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ABSTRACT

This paper extends Slutsky’s classic work on consumer theory to a random horizon stochastic dynamic frame-
work in which the consumer has an inter-temporal planning horizon with uncertainties in future incomes and
life span. Utility maximization leading to a set of ordinary wealth-dependent demand functions is performed. A
dual problem is set up to derive the wealth compensated demand functions. This represents the first time that
wealth-dependent ordinary demand functions and wealth compensated demand functions are obtained under
these uncertainties. The corresponding Roy’s identity relationships and a set of random horizon stochastic dy-
namic Slutsky equations are then derived. The extension incorporates realistic characteristics in consumer the-
ory and advances the conventional microeconomic study on consumption to a more realistic optimal control
framework.
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1. Introduction

In a ground-breaking analysis by Slutsky [1], the foundation for rigorous analysis of optimal consumption deci-
sion was laid. This masterpiece which brought mathematical rigor to demand analysis is undisputedly an integral
part of contemporary mainstream economics. It allows the problem of the consumer to be analyzed in terms of a
utility maximization problem subject to a budget constraint. A dual problem to the utility maximization problem is
the minimization of the budget (income) subject to maintaining the utility level achieved before. In particular,
the effect of a price change on the demand of goods can be decomposed into tractable terms from the primal and
dual problems yielding significant economic implications. This prominent contribution in consumer theory,
known as the Slutsky equation, was christened by John Hicks as the “Fundamental Equation of Value Theory”.
An important economic implication of the Slutsky equation is the now famous Hicksian decomposition which
separates the effect of a change in price on demand into a pure substitution effect and an income effect. The pa-
pers [2-7] propagated Slutsky’s classic work. Yeung [8] extends Slutsky’s work to a dynamic framework in
which the consumer has a T-period life span with future incomes being uncertain.

Another milestone in consumer theory is the Roy’s identity [9] which provides an often invoked mathematical
result in consumer theory. The identity is also instrumental to prove the Slutsky equation. In this paper, uncer-
tainties in future incomes and the consumer’s life span are incorporated to reflect the realities in consumer
choice. In particular, optimal consumption choice under these two types of uncertainties is examined. Inter-
temporal wealth-dependent ordinary demand functions and wealth compensated demand functions are
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obtained. Two of the most crucial foundations in consumer theory—Roy’s identity and Slutsky equation—are
derived in a random horizon stochastic dynamic framework.

The paper is organized as follows. We first present a model of utility maximization by a consumer with an
uncertain life span and an uncertain inter-temporal budget in Section 2. In Section 3, a set of wealth-dependent
ordinary demands is characterized. The Roy’s identity in a random horizon stochastic dynamic framework is de-
rived in Section 4. The dual problem is formulated in Section 5 and wealth compensated demand functions are
obtained. Stochastic dynamic Slutsky equations for the consumer with an uncertain life span are formulated in
Section 6. An illustration with explicit utility functions is given in Section 7. Section 8 concludes the paper.

2. Utility Maximization under Random Life Span and Uncertain Income

Consider the case of a consumer whose life-span involves T periods where T is a random variable with
range {1,2,---,T} and corresponding probabilities {7;,7,,--,7; } . Conditional upon the reaching of period 7,
the probability of the consumer’s life-span would last up to periods 7,z +1,---,T becomes respectively

7/1 7/1'+1 e TyT . (1)
27§ Zyg ;7§

We use x, =(x,x,-x*) to denote the quantities of goods consumed and p, =(p;,p7, - py* ) the
corresponding prices in period k e {1, 2,-~-,T} . The consumer maximizes his expected inter-temporal utility

By ycntr. {Z%Zu (% )} )

T=1 k=1

subject to the budget constraint characterized by the wealth dynamics
Wy =W, Zpkxk+r[w Zpkxkj+‘9k+1’ W, =W, ©))

where r is the interest rate; 6,,, is the random income that the consumer will receive in period k+1; and
6, , for ke {23, T}, is a set of statistically independent random variables, and E, , _, is the expecta-
tion operation with respect to the statistics of 6,,6,,---,6;,, . The random variable &, has a non-negative range
{6:,0¢,-+-,0] } with corresponding probabilities {4, 47, 4™} .

Again, the time preference factor is embodied in the utility function the random variable €., has a value of
zero with probability 1 because the consumer will receive no income in period T +1. Moreover, under the
axiom of non-satiation, the consumer will spend all his wealth in the last period of his life span and therefore
W;, =0. The problem (2)-(3) is a discrete-time stochastic control problem (see [10,11]).

Now consider the case when the consumer has lived to period t and his wealth is W . The consumer prob-
lem can formulized as the maximization of the payoff:

SR i i“k (Xk ) , 4)

subject to the budget constraint characterized by the wealth dynamics
Wiy = (14 1)(W, = P )+ O W, =W, fork e {t,t+1,, T}, (5)
In a stochastic dynamic framework, strategy space with state-dependent property has to be considered. In par-
ticular, a pre-specified class I of mapping ¢, () ‘W — X with the property
P b =x =g (W) ={g (W), g (W), (W)}, for ke{L2,-,T}, s the strategy space and each of

its elements is a admissible strategy. We define the value function V(t,W) and the set of strategies
{x; =¢ (W)eT forke{tt +1,~--,T}} which provides an optimal consumption solution as follows:
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W,

t

T S T
V (t’W) = max Eyt+lx6[+2x" 1 Z T Z (Xk) :W

Xt %y X il

t Kt AT T=t Z
¢
=t

:E91+1v91+2v"‘:'9r+1 i s XiUk [¢;(Wk ):|‘Wl =W

for tei{l,2,---,T}.

In paiticular, \}/(t,W) reflects the expected inter-temporal utility that the consumer will obtain from period
t to the end of his life span. Following the analysis of Yeung and Petrosyan [12,13] one can derive an optimal
solution to the random-horizon consumer problem (2)-(3) as follows:

Theorem 2.1. A set of consumption strategies {xk =¢ (W), fork e {1, 2,-~-,T§/ provides an optimal solu-
tion to the random horizon consumer problem (2)-(3) if there exist functions V (k,W), for k €{1,2,---,T}, such
that the following recursive relations are satisfied:

V(T +LW)=0 and W, =0,

V(TW) = max{u (%) +V [T +1,a+r) (W - prx ) |,

X7

2 )
V(tLW)=maxE,_ {u'(x )+ V[t+1,(1+r)(W—plxt)+9Hl] Sforte {12, T-1.

