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ABSTRACT 
In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to ob- 
tain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interacting by 
Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and the molecu- 
lar interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the 
mean phase space molecular volume that far-from-equilibrium shows maximizing the dissipation of a part of the 
generalized SQHA-free energy. In the case of a real gas with no chemical reactions with small temperature gra- 
dients, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs 
of electro-convective instability. In this case, the model shows that the transition to stationary states with higher 
free energy can happen and that in incompressible fluids, the increase of free energy is almost given by a de- 
crease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the 
generation of order via energy dissipation, is more efficient in fluids than in gases, because of their incompressi- 
bility, which leads to the reconciliation between physics and biology furnishing the explanation why the life was 
born in water. The theoretical output also suggests that the search for life out of the earth must consider the pos- 
sibility to find it in presence of liquid phases different from water. 
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1. Introduction 
The missing bridge between the physics and life discip- 
lines constitutes one of the greatest problems of science 
nowadays. The situation is similar to that exists between 
physics and chemistry at the beginning of the past cen- 
tury. Every scientist was intimately convinced that once 
the physical laws of particles belonging to the atoms were 
established, the chemical properties of elements should 
possibly be derived and explained. 

With the advent of quantum mechanics, this view 
came to realization and the quantum physics is at the 
base of modern chemistry. 

A similar state of fact exists between the physics and 
biology. The unavailability of a physical theory capable 
of explaining the order generation at the base of the evo- 

lution of biological system is the major obstacle to give 
the physical basis to biology. 

One of the most known and experimentally verified 
laws of the physics is the second law of thermodynamics 
that expresses the tendency of any physical system to- 
ward the maximum possible disorder. Even verified only 
near the thermodynamic equilibrium, this law has lead 
many thinkers to a “pessimistic” view of the world and to 
the so-called “obscurantism” in many fields of human 
science. 

Starting by the thirties of the last century, mainly due 
to the work of Prigogine, it was born in the physicists 
and chemists the idea that the tendency to the entropy 
production was a bounded process and that generation of 
order was possible out of the neighborhoods of thermo- 

http://www.scirp.org/journal/ojbiphy�
http://dx.doi.org/10.4236/ojbiphy.2014.41005�
mailto:pchiare@ifc.cnr.it�


P. CHIARELLI 

OPEN ACCESS                                                                                     OJBiphy 

30 

dynamic equilibrium [1-8]. Various principles have been 
proposed for the self-organized regimes governed by clas- 
sical linear and non-linear non-equilibrium thermodynam- 
ic laws, with stable stationary configurations being par- 
ticularly investigated. 

Nevertheless, an organic understanding for a long time 
has been unavailable. In 1945, Prigogine [1,2] proposed 
the “Theorem of Minimum Entropy Production” which 
applies only to near-equilibrium stationary state. The proof 
offered by Prigogine is open to serious criticism [3]. 
Šilhavý [4] offered the opinion that this variational prin- 
ciple of near-equilibrium thermodynamics does not have 
any counterpart in far-from-equilibrium steady states de- 
spite many claims in the literature. 

Sawada postulated the principle of largest amount of 
entropy production [5]. He started by the work given by 
Malkus and Veronis [6] about the earth’s atmospheric 
turbulence where the principle of maximum heat current, 
holding in fluid mechanics, has been proven to drive the 
energy transport process. Sawada showed that for a given 
boundary condition this law corresponds to the maximum 
entropy production, but this inference is not ever valid. 

Sawada and Suzuki showed that the maximum entropy 
production leads electro-convective phenomena to the 
maximum rate of energy dissipation. This principle was 
confirmed, both by numerical simulations and by expe- 
riments [8], in electro-convective instabilities. Moreover, 
they showed that ordered metastable states were visited 
by the system with a living time proportional to the rate 
of energy dissipation. 

The rate of dissipation of energy appeared for the first 
time in Onsager’s work [7] on this subject. An extensive 
discussion of the possible principles of maximum entro- 
py production and/or of dissipation of energy was given 
by Grandy [9]. He found difficulty in defining the rate of 
internal entropy production in the general case, showing 
that sometimes, for the prediction of the course of a 
process, the maximum rate of dissipation of energy may 
be more useful than that of the rate of entropy produc- 
tion. 

