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ABSTRACT 
This paper presents our vision of large-scale, dynamic social network analysis in real environments, which we 
expect to be enabled by the introduction of large-scale heterogeneous sensors in the ambient environment. We 
address challenges in realizing large-scale dynamic social network analysis in real environments, and discuss 
several promising applications. Moreover, we present our design and implementation of a prototype system for 
quasi-realtime social network construction. We finally present preliminary experimental results of dynamic so-
cial network analysis for six-person social gatherings in a real environment, and discuss the feasibility of dynam-
ic social network analysis and its effectiveness. 
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1. Introduction 
In network science, and particularly at its intersection with 
the social sciences, research analyzing the topological 
structures of social networks has been actively performed 
for further understanding complex social phenomena that 
involve interactions among a large number of people [1-3]. 
Such research is called social network analysis [4-7]. 
Because social ties are invisible and difficult to measure, 
sociologists have generally constructed one-time snap-
shots of social networks by using questionnaires, often for 
very small groups [1]. Conventional social network analy-
sis in the social sciences has therefore focused on small- 
scale and static social networks in real environments. 

Internet-based communication through email and bul-
letin boards, however, enables construction of large-scale 
social networks because of the availability of communi-
cation logs [5,8,9]. Internet-based communication logs are  

rich in terms of size and timing availability, and thus 
overcome several limitations of questionnaire-based so-
cial network construction. This represents dramatic 
progress in social network analysis, in that Internet-based 
communication logs can be used to construct large-scale 
and dynamic social networks in virtual environments 
[5,8-10]. 

On the contrary, recent advances in sensing technolo-
gies allow accurate monitoring of human-to-human inte-
ractions in real environments. For instance, human-to- 
human interactions can be monitored with a badge-shaped 
device that continuously tracks items such as utterances 
and changes in body direction in the MIT Media Lab. [11] 
and the Socio Patterns project [12]. Many heterogeneous 
sensors can also be embedded in the ambient environment 
for accurate and non-intrusive monitoring of many types 
of human activities [13,14]. 
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With the aid of heterogeneous sensors in the ambient 
environment, we anticipate that large-scale and dynamic 
social network analysis in real environments will soon 
become possible. As discussed above, trends in social 
network analysis are shifting from small-scale static 
analysis in real environments to large-scale dynamic 
analysis in virtual environments. We expect this trend to 
continue toward large-scale dynamic analysis in real en-
vironments (Figure 1).  

This paper presents our vision of large-scale, dynamic 
social network analysis in real environments, which we 
expect to be enabled by the introduction of large-scale 
heterogeneous sensors in the ambient environment. We 
address challenges in realizing large-scale dynamic social 
network analysis in real environments, and discuss several 
promising applications. Moreover, we present our design 
and implementation of a prototype system for qua-
si-realtime social network construction. As the first step to 
realize large-scale dynamic social network analysis in real 
environment, we finally present preliminary experimental 
results of dynamic social network analysis for six-person 
social gatherings in a real environment. Although our 
experiments are small-scale, our preliminary results with 
the prototype system show the feasibility and effective-
ness of dynamic social network analysis. 

The remainder of this paper is organized as follows. In 
Section 2, we discuss challenges in realizing large-scale 
dynamic social network analysis in real environments. 
Section 3 describes promising applications of dynamic 
social network analysis in real environments. We intro-
duce our implementation of a prototype system for qua-
si-realtime social network construction in Section 4. Case 
studies using our prototype system for quasi-realtime 
social network construction are shown in Section 5. Fi-
nally, Section 6 gives our conclusions and a discussion of 
future work. 
 

 
Figure 1. Trend toward large-scale, dynamic social network 
analysis in real environments; classification of several social 
network analyses in terms of network dynamics and envi-
ronment type. 

2. Challenges 
For realizing large-scale, dynamic social network analysis 
in real environments, social network construction should 
be rapid, accurate, reliable and secure. In this section, we 
discuss five major challenges in achieving this goal. 

2.1. Individual Identification 

In real environments, individual identification is neces-
sary for social network analysis. Several sensing tech-
nologies such as RFID (radio frequency identification) 
[15], image recognition [16], and biometric identification 
[17] can be utilized. For non-intrusive sensing, RFID and 
image recognition technologies are promising. Humans in 
real environments move about, and thus individual iden-
tification requires movement tracking. 