=

Proof. Following Bellman’s [14] technique of dynamic programming we begin with the last period/period.
By definition, the utility of the consumer at period T +1 and therefore V (T +1, X) =0.

We first consider the case when the consumer survives in the last period T and the state W, =W . The pro-
blem then becomes

maxE, {uT (% )+V [T +L(1+1)(W = prx; ) + HMJ} 8)

X

subject to
WT+1 (1+ r)(W pT ) + 9T+1 : (9)

Since 6.,,=0 with probability 1, V(T +LW)=0 and W, =0, the problem in (8)-(9) can be expressed
as the second equation in Theorem 2.1.

Now consider the problem in period T -1. Invoking the probabilities that the consumer can live up to periods
T-1 and T, the problem in period T -1 can be expressed as maximizing

o s Til i N kiluk (xk) =Ep 4. u”(xT_l)+iuT (xT) (10)
= =t}
subject to
Wy = (1+1)(W = px )+ 6,y fork e {T -LT} and W, =W. (11)

If the value function V (T,W) exists, the problem (10)-(11) can be expressed as a single period problem:
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V(T-1W)=maxE, U (%, )+ i”y VT @ n)(W=prox )+ 6 |p (12)
¢
£=T-1

Now consider the problem in period te {1,2,--~,T —2}. Following the analysis above, the problem in period
t becomes the maximization of the expected payoff

T T T

2. 7% PRI
Eﬂ+1v@+2x"'v9r+1 u' (XI )+TTL|: Z uk (Xk )i| = EHM:%ZWH%A u' (Xt )+¢_TLTTL|: Z Uk (Xk )i| (13)
k=t+1 zyg Z 7§ k=t+1

g=t ¢=t £=t+l
subject to
W, p = (14 1) (W = X, )+ 6, fork e {t,t+1-T}and W, =W. (14)

Note that in (13) the term
T
f:zt:l}/f I k
E'91+2v'91+3x“'ﬂr+1 T+—|: Z u (Xk ):| (15)
27
g=t+1

gives the expected intertemporal utility to be maximized in period t+1. If the value function V(t+1,W) ex-
ists, the problem (13)-(14) can be formulated as a single period problem which maximizes the expected payoff

By, U (% )+ 52V [t+1,(14 1) (W = pox )+ 6 | (16)

If vV (t,W) exists, we have the third set of equations in Theorem 2.1. Hence Theorem 2.1 follows. m
The stochastic optimal state trajectory derived from Theorem 2.1 is characterized by:

W, =W°,
WS = (L) W2 -y (W) ]+,

W3921293j3 = (1+ r)[wzgzj2 - pz¢2 (Wzgzj2 )} + 931'37

9i29J3 . gIT ol2g13 . giT-1 ol2g13 . piT-1 ;
WT2 S =(:I""_r)|:VVT313 i _pT—1¢|'—1(WT313 i ):|+9TJT'

* . . . i2pJ3 ... gt
We use W, to denote the set which contains all possible values of wealth Wf?z(’33 o

the optimal trajectory generated by Theorem 2.1.

at period ¢ along

3. Wealth-Dependent Ordinary Demand under Uncertain Life Span and Income

In this section, we consider the primal problem of deriving wealth-dependent ordinary demand functions in
which the consumer maximizes his inter-temporal expected utility subject to uncertain inter-temporal budget and
life span. Following the analysis in [8] we first consider the case when the consumer survives in the last period,
that is period T . Let W, eW, denote the consumer’s wealth in period T . Given that V(T +LW)=0 and
W, , =0, to exhaust all the wealth in this period, W," — p, %, = 0. Hence the consumer faces the problem
maxu’ (X )
" (17)
subject to W,” — p, %, =0.
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Problem (17) is a standard single period utility maximization problem. Setting up the corresponding Lagrange
problem and performing the relevant maximization one obtains a set of first order conditions. It is well-known
(see [15]) that if the set of first order conditions satisfies the implicit function theorem, one can obtain the ordi-
nary demand as explicit functions of the parameters WT0 and p;,thatis:

=of (W, py ), forhe{L,2,,n}. (18)
One can readily observe that ¢ (WTO, p; ) corresponds to the optimal consumption strategies ¢ (WTO) in
Theorem 2.1. Substituting (18) into (17) yields the indirect utility function in period T as
v (WP, pr ) =u' |:(pT (W, pT)] Invoking the definition in Equation (6), v' (W, p;) equals the function
V(T.W?) in Theorem 2.1.

Now consider the case when the consumer survives in the second last period T -1. If wealth equals
W.°, eW,", in this period, the problem in concern becomes

T T
- Y
T B 2, 2 ()= 0 B T e ()
£=T-1 7 £=T-1 7

subject to the inter-temporal budget

We = (1+1)(Wy g = ProXe g )+ 6, Woy =W, €W, (19)

Let W =(1+1) (W, — %, )+ 6} denote the wealth at period T if ¢} {62,620} has occurred.

Using the indirect ut|I|ty function v (WTO, pT), the problem facing the consumer in period T -1 can be ex-
pressed as a single-period problem:

T (wd o |
e )R o @)

¢=T-1

First order condition for a maximizing solution yields

T-1
U (%)

mro i .
T ZMTV\I& (WTGT'pT)p%—l(lJrr):O' e {20 (21)
X e

¢=T-1
Again, with the implicit function holding, (21) can be solved to yield the ordinary demands in period T -1
as X, =gl (W2, pyy, by ) =41 (W2,), for hefL2n_}. Substituting ¢y , (W2, pr,,py) into (20)
yields the inter-temporal indirect utility function v'™ (WT‘{l, Py Py ) Invoking Equation (6) and Theorem 2.1,

VI (W, pry, by ) correspondsto V(T —LWy).
Repeating the analysis for periods T —2 to 1 yields the consumer problem at period £ e {l, 2, T — 2} as

: Z }/4 Mg
max{u’ (x, )+ Z/l[‘jfv”l(wfjf ;p) . (22)

’ 27: a
&=t

where W eW,, Wi =(1+ r)(wW’ -p,x)+6% , and (Wffjlﬁl;p) is the short form for the vector

(+1

gl'ul
(szffl 1 Priar Prizre s pT)'
First order condition for a maximizing solution to the problems in (22) can be obtained as:
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T

z C Mg
Z /‘L4J+1Vv/vﬁ1 ( flfl ; p)p( (1+ r) =0, (23)

274 =
¢=t

for ie{l,2,--,n,} and (e{1,2,--T-2}.
Note also the condition that in period ¢, good i will be consumed up the point where marginal utility of

consumption ufi (%) equals (1+r)p; times the expected marginal utility of wealth
T

z 1 o
S Z M’@ﬂ( fite ,p)-
Z?’ 7
=t
In particular, the expected marginal utility of wealth takes into consideration the random future income and

the probability of the consumer surviving in period £+1. Solving (23) yields the ordinary demands in period
{ as:

:@',‘(Wf,p), forhe{1,2,-,n}. (24)

After solving the primal consumer problem which maximizes expected utility subject to an uncertain inter-
temporal budget and life span, we proceed to derive the Roy’s identity result in a random horizon stochastic dy-
namic framework.