Nowadays, the debate about the principle of maximum 
free energy dissipation (MFED) and the Prigogine’s one 
comes to a possible solution. The author has shown that 
in the frame of the quantum stochastic approach of hy- 
drodynamic analogy [10-13], it is possible to define a 
phase space Wigner-type distribution functions. In (clas- 
sical) phases, the mean of inter-particle distance is bigger 
than the distance over which the quantum correlations 
take place. It can lead to the definition of an energy func- 
tion (named stochastic free energy) whose dissipation is 
at maximum during the out of equilibrium relaxation pro- 
cess. 

Following the tendency to reach the highest rate sto- 
chastic free energy dissipation (SFED), a system relaxing 

to equilibrium goes through states with higher order so 
that the matter self-organization becomes possible. 

Moreover, near equilibrium the maximum of SFED is 
shown to lead to the Prigogine’s principle of minimum 
entropy production, while far-from-equilibrium, in qua- 
si-isothermal states and in the case of elastic molecular 
collisions and in absence of chemical reactions, the max- 
imum SFED reduces to the maximum free energy dissi- 
pation. 

The Prigogine’s principle of minimum entropy pro- 
duction near-equilibrium and the far-from-equilibrium 
Sawada’s principle of maximum energy dissipation con- 
sists of two complementary principia of a more general 
theory that do not contradict each other. The availability 
of a clear general model applying to the irreversible 
processes far from equilibrium is a great tool to investi-
gate the generation of order and matter self-assembling 
in presence of large gradients of thermodynamic forces. 

In the present paper the author shows that in quasi- 
isothermal far from equilibrium states with no chemical 
reactions, the principle of maximum SFED, that can gen- 
erally lead to transition to a state with an increase of free 
energy, in the case of incompressible phase (e.g., fluid 
one) this increase of free energy is basically almost given 
by an increase of order since the energy variation of the 
system associated to the external work is quite null. 

For the first time it comes out from a physical theory 
the information about how and why a fluid phase is ne- 
cessary to the development of matter self-assembling 
process that is at the base of the emerging of life. 

The physical model is not devoid of new information 
signaling that ordering processes (and life) can also hap- 
pen in fluids different from water, an interesting chance 
in searching for life in the universe out of the earth. 

2. The SQHA Equation of Motion 
The quantum hydrodynamic analogy (QHA) equations 
are based on the fact that the Schrödinger equation, ap- 

plied to a wave function ( ) ( )
( ),

, , exp q t
q t q t

S
A iψ

 
=  

  

, is  

equivalent to the motion of a fluid owing the particle  

density ( ) ( )
22

, ,q t q tn A ψ= =  with a velocity ( ),q q tS
q

m

∇
= ,  

governed by the equations [10-14] 

( ) ( )( ), , 0t qq t q tn n q∂ +∇ ⋅ = ,           (1) 

pq H= ∇ ,                  (2) 

( )q qup H V= −∇ + ,              (3) 

where p
ip

 ∂
∇ =  ∂ 

, q
iq

 ∂
∇ =  ∂ 

, H  is the Hamiltonian  
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of the system and quV  is the quantum pseudo-potential 
that reads 

2
1 2 1 2

2qu q qV n n
m

− 
= − ∇ ⋅∇ 

 

 .        (4) 

For the phase space analysis, it is useful to observe 
that Equations (1)-(3) can be derived by the following 
phase-space equations [13] 

( ) ( ) ( )( ), , , , 0
Ht quq p t q p t x xρ ρ∂ +∇ ⋅ + =        (5) 

where ,
i iq p

 ∂ ∂
∇ =  ∂ ∂ 

 and where 

( ) ( )
3

, , , d n
q t q p tn pρ= ∫∫∫ .            (6) 

( ),H p qx H H= ∇ −∇              (7) 

( )0,qu q qux V= −∇               (8) 

where 

( ) ( ) ( ), , , qq p t q tn p Sρ δ= −∇ ,          (9) 

and where 

( )
0

d
2

t

quq
t

p pS t V V
m
⋅ = − − 

 ∫ ,         (10) 

The Madelung approach, as well as the Schrödinger 
one, are non-local and are not able to give rise to local 
limit. 

