos, M. N. K., Hetherington, L. & Wheeler, S. (2007). Second Life:
an overview of the potential of 3-D virtual worlds in medical and
health education, Health Information & Libraries Journal, 24, 233-
245. http://dx.doi.org/10.1111/j.1471-1842.2007.00733.x

Britzman, D. (2003). Practice makes practice: A critical study of learn-
ing to teach. New York State University: New York Press.

Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfield, S. M.
(2005). RAPTOR: A visual programming environment for teaching
algorithmic problem solving. ACM SIGCSE Bulletin, 37, 176-180.
http://dx.doi.org/10.1145/1047124.1047411

Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity as-
sessment. Sage University Paper 17. Beverly Hills: Sage Publica-
tions.

Casamayor, A., Amandi, A., & Campo, M. (2009). Intelligent assis-
tance for teachers in collaborative e-learning environments. Com-
puters & Education, 53, 1147-1154.
http://dx.doi.org/10.1016/j.compedu.2009.05.025

Chau, P. Y. K. (1996). An empirical assessment of a modified technol-
ogy acceptance model. Journal of Management Information Systems,
13, 185-204.

Chen, M.-P., Chiu, C.-H., & Wu C.-C. (2010). Instructional simulations
for teaching high school computer science concepts: A technology
acceptance perspective. IEEE International Conference on Digital
Game and Intelligent Toy Enhanced Learning, 216-218.

Dalgarno, B., Lee, M. J. W., Carlson, L, Gregory, S., & Tynan, B.
(2010). 3D immersive virtual worlds in higher education: An Aus-
tralian and New Zealand scoping study. Ascilite Sydney, 269-280.

Dann, W., Cooper, S., & Pausch, R. (2000). Making the connection:
programming with animated small world. ACM SIGCSE Bulletin, 32,
41-44. http://dx.doi.org/10.1145/353519.343070

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and
user acceptance of information technology, MIS Quarterly, 13, 319-
340. http://dx.doi.org/10.2307/249008

Dickey, M. D. (2003). Teaching in 3D: Pedagogical affordances and
constraints of 3D virtual worlds for synchronous distance learning.
Distance education, 24, 105-121.
http://dx.doi.org/10.1080/01587910303047

Duch, B. J. (2001). Models for problem-based instruction in under-
graduate courses. The Power of Problem-Based Learning, 39-46.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2009). Using
second life for problem based learning in computer science pro-
gramming. Journal of Virtual Worlds Research, 2, 3-25.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and beha-
vior: An introduction to theory and research. Reading, MA: Addi-
son-Wesley.

Guzdial, M., Kolodner, J. L., Hmelo, C., Narayanan, H., Carlson, D.,
Rappin, N., Hübscher, R., Turns, J., & Newstetter, W. (1996). Com-
puter support for learning through complex problem-solving. Com-
munications of the ACM, 39, 43-45.
http://dx.doi.org/10.1145/227210.227600

Girvan, C., & Savage, T. (2010). Identifying an appropriate pedagogy
for virtual worlds: A communal constructivism case study. Com-
puters & Education.
http://dx.doi.org/10.1016/j.compedu.2010.01.020

Girvan, C., Tangney, B., & Savage, T. (2013). SLurtles: Supporting
constructionist learning in Second Life. Computers & Education, 61,
115-132. http://dx.doi.org/10.1016/j.compedu.2012.08.005

Hadjerrouit, S. (2008). Towards a blended learning model for teaching

and learning computer programming: A Case Study. Informatics in
Education, 7, 181-210.

Henderson, L., Grant, S., Henderson, M., & Huang, H. (2010). Univer-
sity students’ cognitive engagement while learning in a Virtual World.
Australian Computers in Education Conference, 6-9 April, Mel-
bourne.

Hwang, W.-Y., Wang, C., Hwang, G.-J., Huang, Y.-M., & Huang, S.
(2008). A web-based programming learning environment to support
cognitive development. Interacting with Computers, 20, 524-534.
http://dx.doi.org/10.1016/j.intcom.2008.07.002

Jenkins, T. (2001). The motivation of students of programming. Pro-
ceedings of ITiCSE 2001: The 6th Annual Conference on Innovation
and Technology in Computer Science Education (pp. 53-56). New
York: ACM.

Journal of Virtual Worlds Research (2009). Pedagogy, education and
innovation in Virtual Worlds.

Kolb, D. A. (1984). Experiential learning: Experience as the source of
learning and development. Upper Saddle River, NJ: Prentice-Hall.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ
system and its pedagogy. Computer Science Education, 13, 249-268.
http://dx.doi.org/10.1076/csed.13.4.249.17496

Kern, N. (2009). Starting a Second Life.
http://slexperiments.edublogs.org/2009/03/03/starting-a-second-life/

Lister, R., & Leaney, J. (2003). First year programming: Let all the
flowers bloom. Proceedings of the Fifth Australasian Conference on
Computing Education (pp. 221-230). Adelaide.

Mathieson, K. (1991). Predicting use intentions: Comparing the tech-
nology acceptance model with the theory of planned behaviour. In-
formation Systems Research, 2, 173-191.
http://dx.doi.org/10.1287/isre.2.3.173

Menchaca, R., Balladares, L., Quintero, R., & Carreto, C. (2005).
Software engineering, HCI techniques and Java technologies joined
to develop web-based 3D-collaborative virtual environments. Pro-
ceedings of the 2005 Latin American conference on Human-compu-
ter interaction (pp. 40-51). New York, NY: ACM Press.
http://dx.doi.org/10.1145/1111360.1111365

Miliszewska, I., & Tan, G. (2007). Befriending computer programming:
a proposed approach to teaching introductory programming. Journal
of Issues in Informing Science & Information Technology, 4, 277-
289.