4. Random Horizon Stochastic Dynamic Roy’s Identity

In this section we derive the random horizon version of the stochastic dynamic Roy’s Identity. Invoking (23) we
obtain the identity
T

Z }/ My
v (WS, p)=u [% (W, p)] gz‘:*l x Z;/lmv“l [(1+ r)(W[0 - po, (W), p))+6’{"+1; p]. (25)
ve !
gt

Differentiating the inter-temporal indirect utility function in (25) with respect to p} :

+ o) ;
an W,O, p Wi z 7/5 Mpyg aV[ 1( 1+[1+11 p) W@J»fl
( ¢ )EZ uzk [(p[ (Wf,p)}+§:“1 Xz/izjl oW,
op; | 2L Z y = 5W[9é]1+1 oot
g=t g ’
(26)
T
(+ 0/,
6(/); (W[O, p) 4§1y§ LS o' 1(W(+[111 p) an[fl
ap} T2 ol op}
P Z}/{ i=1 oW, 5 P,
=t

, o,
where W, = (1+ r)(W,O - p,, (W7, p))+6’/j+1, a\é\/;él =—(1+r)p; and
t

oW .
#:—(H e} (Wf, p).

Invoking the first order conditions in (23) the term inside the curly brackets vanishes, condition (26)then be-
comes:

v (WP, 27 my 5V”l( %, p) _
<6 KJ p) = _{:THI x Zf: A :,1 (1"' r)%fj (Wzov p)- (27)
P, j=1 oW,
;74 041

The effect of a change in initial wealth on the maximized utility can be obtained by differentiating
v (W2, p) in (25) with respectto W, :
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.
/(10 N S . vttt (WQ’A, ) j
ov (W[ : p) _ 4t [¢ (WO p):|+§:“1 ¢ I+1/1] w10 P awfﬂl
- k 4 {9 (+1 j
ow,” =1 Yy, oW/ ot
o=
: 8)

Again, invoking the first order conditions in (23), the term inside the curly brackets vanishes, condition (28)
then becomes:

T
6v‘ (W[O, p) 5:24;1}/4 Mg 8\/“1 (Wéi(lﬂv p)
e (1) 29)
D 2
¢=t

Dividing the right-hand-side of (27) by the right-hand-side of (29) yields:
avf (W[o, p) aV[ (WKO' p)
i oW

=—p! (W’ p), for je{1,2,-,n}, (30)

Condition (30) provides a random horizon stochastic dynamic version of the Roy’s Identity involving a
change in current prices.

Then we consider deriving the random horizon stochastic dynamic Roy’s Identity for a change in prices in
current and future periods.

Theorem 4.1. Random Horizon Stochastic Dynamic Roy’s Identity

ov' (W, p);év‘ (W, p)

_ j 0 H .
op; oW ?L =—¢/ (Wwp)’ fOI’je{l,Z,m,n[}, (31)
0 14
o' (W p) av' (W, p)
op oW,
h gjf+1gif+z,,,91h
i Jest T Jes2 < ih v (Wh% o k H(jffleijEZ“"ghjh -(h-0)
— (4 [+ s +
=" z Ay Z Aig z Ay oltsigits2 . gin x @y (Wi P (1+ I’) (32)
j(‘+1:1 J/+2:1 thl aWh +1 Yi+2 h
e o (WA )
/41 (42 h !
. Wy, Wy, Wi
- Z A Z A3 Z Ay X QUL W2 | i !
Wt Wirgel w1 AW, 2

for (e{l2,-T}, he{l+L0+2,-T} and ke{l,2,,n,},

where
W[ = W[O ’
Jes1 .
Wﬁ[{l = (1+ r)[WA‘O — P (szoa p)} +6/5,
Wﬁ(’gfﬁ}fﬁz = (1+ r ) [Wz%?fl ~ PP (Wﬁlﬁl ) )} + egjﬁz ) (33)

WO (1 r)[WT“’f?l""SZ"‘HT’T = P (WA )} iy
Proof. See Appendix A of this Chapter. m
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Theorem 4.1 gives the random horizon stochastic dynamic Roy’s identity. Invoking (73) in the proof of
Theorem 4.1 in Appendix A, an alternative form of the random horizon stochastic dynamic Roy’s identity can
be expressed as:

T

Z h 9}6{1 glj%z . ,ghih
el
ov' (Wéo, p) Ve muy oMy My v (W, P
E_(:h % Z Qe Z ﬂ"JHZ"'Zﬂ'th
apk T +1 ) 1+2 ~ oW g[iérlg(ifzz__,ghih
h jea=1 Jev2= Jh= o
Z:( 7/4“ Jen + h (34)
¢=t
K g(j(irlgzjgz mggh
+ (+!
X @y (W P,

for {2 T}, he{l+L0+2,-T}, and kefl2--n}.

5. Duality and Wealth Compensated Demand

In this section, we invoke the duality principle in consumer theory to construct wealth compensated demand
functions under an uncertain inter-temporal budget and a random life span by considering the dual problem of
minimizing expenditure covered by the current wealth subject to maintaining the level of utility achieved in the
primal problem. Again, following the analysis in [8] we first consider the last period in which W,” eW," is the
consumer’s wealth if he survives in the period. Since wealth equals income in this period, to derive the compen-
sated demand we follow the standard single period consumer problem of

min p; X;
X

subject to achieving the level of utility
uT(xT):\7¥VTO =V’ (WTO, pT). (35)

Setting the corresponding Lagrange function and performing the minimization operation yields a set of first
order conditions. With the implicit function theorem holding for the first order conditions one can obtain the
wealth (income) compensated demand functions as

xT“:;uTh(\ﬂ’To,pT), forhe{1,2,--,n:}. (36)

Substituting (36) into (35) yields the wealth-expenditure function & (\7¥VT° P ) =y (\7¥VT° s ) —W?.