2.2. Individual Positioning 

The position of each person must be tracked. Two-dimen- 
sional positioning is required at a minimum, and three- 
dimensional positioning is required in some cases such as 
in multistory buildings. Position tracking is possible using 
RFID devices [15], ultrasonic waves [18], and image 
recognition [16]. Although basic social network analysis 
can be performed from only body position, more ad-
vanced analysis become possible if the position of indi-
vidual body parts is measurable, because head, hand, and 
leg movements give nonverbal cues for analyzing inter-
active communication. 

2.3. Communication Detection 

The most important yet most difficult task is the detection 
of social ties. Constructing a social network requires 
identification of, at a minimum, the direction, strength, 
and duration of communication. Moreover, in multi-party 
communication, whether communication is one-to-one or 
one-to-many must be identified, for which several types of 
sensing data are required. For instance, head and body 
direction, as well as the content of communication ob-
tained through voice recognition, can be used for com-
munication detection. 

2.4. Communication Classification 
In simple social network analysis, construction of a social 
network with single-valued social ties is sufficient. For 
example, social ties can be simply represented by the 
frequency of communication between pairs of individuals. 
However, thanks to the availability of heterogeneous 
sensors, one can now create social networks with mul-
ti-valued social ties, enabling more detailed social net-
work analysis. For instance, social ties can be represented 
by several communication attributes such as utterance 
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loudness, emotional tone, and communication context. 
One challenge is measurement or estimation of such 
communication attributes through the use of heterogene-
ous sensors. As an example, temperature sensors, biome-
tric sensors, and image recognition could be utilized for 
communication classifications. 

2.5. Privacy and Security Concerns 
Since social network analysis in a real environment is 
based on personal information, privacy and security con- 
cerns should be given a high priority. Large-scale dy-
namic social network analysis naturally requires the col-
lection of a large amount of personal information. In many 
cases, sensor data should be pre-filtered to protect privacy 
by, for example, private data deletion or data anonymiza-
tion. Also, online storage that directly or indirectly rece-
ives sensor information must be reliable and secure. 

In addition to the five challenges discussed above, there 
are several unresolved issues regarding individual sensors 
(e.g., quality assurance, which involves accuracy, time-
liness, and outlier management) and regarding coopera-
tive sensors (e.g., redundancy, reliability, and conflict 
resolution for contradictory sensing data). Moreover, if 
heterogeneous sensors are battery-powered, energy effi-
ciency is vital. 

3. Promising Applications 
The following is a discussion of several promising ap-
plications of large-scale, dynamic social network analysis 
in real environments. 

3.1. Social Network Evolution Analysis 
One promising application is sociological analysis of 
community formation. For instance, large-scale, dynamic 
social networks accurately represent the dynamics of 
socialization, which can be used to study the mechanism 
of social network evolution. 

3.2. Interactive Communication Analysis 
Interactive communications can be represented as a dy-
namic social network. Hence, another promising applica-
tion is behavioral psychological analysis of interactive 
communication. Detailed analysis of interactive commu-
nication requires construction of a social network with 
multi-valued social ties to capture the detailed behavior of 
each person. 

3.3. Communication Assistance 
Large-scale, dynamic social network analysis should help 
build applications that assist communications. Once the 
dynamics of communication are represented as a dynamic 

social network, several conventional tools for social net- 
work analyses can be applied. For instance, cluster detec-
tion algorithms [19,20] can detect communities in the 
network, and centrality measures [21,22] can discover key 
persons. Such information could indicate the state of 
communication. We can therefore design an application 
that assists communication in real environments. 

3.4. Interactive Art 
Large-scale, dynamic social networks constructed from 
heterogeneous sensors can be used for interactive art. 
With conventional network visualization software, social 
networks can be quickly visualized in a number of ways. 
In particular, changes in communication can be quickly 
reflected in a visualized social network, which could en-
able a new type of interactive art. 

3.5. Multi-Party Gaming 
Multi-party gaming is another promising and interesting 
application. Large-scale, dynamic social networks accu-
rately capture activity in a place. As with interactive art, 
this information can be used for new types of multi-party 
gaming. For instance, a game application can make deci-
sions based on the results of dynamic social network 
analysis. 

4. Quasi-Realtime Social Network 
Construction 

For examining the feasibility of dynamic social network 
analysis, we have designed and implemented a prototype 
system for quasi-realtime social network construction. 
The system is built in our proposed Ambient Suite, which 
is a room-shaped environment with heterogeneous sensors 
[13] (Figure 2). Ambient Suite has microphones, 3D 
trackers, and acceleration sensors to sense participant 
utterances, head positions, and hand gestures, respectively. 
We utilize these sensors to realize quasi-realtime social 
network construction. Refer to [13] for a detailed expla-
nation of the Ambient Suite. 

