
Journal of Mathematical Finance, 2014, 4, 35-46 
Published Online January 2014 (http://www.scirp.org/journal/jmf) 
http://dx.doi.org/10.4236/jmf.2014.41004  

OPEN ACCESS                                                                                         JMF 

Applying the Barycentric Jacobi Spectral Method to Price 
Options with Transaction Costs in a Fractional 

Black-Scholes Framework 

B. F. Nteumagné, E. Pindza, E. Maré 
Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, Republic of South Africa 

Email: eben.mare@up.ac.za 
 

Received October 28, 2013; revised November 30, 2013; accepted December 12, 2013 
 

Copyright © 2014 B. F. Nteumagné et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor-
dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual 
property B. F. Nteumagné et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. 

ABSTRACT 

The aim of this paper is to show how options with transaction costs under fractional, mixed Brownian-fractional, 
and subdiffusive fractional Black-Scholes models can be efficiently computed by using the barycentric Jacobi 
spectral method. The reliability of the barycentric Jacobi spectral method for space (asset) direction discretiza-
tion is demonstrated by solving partial differential equations (PDEs) arising from pricing European options with 
transaction costs under these models. The discretization of these PDEs in time relies on the implicit Runge-Kutta 
Radau IIA method. We conducted various numerical experiments and compared our numerical results with ex-
isting analytical solutions. It was found that the proposed method is efficient, highly accurate and reliable, and is 
an alternative to some existing numerical methods for pricing financial options.  
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1. Introduction 

Modeling of financial derivatives has been of great interest in the past three decades. Numerous mathematical 
models have been developed from the classical Black-Scholes [1] framework to help investors in their decision 
making process. These models are based on an arbitrage argument, i.e., by continuously adjusting a portfolio 
consisting of a stock and a risk-free bond, an investor can exactly replicate the return to any option on the stock. 

In the presence of transaction costs in capital markets, the presence of an arbitrage argument [2] is no longer 
valid [3], since perfect hedging is impossible. Due to the infinite variation of the geometric Brownian motion, 
the continuous replication policy incurs an infinite amount of transaction costs over any trading interval no matter 
how small it might be. Therefore, in recent years, one observes many generalizations of the Black-Scholes mo- 
del to deal with the problem of option pricing and hedging with transaction costs. This leads to the Black-Scholes 
model but with an adjusted volatility. Leland [3] was the first to examine option replication in a discrete time 
setting, and proposed a modified replicating strategy, which depended upon the level of transaction costs, the re- 
vision interval, the option to be replicated and the environment. Subsequently, several authors proposed new 
models, but all in discrete time [4,5]. However, these models based on the diffusion process known as geometric 
Brownian motion (GBM) have severe shortcomings, for example, long-range correlations, heavy-tailed and 
skewed marginal distributions, lack of scale invariance and periods of constant values, to enumerate these only. 
Recently, Wang [6] obtained a European call option pricing formula using a mean self-financing delta hedging 
argument in a discrete time setting and then showed how scaling and long-range dependence impacted dramatical- 
ly on the pricing of options using the fractional and multifractional Black-Scholes model with transaction costs. 
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In continuous time, a lot of efforts have been done in order to alleviate the problem of an infinite amount of 
transaction costs over any trading interval when the asset process follows a geometric Brownian motion. Mag-
dziarz [7] et al. introduced a subdiffusive geometric Brownian process which captures the subdiffusive charac-
teristics of financial markets. They showed that their model is arbitrage-free. The same idea was used later by 
Wang et al. [8], Hui and Yun-Xiu [9] to obtain a Black-Scholes equation with transaction costs in subdiffusive 
fractional Brownian motion regime. However, closed-form solutions of these PDEs in finance are generally rare. 
Therefore, one has to consider numerical methods to obtain solutions. 