Now we proceed to period T -1 and let wealth in this period be W,, eW,", . To obtain the wealth compen-
sated demand function in period T —1 we consider the problem of minimizing expenditure covered by

current wealth in the period to bring about the expected inter-temporal utility \7¥’f171 =y (WT"_I, Pr_ys pT) from

the primal problem. However, wealth WT°_1 in period T -1 does not only cover consumption expenditure
Pr 1%, inthe period T -1 but also part of the consumption expenditure in period T . To delineate expendi-
tures attributed to wealth in period T -1 we first invoke the dynamical Equation (3) and express W, , as:

W,y =Py +(1+r) " (Wy -6r). @37

Using the wealth expenditure function & (\7¥’f0 pT) in period T and taking expectation over the random

variable €, in (37) one can obtain a crucial identity relating wealth to current and expected future expenditures
attributable to wealth as:

LS ; A(L+r W-,g,l— aXTo1 |+ i i
WP, =py X, + (L) YA |:é:-|— (vﬁ (.11 : DTJ—H#] (38)
j=1

Using (38) the consumer’s dual problem in period T -1 can be formulated as minimizing wealth expenditure
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(@) (WP~ progxr g )+ i
bt e S g (e g @)
with respectto X;_; subject to the constraint
e (X ) Zﬂ'rj { ( @n)(Wa-proaxr )+ s ﬂ =M (40)
Z v

=T
+ad . -1
Since v, ( grwPa-pram ) ij is a set of wealth compensated demands that leads to the level of utility

A(l”)(WTOA* PT71><T71)+6'Tj
vy ,

A1) (W2 —pryxy g )6l AL+r Xrq )+6)
© UT[!//T[\ﬁl r)(wa pTlTl)HT,ij:| equals Vﬁ )W PT1T1)9T

)(er PTlel)Brj _

Invoking vT =\ [(l+ r)(WTof1 - pHxH) +6); pT}

the constraint (40) can be expressed as:

T-1
U (% )+

ZATJ (1+r) Py X )+ 0L pr | =
S (@) J+olip ]

£=T-1

Setting the Lagrange function and performing the relevant optimization operation (similar to the analysis in
[8]) vields a set of first order conditions. With the implicit function theorem holding, the wealth compensated
demand functions can be obtained as:

Wr_1

=VYr 1(VT -1 ’pT—lipT)’ fOI‘he{l,Z,m,anl}. (41)

Substituting the wealth compensated demand functions in (41) into (39) yields the wealth-expenditure func-
tion in period T -1:

WT A= Prayr 1[V¥VT[1 P pT},ng

& 1( T Pr 17pT) Proa¥r 1( T P pT) (1+r) z/lrng
Now we proceed to period k e {T -2,T —3,---,1} and let wealth be W, €W, in the period. Again using (3)
we can express wealth in period k as W, = px, +(1+ r)_l (Wkﬂ—ﬁkﬂ). Taking expectations over the ran-

dom variable 6, ,, and invoking the wealth expenditure functions in period k +1, one can obtain the identity

K+
P X, +(1+ r) Z ﬂkjm X(fku( kl:lr e )+9k+1, pj—ﬁkjﬁlj =W.?, (43)
Ik =1
+1) (W0 — pxi J+6) R +r X |+
where [\7&1 e e p] is the short form for [vill)(w" ) gk*l, Peotr Prszr pT] :
The consumer’s wealth expenditure minimization problem can be expressed as:

Mkt (1+r X )+ ;

mxjn{pkxk +(1+I’)_1 Z Ak X[éul( kl+1 =P ; pJ_gkl«k&l j} (44)
Ik =1

subject to

]
z 7/4 Mg ) 0

U () #5573 AR (L) (WY - pox )+ 6l p = 0%, (45)
275 Jka=l
&=k

for ke{,2,--T-2} and W eW,.
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Setting up the Lagrange function and deriving the first order conditions one can obtain the wealth
compensated demand functions (with the implicit function theorem holding) as X, =, (V‘(Vko,p), for

k e{l,2,---,T —2} , he{l,Z,---,nk} and Wk0 eWk*.
Similarly, the wealth-expenditure function can be obtained as:

Mkl (a+r)(w2- gk )
& (0‘:4?’ p) = Py (val?x p)+(l+ r)il Z j’kjmx(gku( k1+1 ( ‘ ka) 6,(511, Pj—ﬁkjﬁlj- (46)
Jka=1
The wealth compensation demand functions and wealth-expenditure functions derived in this section represent
the dual results of the primal problem in Section 3.
6. Random Horizon Stochastic Dynamic Slutsky Equations

In this section, we derive the Slutsky equations under an uncertain inter-temporal budget and random horizon.
Invoking the duality results in Section 3 and Section 5 we have c//kh (V‘,kao , p) = gokh (Wk", p) ,and

& (v‘lf’ ):wkU and vk(wkf’,p):oxvf,for W/ eW, and ke{l2-T} and he{1,2,-n,}.

Substituting Wk0 by & (O‘Q’ko, p) into the wealth-dependent ordinary demand function yields the identity:

vl (3 p) =0l [cfk (3. p), p], (47)
for he{l,2,,n}.

One can derive a theorem concerning the relationships between the price effect of the demand of a commodity
and the pure substation effect and the wealth effect in a random horizon stochastic dynamic framework as fol-
lows.