For quasi-realtime social network construction, each 
person was equipped with a head-mounted marker and a 
sensor-equipped cup [23]. The head-mounted marker was 
continuously tracked with multiple infrared cameras 
(OptiTrack FLEX: V100R2) in the Ambient Suite. The 
sensor-equipped cup (equipped with a fourth generation 
Apple iPod Touch) monitored utterance and gestures of a 
person with a microphone and an accelerometer. All 
sensor data were quickly transferred to the management 
server; infrared cameras and the management server were 
connected with USB cables, and sensor-equipped cups 
with 54 Mbit/s WiFi. 

From among the several types of information obtained  
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Figure 2. Ambient Suite, a room-shaped ambient informa-
tion environment equipped with a number of heterogeneous 
sensors. 
 
from the heterogeneous sensors, we used the head position, 
head direction, and volume of utterance of each person for 
quasi-realtime social network construction. 

Our system constructs social network utilizing these 
information. Occurrences of communications among 
arbitrary pairs are detected based on the positions and 
angles of their heads. A social tie is inferred from the 
loudness of utterance, head position, and head direction of 
each person. We used a simple threshold-based commu-
nication detection that assumes two individuals are talking 
to each other when they are within a predetermined dis-
tance from each other, facing each other within a prede-
termined angle, and utterances exceed a predefined thre-
shold loudness. Specifically, a social tie from person i to j 
is created when the distance between i and j is less than x 
[m], the relative head angle is less than θ, and the loudness 
of i’s utterance exceeds V [dB]. The weight of a link (the 
strength of a social tie) is defined as the accumulated 
duration of conversation. 

Our implementation instantly constructs dynamic so-
cial networks from sensor data, which implies the feasi-
bility of quasi-realtime social network analysis applica-
tions such as interactive communication analysis, inter-
active art, and multi-party gaming. 

Moreover, our implementation almost instantly calcu-
lates several network analysis measures such as node- 
level measures of degree, betweenness, closeness, and 
eigenvector centrality [21,24], and graph-level measures 
such as graph centrality [25], density, diameter, average 
path length, and clustering coefficient [26]. Such infor-
mation could indicate the state of communication. We can 
therefore design an application that assists communication 
in real environments. 

Our implementation supports quasi-realtime social net- 
work visualization. A dynamic social network is drawn 
every construction interval. Detailed information from 
heterogeneous sensors such as the position and the direc-
tion of each person can be overlaid on the visualization. 
Snapshots of the dynamic social network can be exported 

into several formats used in popular network analysis 
tools such as Pajek, NetMiner, and Cytoscape. Hence, a 
variety of conventional social network analysis tools can 
be utilized for quasi-realtime social network analysis. 

5. Experiments in Ambient Suite 
5.1. Overview 

In this section, we present preliminary experimental re-
sults for dynamic social network analysis of six-person 
social gatherings in a real environment. Analysis is per-
formed using our system for quasi-realtime social network 
construction. Sensor data were obtained for quasi-realtime 
social network construction for six individuals, who were 
asked to freely communicate with others in the Ambient 
Suite. For each person, the utterance loudness and the 
position and direction of the head were periodically ob-
tained via sensors. The sensing intervals for the head 
position, the head direction, and the utterance loudness 
were 100 ms, 100 ms, and 250 ms, respectively. We used 
threshold volume V = −43 dB, distance threshold x = 3 m, 
and facing angle threshold θ = π/3 for communication 
detection. 

We repeated a 12-min experiment 17 times with non- 
overlapping participants. Each group consisted of six 
individuals, and thus 101 participants (51 men and 50 
women; one woman was absent) took part in the experi-
ment. Each group consisted of three men and three women 
who had never met each other before the experiment. All 
participants were Japanese graduate or undergraduate 
students whose ages ranged from 18 to 24 years (average 
21.7 years). Detailed settings of Ambient Suite are ex-
plained in [13]. 

Several snapshots of a real dynamic social network are 
shown in Figure 3. The thickness of each edge (social tie) 
represents its weight (duration of communication). 

5.2. Relation between Centrality Measure and 
Leadership Strength 

We first investigate the relation between centrality mea- 
sure of a node (a participant in the experiment) and the 
strength of that participant’s leadership. In social network 
analyses, centrality measures such as degree, closeness, 
and betweenness centralities [21] are widely used to dis-
cover an individual who plays a central role in a commu-
nity or to infer the leadership strength of that person 
[27-29]. Therefore, several analyses to investigate the 
relation between leadership strength of a person and cen-
trality measure have been performed [30-32]. For instance, 
Freeman et al. analyzed the relation between leadership 
and degree centrality, closeness centrality, and between-
ness centrality through problem-solving experiments [30]. 
We performed similar experiments utilizing our system.     
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Figure 3. Snapshots of a real dynamic social network constructed and visualized when six individuals (circles) are freely 
talking with others; lines between pairs indicate social ties, and line thicknesses represent the duration of communication. 
Individuals with the highest betweenness [21] (a centrality measure obtained from social network analysis) are shown in red. 
 