When fluctuations are added to the QHA equation of 
motion, the resulting stochastic-QHA (SQHA) dynamics 
shows that is possible to obtain local dynamics on large 
scale, preserving the quantum behavior on a microscopic 
one. In a preceding paper [13] the author has shown that 
in presence of vanishing small stochastic Gaussian noise, 
the QHA motion equation (at first order of approxima- 
tion in the noise amplitude Θ ) reads 

( ) ( ) ( )( )( ) ( ) ( ), , , ,Ht qq,p t q,p t qu n q tx x p Sρ ρ η δΘ∂ = −∇ ⋅ + + −∇   

(11) 
where the phase space distribution 

( ) ( ) ( ), , , qq p t q tn p Sρ δ= −∇          (12) 

is a Wigner-like distribution obeying, in the limit of null 
noise, to the property 

( )
2 3

, ,d n
q p tpψ ρ

+∞

−∞

= ∫ ,           (13) 

where Θ  is a measure of the vacuum noise amplitude 
(VNA) and 

( ) ( ) ( )
2

, 2,
, expq t q t

cc

k
α β αβλ τ

λη η µ δ τ δ
λλ+ +

  Θ  = − 
   

 (14) 

is the VNA variance, where the quantum correlation 
length cλ  reads [13] 

( )1 2π
2

c
mk

λ =
Θ

              (15) 

( ) ( )

( ) ( )

0

0
0

d
2

d
2

t

q qu n
t

t

q qu n
t

p pS t V V
m

p pt V V I
m

∗

⋅ = − − 
 

⋅ = − − − 
 

∫

∫
        (16) 

( ) ( )0
0

0d
2

q

t

q stq qu n
t

mq p S

p pt V V I p p
m

∗

= = ∇

 ⋅  = ∇ − − − = + ∆  
   

∫



(17) 

where 

0

d
t

st q
t

p I t∗
  ∆ = −∇  
  
∫             (18) 

where 

( ) ( )0qu n qu nI V V∗ = −             (19) 

where 0n  is obtained from the zero order of approxima- 
tion Equation (1). 

3. Macroscopic Local Dynamics 
Given L∆  the physical length of the system, the ma- 
croscopic local dynamics is achieved for those problems 
that satisfy the condition 

c q Lλ λ ∆  . 

From the condition q Lλ ∆  it follows that [13] 

( )0
  lim   0

q
q qu nq
V

λ →∞
−∇ =             (20) 

and the SPDE of motion acquires the form [13] 

( ) ( )( ) ( ) ( ), , , , , ,t qq p t q p t q tH
x p Sρ ρ η δΘ∂ = −∇ ⋅ + −∇  (21) 

( ) ( ) ( ), , , qq p t q tn p Sρ δ= −∇ ,          (22) 

( ) ( )( ) ( ), , , ,t q clq t q t q tn n q
α

η Θ∂ = −∇ ⋅ +        (23) 

( ) ( ) ( ) ( ), ,
2,  q t q t

c

k
α α αβλ τη η µ δ δ λ δ τ
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Θ
=     (24) 
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0
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λ λ

λ λ

δ
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∗
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∇
= =
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 ⋅  = ∇ − − ∆ = + ≅  
   

∫

∫



(25) 
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where δp is a small fluctuation of momentum and 

( )cl q qp V= −∇ ,               (26) 

Being also c Lλ ∆ , I ∗  represents a small energy 
fluctuation due to the quantum potential [13]. 

4. The Kinetic Equation for Classical Real 
Gas and Fluid Phase 

As derived in reference [14], for a gas or mean-field fluid 
phases, we can describe our system by a single particle 
SQHA distribution function (DF) ( )1ρ  from which we 
can extract the statistical single particle distribution sρ  
that obeys to the equation. 

( )( ),
lim 0

c q

s s
t sL H

x x
λ λ

ρ ρ
∆

∂ +∇ ⋅ + =


      (27) 

With ,H

H Hx
p q

 ∂ ∂
= −  ∂ ∂ 

 , where H H V= +  is the  

mean-field Hamiltonian, and where sx  obeys to the 
equation [14] 

( )

,
lim

 

c q

s
s iL

s
q

s iis s

ss i
p

i

x

D
q q

D
p D

p

λ λ
ρ

ρ
ρ ρ

ρ

∆

∂ 
   ∂ = = − = −∇ ⋅    ∂   ∂ 









  (28) 

For a (classical) gas phase made up of structureless 
point-like particles interacting by central symmetric po- 
tential that do not undergo to chemical reactions (par- 
ticles do not have bounded states (e.g., Lennard-Jones 
potential with small well, compared to the mean energy 
of particles) so that molecules with internal structure are 
not created) can be further simplified by excluding the 
cross-correlations concerning different co-ordinates com- 
ponents, namely 

0
, 1,2,3

0
q ij

p ij

D
D i j

D
δ

δ
 

= = 
 

，       (29) 

Equation (28) is basically the Fokker-Plank form of 
the Maxwell equation. 