Theorem 6.1. Random Horizon Stochastic Dynamic Slutsky Equation

op, (W, p awkh(Vﬁvko,p) o, (WS, p)
kgp‘k: ): oo ka(WkkO )(okk (W, p).

aq);‘(wk",p)_@wi"(ﬁﬁvko,p) opf (WS, p) mar . me

xS S kg3

i - i 0 ) 4
op; op/ oW, =L fra=l je=t
. 9]k+1€Jk+2 o)
ov kit
Y , Weklkﬂ‘ngkEZ o)t 1o )Y 48
x + x(1+7)
kgl o)t P ¢ P +r (48)
8W k+2
¢ [y ottt
Mg w w my w v (Wz '
k+1 k+2 4
DIV WP HET WP el
Wi =1 Weip=1 wy=1 aW[ s1 G2

for ke{1,2,- T}, Lefk+lk+2-T}, ie{l2-n},and hi,e{l2-n}.
Proof. Differentiating the identity (47) with respectto p; vyields:

o0 [ék (vk : )p} oy (vk ,p) 8¢E[§k (Vﬁvf,p),p}aék (kak,p)

o o o5 (@) W

: (49)

for i e{1,2,-n | and te{kk+L--T}.
Invoking &, (v i ):Wk0 one can express (49) as:
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h (yp/ 0 owh \7Wk0 p h (WO )& \7Wk0 p
09, (Wk , p) ~ Vil Vi _Ggok (Wk , p) k| Vi o
ope op; oW ope

o, (% p)

(50)

To derive the term in a more readily computable form we first note that Wk =V (W p). To

opy
derive the effect on &, (Or’ko, p) brought about by a change in pt , With ‘Wk being held constant, we totally
differentiate ' to obtain:
o oV (W T ng OV w°, _
o = ( IO)o|w oy 3 ) ( ©P), dps. (51)
k @=K j5=1
With di =0 and dp =0 for all lwe{1,2,---,nm} and we{k,k+1,---,T} except dpy, Equation (51)
becomes
v (W2, v (w2, _
AU WS U
oW, op;
which yields
dw, _ o (We.p) v (We.p) oy (52)
dp} opl AW apt [
Invoking &, (O‘Q’ko,p)zwko and using (52) one can readily obtain
o (9% p 0 o (W.p) vt (wy,
k(ki ) oW, AW 3 ( Ik p)+ ( ko p)' (53)
op;! ap k op;! oW,

Substituting (53) into (50) and invoking the Roy’s identity result in Theorem 4.1, one obtains (48). Hence
Theorem 6.1 follows. m

The random horizon stochastic dynamic Slutsky Equation (48) generalizes the classic Slutsky Equation to a
multi-period framework with uncertainties in future income and the consumer’s life span. In particular, the ef-
fect of a price change on the demand of a commodity can be decomposed into a pure substation effect and a
wealth effect. The left hand side of Equation (48) represents how the demand for good h atperiod k changes
in response to a change in price p;, and the first term on the right hand side of the Equation gives the change in
demand caused by a change in price p; holding utility fixed at ‘Wk . The second term on the right hand side
of Equation (48) is the product of the change in demand when Wealth changes and the required change in wealth
brought about by a change in p; with utility kept fixed at \7‘,?’k Thus, the change in the demand of a good
caused by a price change can be decomposed into a pure substation effect and a wealth effect.

7. An Illustration with Explicit Utility Function

We consider a consumer with a 2 period horizon. His utility function in period ke{1,2,} is given by
ut (xﬁ,x@_z atIn(xt 2)+ a?In(x2). His initial wealth in Period 1 is W, . In Period 2 he expects to receive an
income 6, with probability A)" for je {1, 2} . The probability that the consumer’s life span would end after
Period 1is y, and the probability that his life span would end after Period 2 is 7, .

The consumer maximizes the expected inter-temporal utility

2 T
{Z Z[ailn(xﬁ%afln(xf)]} (54)
T=1 k=:
subject to the budget dynamics

2

Wk+1:Wk_szXE+r[W zpkxkj Orr W, =W, (55)
1
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7.1. Wealth-Dependent Ordinary Demand

Following the analysis in Section 3, if the consumer lives in Period 2 the wealth-dependent ordinary demand
functions in the period can be obtained as:

g (w2 php2)= 2 forieqL2 56
Xz—(/’z( 2vpzvp2)—m, 0“6{' } (56)

The indirect utility function in Period 2 becomes:

C(l az
vz(WZO,p%,pg):(a§+a§)ln(wzo)+a§In(ﬁ]+a§In( — ZJ

o, +a,

(57)
-a In(p%)—ozz2 In(pzz).

Following the analysis in Section 3 we obtain the wealth-dependent ordinary demand functions in Period 1 as:
Proposition 7.1. The wealth-dependent ordinary demand functions in Period 1 are:

B, —/B?—4AC, | (58)

2A p;

(Dli(WlOv Prs pz):

1 2
o t+ta
where A = (af+af)+27/—2(a§+a§) (%)
D7 '
=

B, =| (W62 (14r) " || (f + o)+ LA (@ +ad) [+ [ W+ B (L) || (o +af )+ (ah + ) L2 27 |,

i 2

27 2.7
¢=1 ¢=1
C, =W+ 6 (1+r) (W + 6} (14 r) "], foriefr2). (59)

Proof. See Appendix B. m
Using (59), the inter-temporal indirect utility function in Period 1 can be obtained as:

B, —B2-4 B, —/B2 -4
Vl(Wlo,pl,p2)=allln[ 'L 1 A1C1 ]+alz|n[ 2 2 AZCZ]

2A p; 2A, p;

2 )
HLr) LD A x| (e + ol )in(W, -~ piei - piei +0)
J:

¢
=]
1 2
(24 (24
+ayIn| —2— |+af In| —— —agln(pi)—afln(pzz)},
a, +a, o, +a,

where x, :|:(pll (W, pypy ) (W2 e s )] is as given in Proposition 7.1.

7.2. Wealth Compensated Demand

Following the analysis in Section 5 we obtain the wealth compensated demands in Period 2 as

a[

N AN o
ifow? 12 ol \ |abra? | K2 Pa |77
Vs (Vz 2 P2 Py ) = |:eXp(V2 ¢ ):|a2+a2 (_ )

P,
for i,(e{l,2} and i=¢.
The expenditure function in Period 2 becomes:
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2 al

0522 az

o .ol 1 (o (2 b 5 w0

a, a,

Now we proceed to Period 1. Following the analysis from Equation (37) to Equation (42) the wealth compen-
sated demand function in Period 1 can be obtained as:
Proposition 7.2. The wealth compensated demand functions in Period 1 are:

1 2
(al +of ) 0‘1/

i[a A 2 1+r) (W, X |+6] ai ¢ a11+a12

V/l(w1 Py P, ) = {exp Vlwlo_zy_zzﬂ;(vg ey j N AR I
27;]1 o P
o

for i,0e{l,2} and i=¢.
Proof. See Appendix C. m
Invoking the fact that

Oélﬂ)(wlo— p1x1)+€2j

= (e + @ )n[ (+r)(We = Pl (W, by b, ) - P2 (W, ., )) + 6 |

(Zl Olz
+aIn| ——2— |+al In| ——2— —aéln(pi)—azzln(pzz)),
o, +a, a; +
one can also have:

T,
i [ow?
l//l(vl Py pz)

((a; e ()W gy ) 0!