We calculated degree, closeness, and betweenness 
centralities of each participant every 2 min during the 
experiments. We constructed a weighted directed graph 
from sensor data at 2 min intervals, and calculated the 
in-degree, out-degree, closeness, and betweenness cen-
tralities of each participant. Node i represents a participant, 
link (i, j) represents communication from participant i to j, 
and link weight wi,j represents accumulated duration of 
communication from participant i to j. Node i’s in-degree 
centrality is defined as the sum of the link weights of 
incoming links of node i, and out-degree centrality is 
defined as the sum of the weights of outgoing links of 
node i. For calculating closeness centrality and between-
ness centrality, the distance between nodes i and j is de-
fined as 1/wi,j [7]. 

Each participant is asked to subjectively select a leader 
among other participants for every 2 min in the experi-
ments using our constructed sensor-equipped cup [23]. 
We categorize participants by the number of nominations 
as leader by other participants, and calculated the average 
of centrality measures for each category. Figure 4 shows 
the average of centrality measures of participants for each 
category based on their number of nominations as a 
leader. 

Figure 4 shows that participants with more nomi-
nations as leader tended to have higher centrality scores, 
except in-degree centrality. This result suggests that there 
is a strong correlation between the leadership strength of a 
participant and his or her centrality score in a social ga-
thering. Low correlation between in-degree centrality and 
leadership strength suggests that a participant who listens 

to others is rarely considered to be a leader in a social 
gathering. 

5.3. Relation between Structure of Social 
Network and Activity of Conversation 

We next obtained several popular measures in social 
network analysis, and investigated their evolution. As an 
example, Figure 5(a) shows the evolution of graph cen-
trality based on the betweenness centrality [25] in two 
dynamic social networks. In this case, graph centrality can 
be thought of as a metric for measuring how the commu-
nications among people are balanced; graph centrality is 
lower if everyone has similar betweenness centrality. 
During the experiment, all individuals were asked to 
subjectively grade the activity of their communications in 
five levels. Evolutions of average activity scores subjec-
tively given by six individuals are shown in Figure 5(b). 

Comparison of Figures 5(a) and (b) indicates a corre-
lation among those evolutions. Note that Figure 5(a) was 
obtained from only sensor data from heterogeneous sen-
sors, whereas Figure 5(b) was obtained from participant 
questionnaires. These results suggest that in these two 
groups, network measures may be effective to infer ac-
tivity scores subjectively given by participants. More 
detailed analysis (i.e., analysis using all groups’ data) is 
given in Section 5.5. 

5.4. Analysis of Burstiness 
In recent years, it has been found that many human activ-
ities show interesting patterns, for instance, the inter-event     
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Figure 4. Average of centrality measures of participants for each category based on number of nominations as leader by other 
participants. (a) Average out-degree centrality; (b) Average in-degree centrality; (c) Average closeness centrality; (d) Aver-
age betweenness centrality. 
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Figure 5. An example analysis of social networks, which are constructed with our system, for six-person social gatherings in a 
real environment other participants. (a) Evolution of graph centrality based on betweenness centrality; (b) Evolution of av-
erage activity scores subjectively given by six individuals. 
 
time distribution follows a power law [33,34]. This bursty 
nature of human activities has attracted the attention of 
many researchers [33-36]. As examples, the inter-com- 
munication times of email messages, phone calls, and 
SMS messages have been analyzed [34]. Our system can 
monitor the events of face-to-face communication over 

very short time scales. We can therefore analyze inter- 
event time of face-to-face communications with our sys-
tem. 

Figure 6 shows a relative frequency distribution of ∆ti,j , 
the inter-event time of face-to-face communications be-
tween participants i and j. 
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Figure 6 shows that inter-event time of face-to-face 
communications in our experiments follows a heavy- 
tailed distribution, like a power law distribution. A heavy- 
tailed distribution of inter-event time is observed in sev-
eral types of human activities [34,37]. Our result provides 
evidence that supports the hypothesis that such a heavy- 
tailed distribution of inter-event time is a universal cha-
racteristic of human activity. 