In order to obtain from (28) a closed kinetic equation, 
the standard approach is to introduce additional informa- 
tion about the diffusion coefficient D . Under the local 
equilibrium condition this is usually achieved by the semi- 
empirical assumption of linear relation between flows 
and fluxes. 

In order to obtain an evolutionary principle far from 
equilibrium, here we use (28) without the assumption of 
linear relation between flows and thermodynamic forces. 

4.1. The Mean Phase Space Molecular Volume of 
Wave function Modulus 

In order to grasp information from (28) we observe that 
(for gasses and mean-field fluids) the SQHA approach 
shows two competitive dynamics: 1) the enlargements of 
the molecular DF [14] between two consecutive colli- 
sions, 2) the diffusion of the molecules, in term of their 
mean position, as a consequence of the molecular colli- 
sions (that cause the WFM collapse [15]). 

As consequence of free expansions and collapses, the 
pseudo-Gaussian molecular DF in the phase space cell 
∆Ω  will occupy the mean volume mV∆  that we 
pose 

[ ]3

,
lim exp

c q
mL

V h
λ λ

φ
∆

∆ = −


         (30) 

where mV∆  reads: 

( ) ( ) ( )( )
( )

( )
( )

,

,

1
22

3 3
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d d

 
d d

q p

q p

i i i
i

m
i
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x x q p

V
q p

ρ

ρ

∈∆Ω ∆Ω

∈∆Ω ∆Ω

 
 −
 
 ∆ =

∑ ∫

∑ ∫
 (31) 

( )

( ) ( )
( )

( )
( )

,

,

3 3

3 3

d d

 
d d

i i
q p

i
q p

i

x q p

x
q p

ρ

ρ
∆Ω

∆Ω

=
∫

∫
        (32) 

where ( )
( )

( )

i

i
i

q
x

p

 
 =
 
 

. 

In the case of sufficiently weak radiative coupling be- 
tween vacuum fluctuations and thermal ones [14], (28) 
simplifies as  

( )( )

( )( )

2

,

2

lim 1

1

c q

q
s ii

sL
s i

p
i

D
q q

x A O
p D

p

D A O

λ λ

φ

φ
φ

φ φ

∆

∂ 
   ∂ = = − + + ∇    ∂   ∂ 

= − ∇ + + ∇







 (33) 

where in the synthetic notation of the right side  
0

0
q

p

D
D

D
 

=  
 

 is a 2 × 2 matrix that applies to the  

2-element vector representing phase space gradient  

q i

p

i

q

p

∂ 
 ∇ ∂   ∇ ≡ =   ∇ ∂   ∂ 

 that introduced into the FPE (27)  

leads to the kinetic equation for stationary states [14] 

( )( )21s s s
t Hx D A Oρ ρ ρ φ φ∂ +∇ ⋅ = ∇ ⋅ ∇ + + ∇  (34) 
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4.2. Far from Equilibrium Relaxation and 
Maximum Stochastic Free Energy  
Dissipation in Stationary States 

Even if the φ -function is well defined far from equili- 
brium, without the explicit form of the diffusion coeffi- 
cient D  and the initial and boundary conditions of an 
assigned problem, the kinetic Equations (27) and (28) are 
just symbolic equations. 

Nevertheless, the existence of the φ -function far from 
equilibrium allows the definition of a formal criterion of 
evolution. 

In fact from Equation (33) it is possible to derive an 
evolutionary principle along the relaxation pathway that 
can be formulated in terms of dissipation of the φ -func- 
tion (named here normalized hydrodynamic free energy 
(NHFE) since at equilibrium it converges to the free 
energy normalized to kT [14]. 