(all +af ) 27{
=

”( o zj—a%'“(pi)—azz'”(pi)] X(ﬁJ(a%+“f),

a, +a, 0‘1 [}

for i,0e{l,2} and i=¢. (62)

Proof. See Appendix C. m
The wealth expenditure function in Period 1 can be expressed as:

1 af

oW’ (1+r)(W, +0) Yol sa2 at o3
51(V¥V1:p11p2)=p111//11+p121//1 +Z/'12J exp[ (1 pl‘/’l) 2)2 2 ( Zj

a,

1 (63)

“22 “2

2 1, 2
o, |wta;
(a—] (P2)eded (pa)oheet 60

2

where y; and w; are given in (61).

7.3. Random Horizon Slutsky Equation

From (48) we obtain the stochastic dynamic Slutsky equations:
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i i i 1 1
p _ 0 On N N e L), (64)
op; op; oWy op; W,
To verify the duality results and Slutsky equations numerically we consider the illustration in this Section
with the following parameter values: o =04, o =06, o =035 «a=065 A =06, 1>=0.4,
2
6, =45 67=65 p=3, p’=2 p,=2 p;=4, r=004, W'=120 and 5,/ y, =% =08.
=1

In Table 1, the results showing that the ordinary demand ¢| (Wl", P, pz) equals the wealth-compensated

demand 1//1‘ (\7}”10, P, pz), for ie {1, 2} , are given in the first two rows. The indirect utility and wealth expendi-

ture are given in the third row.
In Table 2, the results for the eight stochastic dynamic Slutsky equations

o _op o4 v oV
opl  opl oW op) owS’

for i, j,¢ e{L,2}, are given as random horizon stochastic dynamic Slutsky Equations (1) to (8). The numerical
values of partial derivatives are derived and the Slutsky results are shown in the last row of each equation block.

Table 1. Numerical depiction of wealth-dependent ordinary demands, wealth compensated demands, indirect utility
and wealth expenditure.

Ordinary Demands & Indirect Utility

o (W, p,, p,) 1258208650
ol (W, p,.p,) 28.30069462
V(W p,,p,) 5.08223308

Wealth Compensated Demands & Expenditure
vi(% 0,0 p,) 1258208650
vi (9 pp,) 28.30969462
& (% p..p,) 120

Table 2. Numerical depiction of the partial derivatives and random horizon stochastic dynamic slutsky equations.

Random Horizon Slutsky Equation (1)

o0} |oW,? 0.07452223
—ov'/op; +ov' [ow,’ 12.58208650
o9} /op; —4.19402883
oy} /op; —3.25638374

1 1 1
s\f\'zn % + %n ~0.93764509

o9 N v
AW, opr oW,
Random Horizon Slutsky Equation (2)

¢! [op; = o, [op; + ~4.19402883 = —4.19402883

—ov'[op? = v JoW,” 28.30969462
g} Jop? 0.000000
ot fop? 210970146
opl ' v
W W 210970146
opl V' oV

og; [op; = oy, [op; + FTRE TR 0.000=0.000

OPEN ACCESS AM



D. W. K. YEUNG 277

Continued
Random Horizon Slutsky Equation (3)
~ov'[op, = ov' /oW, 13.21119082
o9 [op, 0.000000
o, /op, 0.98452735
Can oA
sv(/\zu Z;; + 6(\?/VV10 -0.98452735
opt VoV

o9} [op, = 0w, [op; + W o T awWe 0.000 = 0.000
1 2 1

Random Horizon Slutsky Equation (4)

—ov'[ap; +ov' [ow, 12.26753434
o9 /op; 0.000000
oy, /op; 0.91420397
opl V' oV
W ol W 0.91420397
opl v v

o} /op; = 0w, [op; + R TR 0.000 = 0.000

Random Horizon Slutsky Equation (5)

op! [N, 0.16767501
o9 [op; —14.15484731
oy’ /opt -9.40801903
opF V' Vv
W ap? T oWy 4.74682828
opf V' V!

o¢; Jop! =0y} [op + —14.15484731 = —14.15484731

AW, op? oW,
Random Horizon Slutsky Equation (6)

o9 [op; 0.000000
oy; [op; 2.10970146
o0l v
A W 2.10970146
opt V' oV

0} [op, = oy} op; + 0.000 = 0.000

WS apt T oW
Random Horizon Slutsky Equation (7)

o9 /op, 0.000000
oy /op; 2.21518653
ot Vv
FRE T 2.21518653
o> V' v

097 [opt = dy? Jop! + 000 =0.
. /op, =0y / P WS ot aW? 0.000 = 0.000

Random Horizon Slutsky Equation (8)

09! [op; 0.000000
oy [op; 2.05695892
ot V' oV
Ao T W 2.05695892

2 1 1
gv(\';lo %z Tivw 0.000 = 0.000
1 2 1

6(/)12 /apzz = 6'//12 /apzz +

8. Concluding Remarks

This paper extends the conventional consumer analysis to a random horizon stochastic dynamic framework in
which the consumer has a planning horizon of T periods and there is uncertainty in future incomes and the
consumer’s life span. The extension incorporates realistic and essential characteristics of the consumer into con-
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ventional consumer theory. The paper derives the Roy’s identity and Slutsky equation for this framework. It is
the first time that the Roy’s identity is derived in an inter-temporal setting. With the Roy’s identity the random
horizon stochastic dynamic Slutsky is presented in a more comprehensive form than the stochastic dynamic
Slutsky equations of Yeung [8]. The analysis advances the microeconomic study on optimal consumption deci-
sion to a random horizon stochastic dynamic framework. Further research, development and propagations which
explore further economic implications of the results in this paper are in order.
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Appendices
Appendix A. Proof of Theorem 4.1
Invoking (22) we obtain the identity