In this paper, we are concerned with the application of the barycentric Jacobi interpolation to value options 
with transaction costs under fractional [6], mixed Brownian-fractional [10] and subdiffusive fractional [8] 
Black-Scholes models. Barycentric spectral methods were introduced by Baltensperger et al. [11] to solve 
boundary value problems. Recently, these methods have emerged in the field of finance as a promising tool to 
solve option pricing problems. Pindza and Patidar [12] proposed an accurate method, namely the barycentric 
Chebyshev spectral method, to price options in illiquid markets. Ngounda et al. [13] used the barycentric Che-
byshev domain decomposition method to provide fast and accurate results for pricing European options with 
jumps, which was later extended and applied to Heston’s volatility model (see [14]). Most of the work on bary-
centric spectral methods has been based on the use of uniform or Chebyshev grids. Recently, Wang et al. [15] 
computed explicit barycentric weights for Jacobi polynomial interpolation in the roots or extrema of classical 
orthogonal polynomials in terms of the nodes and weights of the corresponding Gaussian quadrature rule. Hence, 
we investigate the utility of this new barycentric interpolation in the field of finance. The semi-discretization of 
the PDE in time is realized by using a 7-stage 13th-order fully implicit Runge-Kutta Radau IIA method with 
adaptive time stepping [16]. 

This paper is structured as follows. Section 2 reviews the option pricing formulation with transaction costs 
under fractional, mixed Brownian-fractional and subdiffusive fractional processes. In Section 3, we introduce 
the Jacobi barycentric spectral method, semi-discretize the PDE in the asset space and propose a conformal map 
in order to improve the accuracy of our method. In Section 4, we perform numerous experiments in order to ad-
vocate the utility of the barycentric spectral method. Finally, Section 5 gives a summary and scope for further 
research.  

2. Pricing with Transaction Costs under Fractional, Mixed Brownian-Fractional and 
Subdiffusive Fractional Processes 

Let     0 0
, , , ,t tS   

  B t
t t 

 be a complete probability space carrying a fractional Brownian motion 

H t
 with Hurst exponent  0,1H , where   is the set of all possible outcomes of the experiment 

known as the sample space,  is the set of all events,  is a real world probality, t  is a natural filtration, 

t  a risky underlying asset price process. Assume that the price  of the underlying stock at time  satisfies 
a fractional Black-Scholes model 

  
S tS t

  0 exp ,tS S t B t   H                               (1) 

where  ,  and 0  are constants. Assume that the portfolio is revised every small fixed time 
step 

0,1H   > 0S
t ; transaction costs are proportional to the value of the transaction in the underlying. Let  denote the 

round trip transaction cost per unit dollar of transaction. Then under all the assumptions given by Wang [6], the 
Black-Scholes equation with transaction costs assuming factional Brownian motion can be written as   

k

2 2
2

2
0,

2

u u u
rS S ru

t S S

  
  

  


                          (2) 

where the modified volatility is given by 

     2 12 2 sign .
H

t Le H                                  (3) 

Here  is the fractional Leland number [6].  Le H
If we assume that the price  of the underlying stock at time  satisfies a mixed Brownian-fractional 

Brownian model  
tS t

    0 exp ,tS S t B t B t     H H                          (4) 

then under all the assumptions given by Wang [10], the Black-Scholes equation with transaction costs in mixed 
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Brownian-fractional Brownian motion can be written as  
2 2

2
2

0,
2

u u u
rS S ru

t S S

  
  

  


                             (5) 

where the modified volatility is given by  

     

1

22
2 1 2 22 2 22

sign ,
π

H H

H Ht k t
t

     


 
           

                  (6) 

with 

22 2 2
2

2

1 1
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,
2

2
 and  .

H

H H

k k k
t

k u
t

S

 





 
     

           


d

 

A subdiffusive fractional Brownian motion is described by 

        2
d d

H
S t S t t S t B t   .                           (7) 

Wang et al. [8] obtained the modified volatility corresponding to the continuous Black-Scholes equation with 
transaction cost in subdiffusive regime as  

2 2
2

2
0,

2
Hu u u

rS S ru
t S S

  
  

  


                           (8) 

where the modified volatility is given by  

   
2

1
2 2 1

2

2
2 1 1 sign

2

H

H
H

t k
Ht

  2. 
 