Given that, the total differential of the normalized hy- 
drodynamic free-energy φ  can be written as a sum of 
two terms, such as: 

d
d

dd
d d

sH

sH

x x x
t t t

t t

φ φ φφ φ φ

φφ

∂ ∂
= + ⋅∇ = + ⋅∇ + ⋅∇
∂ ∂

= +

  

 (35) 

where we name 

,
d lim

L c q
H HL

x t
tλ λ

φφ φ δ
∆

∂ = + ⋅∇ 
∂ 

        (36) 

as “dynamic differential” and 

( )
,

d lim
c L

i
s s s si iL

i

q p
i i i i

q
x t q p t

p

D D t
q q p p

λ λ

φ

φ φ δ δ
ϕ

φ φ φ φ δ

∆

∂ 
 ∂  = ⋅∇ = ⋅   ∂
 ∂ 

 ∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 



  

 

(37) 

as “stochastic differential”. 
Under the range of validity of Equation (35) (i.e., 

structureless punt-like particles, interacting by L-J central 
symmetric potential that do not undergo to chemical 
reactions) the stochastic velocity vector evolves through 
a pathway that follows the φ -function negative gradient 
so that 

ds

t
φ

δ
 is minimum with respect the choice of sx (38) 

With 
d

0s

t
φ

δ
<  since s iq  and s ip  are anti-pa- 

rallel to 
iq
φ∂

∂
 and 

ip
φ∂

∂
, respectively. 

Sometime, some authors speak in term of energy dis- 
sipation, so that in this case the criterion (38) reads 

 is maximum 

with respect the choice of

s s

s

d d
t t

x

φ φ
δ δ

− =



       (39) 

5. Maximum Stochastic Free Energy  
Dissipation in Quasi-Isothermal  
Stationary States 

In order to elucidate the significance of the criterion giv- 
en by (39), we analyze the spatial kinetics far from equi- 
librium. 

5.1. Spatial Kinetic Equations 
By using a well known method [16] we transform the 
motion Equation (34) into a spatial one over a finite vo- 
lume V. 

Given a quantity per particle 

3

3

d

d

s

s

p

p

ρ

ρ

+∞ +∞ +∞

−∞ −∞ −∞
+∞ +∞ +∞

−∞ −∞ −∞

Υ
Υ =

∫ ∫ ∫

∫ ∫ ∫
           (40) 

its spatial density: 

3dsn pρ
+∞ +∞ +∞

−∞ −∞ −∞

Υ = Υ∫ ∫ ∫           (41) 

and its first moment 

3dsn q q pρ
+∞ +∞ +∞

−∞ −∞ −∞

Υ = Υ∫ ∫ ∫          (42) 

by using the motion Equation (34) it is possible to obtain 
the spatial differential equation: 

{ }

( )( ){ }

3

2 3

d

1 d

s
t t H

s

n n q x p

D A O p

ρ

ρ φ φ

+∞ +∞ +∞

−∞ −∞ −∞

+∞ +∞ +∞

−∞ −∞ −∞

∂ Υ +∇ ⋅ Υ − ∂ Υ + ⋅∇Υ

= Υ ∇⋅ ∇ + + ∇

∫ ∫ ∫

∫ ∫ ∫

 

 (43) 

that by choosing 
kTφΥ = ,                (44) 

where T is the “mechanical” temperature defined as 

2
i i

i
cin pot

p p
VE E mT

k k
γ γ

 
+ +

 = =
 
 
 

,    (45) 
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where γ  is defined at thermodynamic equilibrium, in 
quasi-isothermal condition and elastic molecular colli- 
sions (i.e., absence of chemical reactions) leads to the 
maximal condition respect to sx  [14] that reads 

( )

sup

3 3

d
maximum

d
1 d

d d
d

s s

V

TS
t

kT p q
t

φ φ
ρ

φ

+∞ +∞ +∞

−∞ −∞ −∞

=

−   = −   
   

∫∫∫ ∫ ∫ ∫
 (46) 

Equation (46) has been proven to be experimentally 
verified by Sawada in the electro-convective instability 
[8,17]. 

5.2. Spontaneous Free Energy Increase in Far 
from Equilibrium Steady-State Transition 

From general point of view the SQHA system of differ- 
ential equations is unmanageable as well as the far-from 
equilibrium kinetics. 

In order to gain information about (46) let’s analyze it 
in the simple case of quasi-isothermal stationary states 
far from equilibrium (chemically and mechanically speak- 
ing). This case is still sufficiently general to be interest- 
ing since the matter self-assembling phenomena con- 
cerning the life generation happen in quasi-isothermal 
condition. 