5.5. Estimation of Activity with Multiple 
Regression Analysis 

Our system for dynamic social network construction can 
be used to construct a model for estimating the activity 
level of a conversation. We can obtain various measures 
of dynamically changing social networks. By analyzing 
the relation between such measures and activity levels, we 
can construct a model to estimate the activity level. Since 
estimating the current state of group is a key technique for 
realizing ambient environments, constructing a model to 
estimate activity level should be of great value. 

In this section, we perform multiple regression analysis. 
As independent variables, we use the six variables shown 
in Table 1. As the dependent variable, we use the average 
of activity scores subjectively given by six participants. 

Before performing multiple regression analysis, we 
calculate correlation coefficients among independent and 
dependent variables. Table 2 shows a correlation matrix 
of independent and dependent variables. 

Table 2 shows that there are moderate correlations 
among independent variables such as Closeness and Out- 
degree. Therefore, it is expected that using all independent 
variables does not provide a good regression model. 

We therefore perform stepwise selection to find ap-
propriate variables, and construct a multiple regression 
model. Regression coefficients for each variable in the 
constructed model are shown in Table 3. The relation 
between predicted activity score with the model and the 
actual activity score is shown in Figure 7. 

Table 3 shows the model can explain the activity level 
with coefficient of determination R2 = 0.28. Moreover, 
this result shows that variables In-degree and Duration 
are good indicators for estimating activity level. This 
result suggests that people feel conversations become 

 

 
Figure 6. Relative frequency distribution of ∆ti,j, the in-
ter-event time of face-to-face communications between par-
ticipants i and j. 

 
Table 1. Independent variables of multiple regression analysis. 

Name Description 

Betweenness Graph centrality based on betweenness centrality 

Closeness Graph centrality based on closeness centrality 

Out-degree Graph centrality based on out-degree centrality 

In-degree Graph centrality based on in-degree centrality 

Utterance Sum of the durations of utterances of all particippants 

Duration Time elapsed from the start of the experiment [min] 

 
Table 2. Correlation matrix of independent and dependent variables in multiple regression analysis. 

 Betweenness Closeness Out-degree In-degree Utterance Duration Activity 

Betweenness 1.00 0.45 0.30 0.00 −0.15 0.14 0.19 

Closeness  1.00 0.79 0.05 −0.10 0.26 0.30 

Out-degree   1.00 0.46 0.45 0.35 0.40 

In-degree    1.00 0.68 0.21 0.31 

Utterance     1.00 0.28 0.18 

Duration      1.00 0.42 

Activity       1.00 
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Table 3. Regression coefficients for each variable in the 
multiple regression model to estimate the activity level of 
conversation (coefficient of determination R2 = 0.28, **p < 
0.01, *p < 0.05). 

Variable Regression coefficient 

Intercept 3.2** 

In degree 0.0008* 

Duration 0.044** 

Out degree 0.0031 

Utterance −0.0009 

 
more active as time elapses. High graph centrality based 
on in-degree centrality implies the existence of a partici-
pant who listens to others. Therefore, it is expected that 
existence of such a participant activates conversations. 
This finding should be useful for promoting face-to-face 
conversation among people who has never met each other 
before. 

Figure 7 shows moderate correlation between esti-
mated and actual activity scores. This result suggests that 
a constructed model is effective for estimating the activity 
level of social gatherings in a real environment. However, 
we should investigate the effectiveness of this model by 
application to other groups. It is important future work to 
investigate the robustness of this model by applying it to 
different groups with different numbers of participants. 

6. Conclusions and Future Work 
This paper presented our vision of large-scale, dynamic 
social network analysis in real environments, which is 
expected to be enabled by the introduction of large-scale 
heterogeneous sensors to ambient environments. We have 
addressed challenges in realizing large-scale, dynamic 
social network analysis in real environments, and dis-
cussed several promising applications. Moreover, we have 
presented our design and implementation of a prototype 
system for quasi-realtime social network construction. 
Preliminary experimental results with the prototype sys-
tem indicate the feasibility and effectiveness of qua-
si-realtime social network analysis. 

For future work, we plan to analyze dynamically 
changing large-scale social networks with our imple-
mentation. In this paper, we have shown that our current 
prototype system works for small-scale social networks. 
However, to realize large-scale social network analysis, 
we need more large-scale experiments. Our current im-
plementation uses infra-red camera for individual identi-
fication and positioning. For more large-scale environ-
ment, more scalable techniques such as RFID or AR 
(Augmented Reality) markers are suitable. 

 
Figure 7. Relation between predicted activity score with the 
model and the actual activity score (correlation coefficient r 
= 0.53). 
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