   

        
 

                     (9) 

Here    represents the gamma function evaluated at   and  sign   is the second derivative of the 
option value with respect to the asset. 

The difference between American and European call and put options is made by the initial and boundary con-
ditions. In this work we focus exclusively on the European call option. Such options have the following initial 
and boundary conditions  

     
 
0, 0, ,0 max ,0 ,

, e , as  ,rt

u t u S S K

u S t S K S

  

   
                        (10) 

where  0,S    and  0,t T . We want to solve the three PDEs (2), (5) and (8) subjected to modified vola-
tilities (3), (6) and (9), respectively. Before moving to the applications of the barycentric Jacobi spectral method 
to solve these problems, it is worthwhile to consider some preliminaries of this method. 

3. Barycentric Jacobi Spectral Collocation Method 

In this section, we turn our attention to the problem of barycentric Jacobi interpolation and present a fast algo-
rithm for the efficient computation of the interpolation formula using Jacobi-Gauss-Lobatto (JGL) points. This 
interpolation is realized by a class of the Lagrange form of the interpolating polynomial, as follows. Let jx , 

 be a set of distinct nodes. Then the polynomial of degree  that interpolates the function 
 at these points is given by [17]  

0,1, ,j  
 u x

N N

     
0 0,1,

,
NN

k
N j j j

j k k j

,
j k

x x
p x u x x

x x  


 

                           (11) 

where the Lagrange polynomial  corresponding to the node j jx  has the property  
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  1,

0, otherwise,j k

j k
x


 


                                (12) 

with .  Generally, the Lagrange form of the interpolating polynomial (11) is not advocated for 
numerical computations. In particular, it requires 

, 0,1, ,j k N 
 2N  additions and multiplications for each evaluation of 

N  and every time a node j p x x  is modified or added, all Lagrange fundamental polynomials have to be re-
calculated. However, with slight modifications, the Lagrange formula is indeed of great practical use. This has 
been noted by several authors, including Henrici [18] and Werner [19]. Berrut and Trefethen [20] modified the 
Lagrange polynomial through barycentric interpolation and proposed an improved Lagrange formula. Following 
[20], we define  x , the numerator of  in (11) divided by j jx x , as  

  
0

.
N

j
j

x x x


                                     (13) 

In addition, if we define the barycentric weight by  

 
0,

1
, 0,1, ,j N

j k
k k j

j
x x



 

 


 ,N                          (14) 

i.e.,  1j jx   , then  in (11) becomes  j

    .j
j

j

x x
x x





                                  (15) 

Consequently, the Lagrange formula (11) becomes  

   
0

.
N

j
N j

j j

p x x u
x x






                               (16) 

In particular, if   1u x  , we obtain  

   
0 0

1
N N

j
j

j j

.
j

x x
x x



 

 
                                 (17) 

Dividing (16) by (17), we get the barycentric formula for Np  as  

  0

0

.

N
j

j
j j

N N
j

j j

u
x x

p x

x x
















                                 (18) 

This is the most used form of Lagrange interpolation in practice and admits  N  operations. In order to 
obtain good approximations via interpolation, the choice of interpolation nodes and barycentric weights is par-
ticularly important. For certain particular sets of points, such as equidistant points as well as Chebyshev points, 
the barycentric weights j  can be computed analytically [20]. Recently, Wang et al. [15] computed explicit 
barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials in 
terms of the nodes and weights of the corresponding Gaussian quadrature rule. 

In this paper, we are interested in the barycentric Jacobi interpolation. The Jacobi-Gauss-Lobatto quadrature 
rule is defined by  

   1

1
0

,
N

j j
j

u x w u x




                                  (19) 

where the Jacobi-Gauss-Lobatto points  
0j

N

j
x


 are the zeros of      ,2

11 Nx P x 
  and    ,

NP x   is the Ja-
cobi polynomial of degree . The following result gives an analytical formula of barycentric weights for the 
Jacobi-Gauss-Lobatto points. 