As a figurative example we take in mind the case of 
the electro-convective instabilities [17]. 

In the case of quasi-isothermal system with no chemi- 
cal reaction taking place, it has been assumed that each 
infinitesimal volume of fluid is at quasi-thermal equili- 
brium. On this base, in Equation (46) Φ  equals the free 
energy F, as well as Ss the thermodynamic entropy S. 

In the following we are going to show that the transi- 
tions to states with a higher amount of free energy are 
possible in far from equilibrium kinetics. 

To this end, let’s consider the overall system with the 
energetic reservoirs that works reversibly onto the system 
so that we have 

d d
d d

res resE F
t t

=               (47) 

where resE  is the energy of reservoir that for our pur- 
pose can be assumed to work in reversible manner onto 
the system, and the heat generated into the system is ex- 
changed with the environment reversibly so that 

d
0

d
sysF
t

=                (48) 

and 

supdd
d d

res TSE
t t

− =             (49) 

then, for the overall system it follows that  

( ) 3 3

dd d d
d d d d

1 d
d  d 0

d
maximum

systot res res

s s

V

FF F E
t t t t

kT p q
t

φ φ
ρ

φ

+∞ +∞ +∞

−∞ −∞ −∞

− = − − = −

−   = >  
   

=

∫∫∫ ∫ ∫ ∫  

(50) 
This has been proven in electro-convective instability 

very far from equilibrium and confirmed by numerical 
simulation by Sawada et al. [17]. The experimental 
counterproof of posing a diode to the electric power in 
order to prevent that electric energy would flow back into 
the reservoir also showed to not modify the electro-con- 
vective kinetics. 

Let’s consider the case that, far from equilibrium in 
subcritical conditions, the system makes a transition (at 
time t = 0) from a metastable state 1) to another metasta- 
ble one 2) so that for t < 0

−
 and t > 0

+
 we have the 

sub-system in a stationary state for which it holds 

 1  2d d
0

d d
sys sysF F
t t

= =              (51) 

so that by (50) for (t ≠ 0) we have 

 1  2

d
0

d
d d

0
d d

tot

sys sys

F
t

F F
t t

 <

 = =

            (52) 

Given (50), in principle, the following cases are possi- 
ble when the system makes the transition between states 
1 and 2. Case “a”: 

( )

( )

 1 2

 1 2

0 (53)
0 (54)

tot

sys

F

F

δ

δ
→

→

<
 >

 

Case “b”: 

( )

( )

 1 2

 1 2

0 (55)
0 (56)

tot

sys

F

F

δ

δ
→

→

<
 <

 

Hence, given that for the inverse transition 2→1 it 
would result 

Case “a” 

( )

( )

 2 1

 2 1

0 (57)
0 (58)

tot

sys

F

F

δ

δ
→

→

<
 <

 

Case “b”: 

( )

( )

 2 1

 2 1

0 (59)
0 (60)

tot

sys

F

F

δ

δ
→

→

<
 >

 

since transition between metastable happens in both di- 
rections, it follows that one of the two following cases 
must happen 
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( )

( )

 1 2

 1 2

0 (61)
0 (62)

tot

sys

F

F

δ

δ
→

→

<
 >

 

or 

( )

( )

 2 1

 2 1

0 (63)
0 (64)

tot

sys

F

F

δ

δ
→

→

<
 >

 

and since ( ) ( ) 2 1  1 2sys sysF Fδ δ→ →= − , considering the whole  

back and forth transition cycle, at least in one of the two 
directions, we have that 

0sysFδ >                 (65) 

5.3. Entropy Decrease in Incompressible Phases 
Generally speaking, the increase of free energy does not 
also mean that the entropy of the system decreases. This 
depends by how much is the energy change in the transi- 
tion. 

Nevertheless due to the incompressibility of the fluid 
phase that makes null energy variations due to the vo- 
lume change, from the general point of view, in isother- 
mal transitions in fluids (as the electro-convective ones) 
the free energy increase is almost due by the entropy 
decrease. 