T
¢ (\\ 0 ‘ 0 4:%;17/; S o+ ot
v (W, p)=u[ o (WP, p) [+ 52— YT Al [%”(W”ﬁl p”
27/4 Jesa=1
=
>
Ve My My
S 3 A 30 Al < g (W )
Z 7/{ jean=l Jer2=1
f[ (65)

z 7{ my,q Mgy j
Z ﬂvgjﬁl Z ﬂéliafzz Z /‘thh U l: (WthfngM -G , p)}

=1 Jer2=1 in=t
z }/{ ]£+l +:

Ve g M2 Thit gltnglisz . ginst
1 70+2 h+1 p
VP

5 h+l Jesa Jer2 ihst h+1 (e
Z Aq Z A Z Attt XV W

¥ o=l Jer2=1 Jher=l
Z; ;
Differentiating (65) with respectto p; yields:
>
ov' (W, p) n, ORLRY m, Mt
o =2 Lo (WO R X Ak 3 Aty 3 Al
P =1 7t Z 2 jen=l Jer2=1 ina=1

Hgles2. gl

het [\ 015005 oy it41 j i
ov (W g P awe“le[igz el Y (W/Oa p)
- X
1041, J(+2 Jh+1 iy k
01707:5" 0 0o, op,,

aVvh+1
‘g/jiﬂgfjt;Z_"gjr
ir |:¢r (Wr e : ) p
T

-
h o Meg Mg z
+ z z ﬂﬁf]ﬁl z i{‘JﬁEZ "'zljf Xz

-
r=0+1 jpq=1 Jer2=1 =1 i=1 Z
- 66
S Jo+1pi j ( )
410 h1
z oyt (Wg[flg[ 320 p)
Mryo h+ )
Jen Z Jre2 Z jhsa X
T Z lﬂl 1”2 AA” gitrigits2 . ginst
z 1=l Jrap=1 Jna=1 awhﬁl 42" Ot
. : pltnglez2 gl
je+1g] ih ! i+1 Ci2"
oW O)40/8% Ol op; (W, B P
h+1
x a i x 6 k
¢T ph
hal H[Jflngmz gljhirl ] ;
;zh:1 S ompy Mpsz Mhy ov (W ) <P oW 0jtiojts? o
+ ]Hl Z Jes2 Z Jha1 hal
x i _
Z i A2 ) i gltrigita . gihs Ao~
z Ve jen=1 ies2=1 jnsa=1 AW, 06 i P,
¢=t
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Using (32) we have

ies1 J[+2 ih+1
O™ 00:5" Ot

oW, h+l-z i
e —(1+r) p;
T (67)
aW g[lé+lglé+2 glh+1 e pieet. ]h "
and —" —(1+r)¢;,'1‘(wh6f O ,p).
Py
Substituting (67) into (66) yields
T
an(W;,p) i . [ ( )} _Zh:k mfl/l’ 2/1] Z ,-
= ¢7 W , p _ (+1 42, 2+1
aprlw( ip=1 (p ' i o=l Jer2=1 Jha=t '
s
o=t
het [\ 02510187 o -
ov (Wh+1 P e a¢f (W p)
x elmgluz .gihi ( +r) Py a
aWh h+1 ph
Y
Ye
Mgy My2 moo X . Jenglia gl
DD INTE SPTERS L e P |
r=l+1 joyg =1 jrs2=l I ir=1 27{ ‘
= (68)
i hal 9[+1€JI+2 gihi
7/4 2 Mh41 oV ( hﬁl . e !p)
_g=hn 5 e " iy h+l-r i
Z lj ) Z ’%22 Z Al gitsigits2 g (1+r) P:
z}/ Jes=1 Jrr2=1 Jhar=l aWhﬁl 2 Thel

) ) ) T
H Je+1gle+2 J
[ O 045" 0" z
aq)r (Wz' ’p 74‘ Mgy . Myyp . Mh41 .
« _¢=h#1 z Alea z Qe Z Jhia
d k T +1 1+2 . +1
ph 27/4 Jea=1 Jer2=1 Jha=l
¢=t
j j j
avh+l g(ﬁrlg 0+2 | ghh1+1 p
Wha ' k [\, 0)520)652 )
x L (1) g (WA ),
91/+191{+2 gthIrl

aWhé +1

Invoking (29) we obtain:
T

€+191[+2 .0Jt Z
T
v (W 320l ,p) PIRZES -
—_ 5=+ ]r+1 z Jre2 § Jha
= .. X
Jes1 J¢/+2 ir T z ﬂ' /IHZ }‘h
oitiglis2...0)

Jh+1
€h+

1,p)(

ies1gies2 .. gihst
Or1"00:5" O

hatl 6J(+lgl(+2
oV (Wh et

1417 (69)

6W 1 P2 Z 7 Jena=1 jeio=1 =t aWhﬁl
Using (69) the terms inside the square brackets in (68) can be written as

i i ie+1gits2 . plr+1
7 7. av”l( A )

= ¢ : WO £=h+1 ¢ mey Qe & P 1 s 70

i u(/,fiz I:q)r ( 7 pr' pr+1’”.’ pT ):|_ i ‘Zl 7+1 an[“Ilg[J“z gqu X( + r) pr . ( )
1% 1% Je= el ks

¢=t ¢ =7 ¢

Invoking the first order conditions in (23) the term inside the square brackets in (70) vanishes and therefore
(68) becomes:
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T

v’ (W[O, p) Z Ve My M2

gltrigles2 . gihsl

h+1
av +. (thf (+2 h+1 'p

. . Mhp R
_ _g=ha Z Jra Z Az Z ﬂhlhn x
apk T ) +1 0+2 ) +1 g[jl‘flg[jééz__ghjhfl
h Z Ve Jes=1 Jes2=1 ihsa=1 aWthI * "
¢=t