N

Theorem 3.1 ([15]) Let , 0, ,jx j   N , be the roots of      ,2
11 Nx P x 
  and let  be the corresponding  jw

weights of the interpolatory quadrature rule with weight function    1 1x x
   . Then the simplified bary-
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centric weights are for Jacobi-Gauss-Lobatto points, the simplified barycentric weights j  are given by  

 1 ,

1,   0

1,   

1, otherwise,

j

j j j

j

w

j

j N

 


 

 

 
  



                                   (20) 

The proof of Theorem 3.1 can be found in [15]. 
The computation of entries of the first and second order differentiation matrices  and  where  1D  2D

       1 2and ,ij j i ij j iD x D x                              (21) 

is given as in [11] by  

 
 

,         if   ,

,     if   ,

j i

i j
j i N

j i
i j

i j
x x

x

x i j

 




   

  





                               (22) 

 
 

0,

1
2 ,   

,                                       if  ,

N
j i k i

k k ii j i k i j
j i

N

j i
i j

if ,f j
x x x x x x

x

x f j

   
 



  
          
  










                        (23) 

where .  , 0,1, ,i j N 

3.1. Conformal Mappings for High Resolution of Non-Smooth Initial Conditions 

It is well-known that the solution of Equation (8) is very sensitive to localization errors when  is in the vicin-
ity of , because the second derivative of the payoff does not exist at this point. Therefore, to increase accu-
racy it would be reasonable to use an adaptive mesh with high concentration of the mesh points around 

S
K

S K , 
while a rarefied mesh could be used far away from this area. If we assume that  ,bS a , where both  and 

are finite, then without further loss of generality we may assume that the interval of integration is 
a

[ 1,1]b  , as 
the linear transformation  

   2S b a x a b    .                                (24) 

In this paper, we use the conformal map g  given in [21] by  

   1
sinh ,x g y y 


     




                            (25) 

where  

,
2

,
    

 
 

 


                                (26) 

with  

   1 11 , 1sinh sinh      ,      
  

  
                          (27) 

where   and   determine the magnitude of the region of rapid change and the location, respectively. Here, 
 represents the Jacobi-Gauss-Lobatto points. y
In Figure 1, we plot the new grid obtained from the original Jacobi  grid by using transformations (25) 

and (24) together. The new grid in 
y

 S x
 

 contains 100 nodes distributed from  to . Value of 
parameters used in this example are:  and 

0a  250b 
410     2K b a b a     , where  is the strike price. 

In addition, we show the transformation function around  for 
K

K 10   (black),  (green),  
(purple) and  (red). We observe that when 

210 310 
410    decreases the grid approaches a Jacobi-Gauss-Lobatto  
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Figure 1. Asset direction grids S obtained from the mapped Jacobi grids x. 
 
grid distribution one. When   increases we accommodate more grid points around the strike price. 

A significant advantage of the barycentric Jacobi spectral method is that it eliminates tedious computations of 
transformed derivatives using the chain rule as is usually the case in other spectral collocation methods. 

3.2. Application to the Black-Scholes PDE  

We discretize the Black-Scholes PDEs (2), (5) and (8) in the asset (space) direction by means of barycentric Ja-
cobi spectral method. Let  x g y  be the transformed Jacobi-Gauss-Lobatto points, the first step is to trans-
form  1,1x   into  max0,S S  that better suits the option at hand using  max max2 .x S S S   Now 
writing , the PDE (8) together with its initial and boundary conditions yields   ,u S t  u x t,

   
 
   

0
max

0

,

,0 , 1 1, 0 ,

1, , 1, , 0 ,

t xx x

N

u p x u q x u ru

u x u x S S

u t u u t u t T

  
      
     

                     (28) 

where  

     
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2 2
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1 2 2
, .
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  
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  





k



 

Substituting (11) into (28) yields the following system of nonlinear ODEs  

             

   

   

0 0

0

0

,

,

1, , 1, .