In fact given that 

  intsys cinF E TS E E TSδ δ δ δ δ δ≅ − = + −  

Since in isothermal transitions in fluids the tempera- 
ture as well as the fluid density is practically constant, for 
van der Waals type fluids where the internal energy 

( )int intE E T=  depends only by the temperature, it fol- 
lows that int  0Eδ ≅  and hence that 

0sys cinF E TSδ δ δ≅ − >  

Moreover, given that in transition between metastable 
state the macroscopic kinetic energy cinE  of the mole- 
cules may not appreciably increases (as showed by Sa- 
wada and Suzuki [17] in electro-convective instability) 
we have  0cinEδ ≅  and hence that 

0sysF T Sδ δ− ≅ <  

From (62) we can see that the ability of a system to 
make back and forth transitions between metastable states 
as the consequence both of the presence of fluctuations 
and the tendency to the maximum stochastic free energy 
dissipation, allows the spontaneous increase of order in 
far from equilibrium stationary states in incompressible 
fluid phase. 

Finally it is worth mentioning that the possibility of 
having matter self-assembling in fluids different from 
water, in principle, allows the possibility to find orga- 
nized structures and even living ones in presence of liq- 
uid phase such the methane ocean of the Saturn’s moon 

Titan as hypothesized by the NASA [18,19]. 

6. Discussion 
Actually, Equation (37) has not been directly used to 
obtain (65). Nevertheless, it enters in the mechanism that 
allows the system to make transitions between metastable 
states. 

Even if a large fluctuation would displace the system 
from a metastable stationary state, this fact will not be 
enough to bring the system toward a different stationary 
state. 

It is the tendency to the (local) maximum stochastic 
free energy dissipation that makes it possible. 

As shown by Sawada and Suzuki in electro-convective 
instabilities [8,17], the tendency to maximize the free 
energy is the real force that attracts the system toward the 
new stationary condition. In fact, they showed that: 1) 
The stationary state with the higher free energy dissipa- 
tion is the most stable (i.e., it owns a longer living time 
before the transition to another metastable state takes 
place); 2) Approaching the fully stationary condition, the 
free energy dissipation of the system increases and reaches 
the top at the establishing of final stationary configura- 
tion. 

Therefore, we can depict the following mechanism: 
the maximum free energy dissipation generates a basin of 
attraction (see the appendix) (possibly larger, higher is 
the dissipation rate of the metastable state) for each me- 
tastable state and the fluctuations make the system to 
jump between them. 

This process allows having transition to a state with 
higher free energy, but this still does not warrant the 
generation of order. 

It is the incompressibility of fluids that transforms the 
free energy increase into an increase of system order. 

This step is just the first step toward the generation of 
life since many subsequent steps are needed. 

It is matter of evidence that living systems own four 
common elements: 1) The matter substrate, 2) Energy, 3) 
Organization, and 4) Water (fluid). Even this is well ac- 
cepted, the relationship between these characteristics has 
to be fully disclosed. 

As shown by Katchalsky and Perelson [20-22] the 
physical approach to biological systems puts its founda- 
tions on the postulate that it is possible to have sponta- 
neous order generation and that the physical law of en- 
tropy increase can break itself down far from equilibrium. 
Although the Prigogine’s principle brought new perspec- 
tives, it is limited to the existence of local equilibrium 
and a coherent general understanding is not available. 

On the other hand, it is possible to model the genera- 
tion of organic molecules at the base of living structures 
[23,24] and in some cases the far from equilibrium evo- 
lution can be described by reaction-kinetics equations, 
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but a general criterion is not available. 
The present paper shows that organization is promoted 

by energy dissipation and that the fluid is the phase that 
allows the generation of order. This picture satisfactorily 
explains why the four basic characteristics of living sys- 
tem appear always together. 

Given this mechanism, the development of life follows 
a well-defined pathway. 

The need of (fluid) water-type chemical process and 
reactions with the advantages of owing a rheological or- 
ganized structure has brought to development of the bi- 
phasic structure in living system. 

The wide spread bi-phasic structure of living systems 
(a solid matrix whose interstitial pores are filled by a 
fluid [25]) is the nature solution to the problem of main- 
taining the matter-energy flows of chemical processes 
and reactions in a fluid environment (diffusivity in solids 
is typically one thousandth of that one in water and 
makes not possible the living dynamics) and obtain a 
rheological structure able to maintain topological com- 
plexity, the premise of performing complexes functions. 

Energy is necessary for both macroscopic movements 
and microscopic ones (such as: tissue plasticity, self- 
repairing, brain plasticity, fluxes of matter and energy at 
the base of information storing and thinking) and it is at 
the base of the development, transformation and func- 
tioning of any “living” system. 