Using (69), one has

[+1‘9/J[§2 gl_m;—l [+1¢ngSZ ,,_thh

] . ]
o ol ) B anfupter 4

Jhs: — -1
Z ﬂ'hill oltsigles2 . gihi T olsigles2 . gin (1+ I’) ’
Jh+l:l aWhi]Tl (+2 h+1 Z }/c aWh (41 Y0+2 h
¢=h+1
Substituting (72) into (71) yields
T
v (W[O, p) ;}72 Mesg i Mo i M i
K ="77 Z ity Z ﬂﬂfzz"'zﬂhh
Py Sy, gt et in=1
¢=t
n okttt -ab
ov (Wh ' P w [\r o gitgiea gin
X — - . wh (Wh (+1 Y0+2 h , p)
oW 00/ 6"
h
Invoking (69) one obtains
T . . .
gltdgits2 . g
aV( (W,O, p) Z;‘]}/g Mg M Th avh (Wh S p) het
0 =TT Z ﬂé]ﬁl z 151522 Z Ah]h x its1gies2 .. g (1+r) )
oW, jesa=l Jer2=t in=t NERC
C Z]/§ (+1 t h
¢=t
Dividing (73) by (74) yields another form of the random horizon Roy’s identity as:
¢ (\n/0 ¢ f\n0 o ngfflgffEZ“‘grfh
ov (Wé 3 p) ov (Wf ) p) Mg i Me+2 i My i h P
P k + 0 =- Z ﬂfﬁl Z ﬂ'[jr}? Z ﬂhh gitsigitsa gih
Pn oW, jea=l Jer2=1 jn=1 oW, 72

x oF (Whﬁz’ifl@'izz--ﬂ#” ' p)(1+ r)*(h*f)

W \\73
avh W'gffflgpfzﬁ“"gxm p
Mg M & h !
- e+1 2 ., h
: z /14+1 Z ﬂ,[+2 Z lh X oWVerlgWis2 . g !
1 %+2

Wy =1 Wy =1 Wh =1 6Wh ¢

for ({12, T} and he{l+1(+2,-T}.
Hence Theorem 4.1 follows. Q.E.D.
Appendix B: Proof of Proposition 7.1

The problem facing the consumer in period 1 can be expressed as:

mxax{ozl1 In(x)+af In(xf)+;7fi/12j [(a; +aj)In [(1+ r)(w, - p1x1)+921]

1
a
+a§|n[ 2 2j+0¢22|
o +a
2T

2

( zj—a%'n(p%)—afm(pg)]},

2 TG,
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(74)
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__r

2

274
¢

Using the First order condition for a maximizing solution for (76) yields
& & (0{2 T, )
Zi_ 712 zﬂzj x 12
Upon rearranging terms (77) can be expressed as:

1+ 2 B 1+ 2 .
[af {wf (S o) 1}(0:; +a§)z;p:x;]x[wf (e oo ]

where 7

=0. (77)

1 1

(78)

1

1 2
= ( + e} ) 722 i, {wﬁ —(“1 e j pix+ 63 (1+ )}
Equation (78) can be reduced into a quadratic equation in xl1 with roots

Xl_BlJ_r.le—4A1C (79)

t 2Ap!

where A :[(all+af)+7712(a§+a22ﬂ(all +1a12j,
2

B, = ([Wl0 +6; (1+ r)fle [(all +a12)+ A (ag +a§)}
+[W10 +6; (1+ r)_lJ[(all +af)+ LA (oé +al )J)
One can show that both roots are real and positive, and the smaller root yields a utility maximizing solution.

B -yB —4AC VB —4AC ) (80)

2Ap;

and C, =a}[WP+ 63 (1+r) " [ WP+ (14r) |,

)(11 :(/711(W10v Prs pz):
Following similar analysis, ¢? (Wlo, [ pz) can be obtained as in Proposition 7.1. Q.E.D.

Appendix C: Proof of Proposition 7.2
The consumer’s dual problem in period 1 can be formulated as minimizing

1
1

2 1) (W2 = pyx )+ 2 ab+ab
pixil n plzxiz +(1+ r)—l ZA,ZJ N |:exp(\7§1 )(W P ) o) j:| 2taz
=l

(81)
1 ok 2 & 2 3
az a%+a22 6!2 a%+a22 2 10:2 2 1 10:2 2 j
X| | —= +| — az+a; az+a; —91
[azj [a; (peet (i) =
subject to the constraint
2 i +1) (W0 - pyxq )+6) 2
o In(x)+af In(xf)+—272 2’121(\75 =ovs) gzj: e (82)
27 = P X
¢
=1

Setting up the corresponding Lagrange function of the problem and performing the relevant minimization
yield the first order conditions
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P

i 2 1 AL+ (WP - pyx 10 o, \as+ab
pl—Zﬂ.ijazeXp(Vz ( 1 1) ij [aZJ
2

j=1 2 2
a% 0 J
— 1 2 AL+ (W —py ¥ |+6.
0[22 a}a} 1 10(2 2 2 1:12 2 av; )( ' p“) ’ i
+ _l ( p2 )a2+a2 ( p2 )a2+a2 X—j pl
6.
2 oW, ?

(1+r)(W1°— p1x1)+HZj

w0 ) 2 ov. .
+&% —al'ii+27—zz/12’ x 2—9] (1+r)p;
X j=1 OW. 2
V4 2
2.7
=0, i={12};
+ ¥ |+6)
M~ n(x) a2 In(F) -~ ZA,;( (el ]=o, (83)
27’4 N
¢=1
+r o_ X |+ j - - .
where \721 oo o is given in (57).
Invoking W, ‘s —52 [vz , 3, pZJ and (60) one can readily obtain:
ao (1+r (Wl p1x1)+:92 a; +a22
oW w,?
-1
I PN I 4 Y
~(atea ol ) |57 o Tl st
a, @,
Using (84), one can reduce the first two equations in (83) to:
Wwo - 2 ‘ A1+ r)(Wl0 - p1x1)+62j ‘
—g al'li—zy—ZZ/lz‘ av?—gj (1+r)p |1 =0, (85)
YR ow*
=1
for i={12}.
2 1
Using (85), one obtains x; = 11 P x. and upon substituting into the last equation of (83) yields
29) 1
2 1 WO )+ 1.2 1,2
o P G [P 2 )
1 A 274 =1 o, +a, a; +a, o, Ps
¢=1
0{22 ,\(lﬁ-r)(Wlo—plxl)Jfozj O!;Clzz 0522 p; _
|V, +———In| == 1|=0,
a, +a2 a, +0{2 a, p2
which could be expressed alternatively as:
Ofvlo—allln(xll)—afln(a El ]— Z%’( penful=ma)-c j=0- (86)
1
AM
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Solving xll from (86) yields the wealth compensated demand for good 1 as:

(ad+af) 2z
o on i [ (W -po o] ol p? (o +af)
wi(vlwl,pl,pz)= exp| V" —Z—ZZ%‘(VZ (oo Zj x(—lzpll fot+af) (87)
z;/c i=t a; Py
¢=1

Following the above analysis, the wealth compensated demand for good 2 can be obtained as that given in
Proposition 7.2. Q.E.D.
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