N N

t k k k
k j

N

k k
k

N

u x t p x u t x q x u t x

r u t x

u u t u u t

 



   

 


  

 



 


                  (29) 

In order to write (29) in matrix form, we introduce the following matrix and vector notations  

 
        
        

     

T

1 2 1

1 1 1

2 2 2

, , ,

,  ;  , 1, , 1,

,  ;  , 1, , 1,

diag ,  diag ;  1, , 1,

N

ij ij j i

ij ij j i

i i

u u u u

D D D x i j N

D D D x i j N

P p x Q q x i N


 

    


   

   



 

 



                     (30) 
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where I  is an    1N N  1  identity matrix. Consequently, (29) can be expressed as an initial value prob-
lem of the form  

    0

d
, , 0 .

d

u
g t u u

t
 u                              (31) 

where  

            
        
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We use a 7-stage 13th-order fully implicit Runge-Kutta Radau IIA method with step size control to integrate 
the system of ODEs (31). The method is B-stable and stiffly accurate. Details of the method can be found in 
[16]. 

4. Numerical Results and Discussions 

We apply the barycentric Jacobi spectral method to value Black-Scholes equations with transaction costs under 
fractional (FBS), mixed Brownian-fractional (MBS) and subdiffusive fractional (SBS) processes. To show the 
efficiency of the present method we report the root mean square norm error  2L  of the solution computed 
with  grid points, given by  N

    2

2
1

,
N

j exact j
j

L u S u S


                           (33) 

and the maximal norm error   L

   
1, ,

,max j exact j
j N

L u S u


 


S                           (34) 

where  ju S  and  are the benchmark and computed values of the solution  at .  exact ju S u j

The analytic solutions of Black-Scholes equations with transaction costs under FBS, MBS and SBS regime 
are possible if we assume that the Greek 

S

  is always positive for the above mentioned models as in the case of 
standard Black-Scholes model, then for European call options under SBS [6] regime is known, and expressed as  

       1
ˆ ˆ, e r

SBSV S SN d K N d
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here  
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T t    and  is the cumulative probability distribution function for a standardized normal variable   N 

 
2

2
1

e d .
2π

x
y

N y x



                              (38) 

If we assume the same sign behaviour for   in the MBS model, then the analytic solution is given by  
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     1, e e r
MBSV S S N d E N d     2 ,                         (39) 

where  
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with the modified volatility given by 
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. In the case of FBS model, the closed-form  

solution is given as  
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with 

   2 12 2 .
H

t Le H                                (44) 

In order to test the accuracy of the method, we present a comparison against the above exact solutions. In 
Figure 2 (top left) we plot together numerical and exact solutions for comparison purposes. We select numerical 
values of the parameters to be , 100K  0.2  , 0.03r  , 1T  , 200N  , min , max0S  250S  , 

, 0.6H  0.2  , 1k  , 0.7  . We choose the tolerance of the 7-stage 13th-order fully implicit Runge- 
Kutta Radau IIA method [16] to be 1010tol  , so that the error is dominated by the spatial error. Clearly, it is 
observed that all numerical solutions are in good agreement with exact ones. 

To see how good our numerical approach approximates exact solutions, we plot the absolute error, i.e., abso-
lute distance between the exact solution and the numerical approximation for all three models. This shows very 
good accuracy for our method. 

4.1. Effect of Changes in N and Smax 

To determine the convergence of the discretization scheme, we solve the problem by keeping some parameters 
fixed and varying others. We fist investigate the effect of the truncation domain on the errors by varying  
between 120 and 500 and keeping other parameters fixed as 

maxS
100K  , 0.2  , , , 0.03r  1T  200N  , 

min , max , , 0S  250S  0.6H  0.2  , 1k   and 0.7  . Figure 3 show the -norm and 2 -norm 
errors, respectively. We notice that the errors remain bounded and do not vary significantly in term of the trun-
cation domain. This is an important result, since we can accurately solve the option pricing problem on a small 
truncated domain, which will result in better efficiency. 