The matter is just the substrate. Thence being the energy 
the fundamental element of life, the evolution of living 
systems follows the way of finding better and better syn- 
ergies. 

The system that is more efficient has higher probabili- 
ty of adaptation (to develop functionalities that improve 
its existence) and surviving, so that life is not only com- 
plexity of structure but also (and mainly) complexity of 
functions. 

The present work aims to bring to the light the general 
criterion able to get insight into life expression and evo- 
lution eliminating the non-communicability between the 
physics and the life science. 

7. Conclusions 
In the present work the SQHA is used as a model to ob- 
tain the non-equilibrium kinetics of a real gas of L-J in- 
teracting particles and its fluid phase. 

In the case of particles whose mean distance is bigger 
than the quantum potential range of interaction. For L-J 
interaction potential is of order of the molecular interac- 
tion distance (so that particles can be described by the 
classic rigid sphere approximation), it is possible to de- 
scribe the SQHA evolution by means of a Fokker-Plank 
equation holding even far from the local thermodynamic 
equilibrium. 

In gasses and Marcovian liquids, close to stationary 

states, it is possible to define the kinetic equation of mo- 
tion as a function of the mean phase space molecular 
volume that shows maximizing the dissipation of the 
stochastic part of the SQHA-free energy. 

In the case of a real gas with no chemical reactions and 
at quasi-isothermal conditions, the principle disembogues 
into the maximum free energy dissipation confirming the 
experimental outputs of electro-convective instability. 

In this case, the model shows that the transition to 
states with higher free energy can happen and that the 
increase of free energy in incompressible fluids is almost 
given by a decrease of entropy leading to order increase 
and hence to matter self-organization. 

The output of the theory showing that the generation 
of order, via energy dissipation, is more efficient in fluids 
than in gases, because of their incompressibility, which 
leads to the re-conciliation between physics and biology 
furnishing the explanation why the life was born in wa- 
ter. 

The theoretical output also suggests that the life search- 
ing, out of the earth, must consider the possibility to find 
organized structures in presence of liquid phases differ- 
ent from water. 
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Appendix 
If we instantaneously perturb the stationary state at time t 
= 0 (i.e., by generating a force input  

transtrans
trans sH

x x xδ δ δ= +   ) so that the total φ -derivative  

(37) reads 

( ) ( )d
d transtrans s sHH

x x x x
t t
φ φ δ φ δ φ∂
− − + ⋅∇ = + ⋅∇
∂

     

(A.1) 
for t > 0, it follows that the system begins a transient 
maximizing the stochastic free energy dissipation by  
aligning φ∇  and ( )transs sx xδ +   along each other. If  

the process ends in a stationary state, the final kinetic 
equation reads 

( )( )2

d
d

1

sH
x x

t
D A O

φ φ φ

φ φ φ

′ ′ ′ ′− ⋅∇ = ⋅∇

′ ′ ′= −∇ ⋅ ∇ + + ∇

 

      (A.2) 

Depending by the boundary conditions and by the 
physical constants of the system, assigned a perturbation 

H H H′∆ = −  (or a fluctuation) leading to a response 

transxδ  , the final stationary value φ′∇  is assigned. 
During the relaxation process φ∇  and transxδ  are 

coupled each other. Approaching the stationary state, the 
vector ( )transs sx xδ +   draws closer to the vector sx′  
with 0

transsxδ →  complying with the maximum SFED 
given by the right side of (A.2). 

The maximal condition of right side of (A.2) is just a 
local property holding for sufficiently small variation. 
The basin of attraction of such maximum is the complex 
core of the problem once the system is assigned. It de- 
pends by the specific kinetic behavior of the system that 
defines the coupling between φ∇  and 

transsxδ  . 

If we apply a large perturbation H H H′∆ = −  the  
final stationary state (configuration) may differ from the  
initial one. 

If the fluctuation or perturbation is large enough to 
generate a response 

transsxδ   able to sensibly modify the 
free energy gradient field φ∇ , the system falls into the 
basin of convergence of a different local maximum so 
that the maximum SFED brings the system to a new sta- 
tionary state [17].

 


	As derived in reference [14], for a gas or mean-field fluid phases, we can describe our system by a single particle SQHA distribution function (DF)   from which we can extract the statistical single particle distribution   that obeys to the equation.

