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ABSTRACT

The method of lines is applied to the boundary-value problem for third order partial differential equation.
Explicit expression and order of convergence for the approximate solution are obtained.
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1. Introduction

We consider the boundary value problem for the third order differential equation in the domain
Q{0<x<p,0<y<q}:

2373+af;‘;2 = F(xy), )
u(x,0) =y (x),u(xq)=w,(x), )
u(0.y)=9:(y).u(p.y)=9,(y), )
SH0)=0,0), @

where v, (X),17,(x),9,(Y),9,(y).9;(y) are sufficiently smooth functions.

The problems of type (1)-(4) arise in many mathematical and scientific applications [1-3]. In this study, we
construct first order accurate differential difference scheme for this problem and give error estimate for its solu-
tions. The approach to the construction of the discrete problem and the error analysis for the approximate solu-

tion are similar to those in [4].
7

Let the solution of the problem (1)-(4) have a bounded derivative in the domain §_2{0 <x<p,0<y< q} .

6

2. Differential-Difference Algorithm and Convergence

We divide the domain Q into n+1 stripe by lines y =y, =kh (k =12,---,n; h :Ll) On this lines the
n+

problem (1)-(4) we approximate by the following differential difference problem:
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U;”H+10Uk"’+U;’QI+i]—2(Ug+1—2Ul; +Uy ) = fy (x)+10€, (X)+ f 4 (%),

2

Uo(x):‘/ﬁ(x)7 Un+1(X):‘//2(X)’
U (0) =9 (Vi )s U (P) =92 (Vi)
U (0)=0s(¥)-

Let we rewrite the problem (5)-(8) in the form

" 12 ’
AU" =2 MU’ =F (x),

u(0)=g, U(p)=g”, U'(0)=g,

where
U =(U,(x),U, (x),-+,U, (%)),
2 -1 0 - 0 O 10 1 0 --- 0 O
-1 2 -1 .- 0 O 110 1 .- 0 O
0o -1 2 - 0 O 0 1 10 --- 0 O
M= : : S : : , A=121-M = T o :
2 -1 0 0 10 1
0 -1 2 0 O 1 10
I-unit matrix,
12

F(x):(Fl(x), F (X)), F, (x)), F(x)=f(xy,)+10f (xy,)+f (x,O)—y/l’"(x)—h—zy/l’(x),
Fe ()= (X Y1) +10F (X, ¥, )+ F (X Yis) Kk =2,3,..,n -1,

F, (x) f(x,q)+10f(x,yn)+f(x,yn_l)—wg’(x)—i—ft//g(x),

g{o) :(gl(Y1)vgl(yz)v"'lgl(yn))r ggp) :(gz(yl)lgz(yz)i"'vgz()’n))v ggo) :(ga(yl)ngs(yz):'“n

The matrix M can be diagonalized as [5,6]
M = B 'diagonal (4, 4,,-+, 4, ) B,

with

®)

(6)
U]
®)

©)

93(yn))-

2 . mks ) 4 s
B=B'=(b.)  =|(-1)° |—%_sin™S | 1 =" cos? ,§=12,---,n,
( ks )k,s:l (( ) n+1S|n n+1Jk o > p? 2(” +1)

Multiplying Equation (9) on the leftby B we have
" 12 ’
(12_/15)(ps ‘Fls% = Is (X)’

(as (0)=(p50, ¢s(p):¢sp'

9.(0)=0l, s=1,2,--.n,

where

2,00 = 20,0, (), 1 ()= 20uF (1) 00 = 20u8: (%), 25 = 204 (),
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P :stkg:’,(yk)v s=12,---,n
k=1

The solution of (10)-(12) containing the third order ordinary differential equation with constant coefficients
can be explicitly found

sinho,p—sinh o, (p—x)-sinho,x
o, (cosho,p—1)

X) =[G, (x. &) (£)de +

cosho,x—-1 cosho,p—coshox
o= sinh + : + : :
P50~ Sinh SpJ; o (P=E)L(£)ds cosho, p-1 cosho,p-1
where
sinhasx.sinhos(p—g)’ e
o,sinhop
G (x.¢&)=1 .
sinho, (p—x)-sinho &
, X,
o,sinhop
Therefore the solution of (5)-(8) can be expressed as
k+s . .
n / ks smhosp—smhas(p—x)—smhosx
()=Z( Y n+1 n+1 IG -
par o, (cosho p-1)
cosh o, p—cosho, x cosho,x-1
| @! sinh dé [+ 2 : + 2 ,
{f/’so sinh Sp;[ o (P=¢)L(¢) 5} cosho, p-1 P coshosp—l(psp}
where
I, (
T12- ﬂs-([s

Now we investigate the error of the approximate solution. For the error z, (X)=u(X,y,)-U, (x) we have
the following boundary value problem:

"

" " 12 ’ ’ !
zr, +10z)+z), +h—2~(zk+1 -27; +7,4) =R (x),

z,(x)=0, z.,,(x)=0, 7,(0)=0, z,(p)=0, z,(0)=0, k=12,---,n,

where

R (x): h4 o'y ( |R |<Ch“, C,=const, k=12,---n, ¥, ; <V, < VYp.1-

" 20 axc'}y 1 1 k-1 k k+1

" 12 ! ’
(12_15)(05 _h_zlsgos :Is(x)' ?s (0)207 (ps(p)zo, ?s (0)20
or
ol —oclo, :I_s(x)+ K, ¢,(0)=0, ,(p)=0, ¢{(0)=0, o,(x)=D byr (x), is(x):J.(stkRk (I)Jdt.
k=1 0 \ k=1

Next for
b _
[sinho, (p—¢)ls(£)dé
Ky =—2— (sinho, (p-x)>0).
[sinho, (p—-¢)dé

By the mean value theorem we have
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K, =-Is(17), 0<7<p.

S

Then

- - -

I () + K, =1 (x) =1 () =1s (&) (x=1) =1, (£) (x=7)-

Since I (x)=> by R, (x), thenitfollows that

k=1
15 (x) <|l, (§)|p<59xa<)§ (x)|p§C1p\/ﬁh3'5.
Further, we note that IG (x,&)é < iz and
b ; 1 C,py/2gh** C,p/gh®®
x)|:IGS(x,§)[Is(§) ]dg <—2r11xa<)§| s (x) < 12(1/;/1): ,P/al ——5=12,n
0 o ° s s) 2442 cos?
2(n+1)
Hence
: C p\/7 hoS 1
<>1b <4/
|Zk(X)| §| ks| (ps( | n+1 24f ;COSZ TS
2(n+1)
. . L 2 n I 11 &1 A
Using here the inequality sinx >=x| 0<x <= |, and taking into account ) — <> —=—
T 2 ik iak 6
it follows that
C.p P 1 Clnzpq2 .
< < h
|Zk (X)| 24 ( ) Z 144 !

s1(n+1- s)

i.e., fourth order convergence for the approximate solution is established.
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