L L

In the next experiment, we investigate the convergence of the barycentric Jacobi spectral method. We vary the 
number of collocation points  between 20 and 300, with parameters N 100K  , 0.2  , , 0.03r  1T  , 

, min , , , 200N  0S  maxS  250 0.6H  0.2  , 1k  , 0.7  ; and we plot the results in Figure 4 (top 
left and right). 

For all three models, our method converges rapidly to the exact solutions. This is usually known as spectral or 
exponential convergence. The efficiency of our approach is measured in Figure 4 (bottom left and right) by the 
CPU time. The results on the efficiency of our method are very satisfactory for all three methods. An accuracy 
of  can be obtained in less than a second. 810
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Figure 2. Solutions of the European call options with transaction costs under the three models (top left), absolute 
error (top right), the Delta (bottom left) and Gamma (bottom right) of the three models with , 100K  0.2 , 

, , , , , 0.03r  1T  200N  min 0S  max 250S  0.6H  , 0.2 , 1k   and 0.7 . 

 

 

Figure 3. Effect of the truncation domain on the 2L -norm and L -norm in computation of the three models with 

parameters , 100K  0.2 , , 0.03r  1T  , 200N  , min 0S  , , , max 250S  0.6H  0.2 , 1k   and 

0.7 . 
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Figure 4. Convergence of L  and 2L -norms and efficiency of the barycentric Jacobi spectral method with parame- 

ters , 100K  0.2 , , , 0.r  03 1T  200N  , min 0S  , , max 250S  0.6H  , 0.2 ,  and 1k  0.7 . 

4.2. Convergence of the Method 

We explore the effect of changes in time, as well as grid-stretching on the accuracy of the model, keeping  
= 200N  min max100, 0.2, 0.03, 1, 0, 250, 0.6, 0.2, 1, 1, 1E r T S S H k              fixed and  

allowing   to vary between ,  and , we compute the 210 310 410 2L - and L -norms for , = 0.5t 1t   and 
. The results are shown in 2t  Table 1. 

We notice that when the grid stretching parameter   increases, the accuracy of our method is improved. By 
accommodating more grid points around the strike price , we can overcome the poor convergence of naive 
application of numerical methods when pricing options. We also observe that our method is highly accurate 
(even for long maturity options). 

K

We also explore the effect of changes in time, as well as Jacobi parameters   and   on the accuracy of  
the model, keeping , 200N  min max100, 0.2, 0.03, 1, 0, 250, 0.6, 0.2, 1,E r T S S H k               

410  fixed and allowing   and to vary between ,  and 1 , and 0.01 0.5   to vary between ,  and 
, we compute the 

0.07 1
2 2L - and -norms for L 0.t 5 , 1t   and 2t  . The results are shown in Table 2. 

Once again the barycentric Jacobi spectral method achieves very good accuracy for all three models (even for 
long term maturity). The Jacobi parameters chosen here do not impact the accuracy of our methodology signifi-
cantly. It would be useful to investigate how to choose these parameters in an optimal way, however, this is be-
yond the scope of this paper.  

5. Conclusion 

The work of Leland [3] on the discrete option pricing model and replication with transaction cost has paved the 
way to develop the continuous version. We exploited the continuous version by Wang et al. [8] to construct  
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Table 1. Norm infinity and norm relative of errors for the European call options with transaction costs under subdif-
fusive regime (SBS), fractional Brownian (FBS) and multifractional Brownian (MBS) motions. 