Newman, D., Griffin, P., & Cole, M. (1989). The construction zone:
Working for cognitive change in school. New York: Cambridge Uni-
versity Press.

Novak, T. P. (2010). eLab city: A platform for academic research on
virtual worlds. Journal of Virtual Worlds Research, 3.

Record voice chat and sounds. (2012).
http://www.screencast.com/users/Featured/folders/Featured/media/cf
26872f-fa66-418b-89e8-47d9f3a13b02

Robins, A., et al. (2003). Learning and teaching programming: A re-
view and discussion. Computer Science Education. 13, 137-172.
http://dx.doi.org/10.1076/csed.13.2.137.14200

Rosenbaum, E. (2008). Scratch for second life. Proceedings of the In-
ternational Conference of the Learning Sciences-ICLS, Utrecht, The
Netherlands: ICLS., 144-152.

Sajjanhar, A. (2012). Virtual worlds for student engagement. Creative
Education, 3, 796-801.

Savery, J. R. (2006). Overview of problem-based learning: Definitions
and distinctions. Interdisciplinary Journal of Problem-based Learning,
1, 9-20. http://dx.doi.org/10.7771/1541-5015.1002

Second life bot. (2012). http://wiki.secondlife.com/wiki/Bot.
Sloane, K., & Linn, M. C. (1988). Instructional conditions in Pascal

programming classes. In R. Mayer (Ed.), Teaching and learning com-
puter programming: Multiple research perspectives (pp. 207-235).
Hillsdale: Lawrence Erlbaum Associates.

Stamouli, I., Doyle, E., & Huggard, M. (2004). Establishing structured
support for programming students. 34th Annual Conference on Fron-
tiers in Education, 2, F2G - 5-9.

Torp, L., & Sage, S. (2002). Problems as possibilities: Problem-based
learning for K-16 education (2nd ed.). Alexandria, VA: Association
for Supervision and Curriculum Development.

http://dx.doi.org/10.2307/249577�
http://dx.doi.org/10.1016/S0360-1315(02)00076-3�
http://dx.doi.org/10.1111/j.1471-1842.2007.00733.x�
http://dx.doi.org/10.1145/1047124.1047411�
http://dx.doi.org/10.1016/j.compedu.2009.05.025�
http://dx.doi.org/10.1145/353519.343070�
http://dx.doi.org/10.2307/249008�
http://dx.doi.org/10.1080/01587910303047�
http://dx.doi.org/10.1145/227210.227600�
http://dx.doi.org/10.1016/j.compedu.2010.01.020�
http://dx.doi.org/10.1016/j.compedu.2012.08.005�
http://dx.doi.org/10.1016/j.intcom.2008.07.002�
http://dx.doi.org/10.1076/csed.13.4.249.17496�
http://slexperiments.edublogs.org/2009/03/03/starting-a-second-life/�
http://dx.doi.org/10.1287/isre.2.3.173�
http://dx.doi.org/10.1145/1111360.1111365�
http://www.screencast.com/users/Featured/folders/Featured/media/cf26872f-fa66-418b-89e8-47d9f3a13b02�
http://www.screencast.com/users/Featured/folders/Featured/media/cf26872f-fa66-418b-89e8-47d9f3a13b02�
http://dx.doi.org/10.1076/csed.13.2.137.14200�
http://dx.doi.org/10.7771/1541-5015.1002�

A. SAJJANHAR, J. FAULKNER

 OPEN ACCESS

60

Warburton, W. (2009). Second Life in higher education: Assessing the
potential for and the barriers to deploying virtual worlds in learning and
teaching. British Journal of Educational Technology, 40, 414-426.
http://dx.doi.org/10.1111/j.1467-8535.2009.00952.x

Wrzesien, M., & Raya, M. A. (2010). Learning in serious virtual worlds:
Evaluation of learning effectiveness and appeal to students in the E-
Junior project. Computers & Education, 55, 178-187.
http://dx.doi.org/10.1016/j.compedu.2010.01.003

http://dx.doi.org/10.1111/j.1467-8535.2009.00952.x�
http://dx.doi.org/10.1016/j.compedu.2010.01.003�

A. SAJJANHAR, J. FAULKNER

OPEN ACCESS 61

Appendix—Experiment 1
S4SL code in objects Task 1-Object A and Task 1-Object B is shown below.

Use objects Task 1-Object A and Task 1-Object B from the Second Life Inventory to visualize the two pieces of code and answer
the questions below.

1. Identify the difference in the code.
__
__

2. How is the difference reflected in the visualization?
__
__

Appendix—Experiment 2
S4SL code in objects Task 2-Object A and Task 2-Object B is shown below.

A. SAJJANHAR, J. FAULKNER

 OPEN ACCESS

62

Use objects Task 2-Object A and Task 2-Object B from the Second Life Inventory to visualize the two pieces of code and answer
the questions below.

1. Identify the difference in the code.
__
__

2. How is the difference reflected in the visualization?
__
__

Appendix—Experiment 3
S4SL code in objects Task 3-Object A and Task 3-Object B is shown below.

Use objects Task 3-Object A and Task 3-Object B from the Second Life Inventory to visualize the two pieces of code and answer
the questions below.

1. Identify the difference in the code.
__
__

2. How is the difference reflected in the visualization?
__
__