Models  2L  L  

   0.5t   1t   2t   0.5t   1t   2t   

2  10 6.5320 (−5) 4.6050 (−5) 2.8437 (−5) 6.3396 (−6) 4.2439 (−6) 2.5463 (−6)

310  3.0229 (−8) 2.0966 (−8) 1.2747 (−8) 2.7323 (−9) 1.8275 (−9) 1.0850 (−9)SBS 

4  10 6.6854 (−9) 1.7416 (−8) 3.9353 (−8) 6.8067 (−10) 1.6954 (−9) 3.6965 (−9)

2  10 9.2345 (−5) 6.5861 (−5) 4.4286 (−6) 9.7058 (−6) 6.5277 (−6) 4.1726 (−6)

310  4.3900 (−8) 3.0709 (−8) 2.0257 (−8) 4.1927 (−9) 2.8170 (−9) 1.7942 (−9)FBS 

4  10 1.0145 (−9) 5.9468 (−9) 1.6573 (−8) 1.6911 (−10) 6.1812 (−10) 1.6266 (−9)

2  10 2.2002 (−5) 9.8368 (−6) 1.1066 (−5) 1.9491 (−6) 8.6613 (−7) 9.9914 (−5)

310  9.6097 (−9) 1.5761 (−7) 2.7000 (−5) 8.1278 (−10) 1.0433 (−7) 2.6269 (−5)MBS 

4  10 5.2222 (−8) 5.2571 (−7) 5.1523 (−5) 4.7722 (−9) 3.4097 (−7) 5.0791 (−5)

 
Table 2. Norm infinity and norm relative of errors for the European call options with transaction costs undersubdif-
fusive regime (SBS), fractional Brownian (FBS) and multifractional Brownian (MBS) motions. 

Models    2L  L  

     0.5t   1t   2t   0.5t   1t   2t   

0.01 0.07 1.1292 (8) 1.8273 (−8) 3.3933 (−8) 1.0863 (−9) 1.7419 (−9) 3.1798 (−9) 

0.5 1 1.3716 (−8) 5.1996 (−9) 2.7702 (−8) 1.3623 (−9) 5.2704 (−10) 2.6757 (−9) SBS  

1 2 2.2325 (−8) 1.3673 (−8) 5.6170 (−9) 1.9366 (−9) 1.1587 (−9) 5.5163 (−10) 

0.01 0.07 8.7690 (−9) 1.1102 (−8) 1.8003 (−8) 8.4659 (−10) 1.0787 (−9) 1.7388 (−9) 

0.5 1 2.8309 (−8) 1.4683 (−8) 5.2317 (−9) 2.5996 (−9) 1.4726 (−9) 6.1682 (−10) FBS  

1 2 3.3504 (−8) 2.2705 (−8) 1.4448 (−8) 3.0405 (−9) 2.0069 (−9) 1.2536 (−9) 

0.01 0.07 4.7082(−8) 2.3641 (−7) 1.9080(−5) 4.3052 (−9) 1.3894 (−7) 1.3665 (−5) 

0.5 1 4.2324 (−8) 3.2348 (−7) 5.1813 (−5) 3.8964 (−9) 3.4502 (−7) 5.1095 (−5) MBS  

1 2 7.5002 (−9) 1.4137 (−6) 1.1420 (−4) 5.9867 (−9) 1.3157 (−6) 1.1316 (−4) 

 
spectral-based solutions to the model. In practice, option pricing problems are solved numerically since analyti- 
cal solutions rarely exist. We acknowledge that many studies have been conducted in the domain of finance and 
both numerical and analytical solutions have been investigated. However, the barycentric Jacobi spectral method 
has just been proven to have a better accuracy and has not been studied in the field of PDEs in finance. Fur-
thermore, this method obtains solutions with greater accuracy than the usual well-known and studied numerical 
schemes. The barycentric Jacobi spectral method has full differentiation matrices, which require more computa-
tional effort than sparse differentiation matrix methods. In order to improve the efficiency of the rational Jacobi 
spectral method, we are currently investigating the domain decomposition algorithm which yields block diago-
nal matrices and we expect to have a greater accuracy, and at least less computational time and memory.  
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