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ABSTRACT

Ellipsoid modeling is essential in a variety of fields, ranging from astronomy to medicine. Many response surfac-
es can be approximated by a hemi-ellipsoid, allowing estimation of shape, magnitude, and orientation via ortho-
gonal vectors. If the shape of the ellipsoid under investigation changes over time, serial estimates of the ortho-
gonal vectors allow time-sequence mapping of these complex response surfaces. We have developed a quantita-
tive, analytic method that evaluates the dynamic changes of a hemi-ellipsoid over time that takes data points
from a surface and transforms the data using a kernel function to matrix form. A least square analysis minimizes
the difference between actual and calculated values and constructs the corresponding eigenvectors. With this me-
thod, it is possible to quantify the shape of a dynamic hemi-ellipsoid over time. Potential applications include mo-
deling pressure surfaces in a variety of applications including medical.

KEYWORDS

Modeling; Response Surfaces; Ellipsoid

1. Introduction

The Cartesian coordinate equation for an ellipsoid is given by the formula:
x—h)? iV (z-k)
p =) =) (22K)
a b c
a, b, ¢ represent the unit axis lengths from the center.
An alternate form of this equation is the matrix equation given by the formula:

=1, where (h, ], k) represent the coordinates of the center of the ellipsoid and
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orientation. The A matrix is assume_d to be posi_tive definite. Substitution gives the long form of the equation:

3) a(x—h)2 +b(y- j)2 +c(z—k)2 +d(x—h)(y-j)+e(x=h)(z=k)+ f(y-j)(z-k)=1.

Here, the eigenvalues and eigenvectors of the A matrix give the corresponding squared length of the axis and
the direction, respectively. Orthogonal eigenvectors are induced when the matrix is symmetric [1].

Previous papers have discussed using the method of least squares estimates (LSE) to converge on the ellipsoid
best fit for a given set of data [2-5]. LSE analysis minimizes the sum of the distance (or squared difference) be-
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tween the measured and predicted values of an ellipsoid. We have simplified this concept by implementing ex-
isting add-ins in Microsoft Excel such as Solver and Matrix.xla. Additionally, we have automated the process
using VBA code so that as the hemi-ellipsoid alters shape and position we can continuously recalculate the new
eigenvalues and eigenvectors of the ellipsoid.

Our goal was to create a program that automatically and continuously evaluates data from a pressure map for
seated individuals. Currently, most medical institutions evaluate peak pressure when assessing patients for pres-
sure build-up which can lead to pressure ulcer development. However, peak pressure is not the sole determinant in
tissue breakdown [6]. Other studies have looked at using MRI and finite element analysis, but these studies do not
use continuous data, are not over extended time periods, and involve significant expense [7-10]. The purpose of
this analysis was to create a method that could show movement over time continuously and could be easily in-
corporated into existing care via a pressure map that many hospitals already own, without additional expenses.

2. Transformation and Least Squares Estimation

2.1. Calculated Values

In order to assess the validity of the method, we first tested the ability of the program to predict the values of a

x—3 2 )2 )2

(x=3) (y=9  (z-3 |
4 4 4

and considered only the superior half of the shape. We calculated the z values for x and y coordinates known to

have corresponding values on the surface of the ellipsoid by solving for the unknown variable z:

z:3+\/‘4—(x—3)2—(y—3)2

known ellipsoid. We chose the simple ellipsoid defined by the following equation:

2.2 Predicted Values

The predicted values for z were calculated through minimization via quadratic optimization by gradient descent
using the Solver Add-in in Microsoft Excel. Two models were created minimizing the absolute difference and the
squared difference between z and Z . The actual and predicted values from the model can be viewed in Table 1.
Multiple constraints were placed on the calculations. First, the equation for the matrix had to be satisfied (long
form of equation above). Second, as previously mentioned, the A™ matrix must be made symmetric in order to
assume orthogonal eigenvectors. Additional constraints onthe A™ matrix were made such that the matrix could
be assumed positive definite. Finally, different lower bound values for Z were tested in order to allow Solver to
find the optimal solution. We found that Solver was not always able to arrive at the best ellipsoid shape by simply
allowing it to explore the surface on its own, but could converge if multiple values were tested. VBA code was
written to create a loop to test various Z values and to select the value which minimized the sum of squared dif-
ferences or the summed absolute difference. 3-D imaging of the selected predicted versus actual values are shown
in Table 2.

Table 1. Comparison of actual and predicted values of z using sum of least squares minimization with solver add-in in
microsoft excel for a known ellipsoid.

z z
3.0000 3.0000
4.4142 4.3162
47321 4.6958
4.4142 4.4142
3.0000 3.0253
4.7321 4.6960
5.0000 5.0000
47321 4.7460
3.0000 2.9934
4.4142 4.4142
47321 4.7455
4.4142 4.4143
3.0000 2.9640
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Table 2. Images of hemi-ellipsoid taken with R excel add-in. Graphs 1 and 2 highlight the accuracy of the program on
matching the actual (blue) and predicted (green) values. Graph 3 highlights the accuracy of correctly predicting the
center (yellow).
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The constraints are summarized here:
Obijective Function:

objective f =Y " P |7 ]

mound pt first
Changing Cells:

z
A—l .
matrix

h, j

Constraints:
Z > lower bound

A(x—h)2 +B(y- j)2 +C(z—k)2 +D(x-h)(y-j)+E(x=h)(z-k)+F(y—j)(z-k)=1
k=0
the A matrix is assumed positive definite

3. Eigenvalue and Eigenvector Calculations

After the optimum predicted values were determined and thus the corresponding A matrix, the program was
automated to select the A matrix and calculate the associated eigenvalues and eigenvectors, as shown in Table
3. The Jacobi Method in Matrix.XLA [11] was employed in order to ensure forced orthogonal vectors. Once the
eigenvalues were determined, the square roots of the values were calculated to give the axis lengths of the ellip-
soid.

4. Sample Data

After the validity of the program had been tested using a known ellipsoid, a 36 x 36 sample data set of measured
values from a pressure map was analyzed. An ellipsoid shape was identified from the data automatically and as-
sessed for characteristics of shape and size. The program was able to identify center values for the ellipsoid and
eigenvalues that visually made sense, as shown in Figure 1. The calculated eigenvalues of 4.83, 8.38, and
71542.65 corresponded to x, y, and z-axes of 2.20, 2.90, and 267.47 respectively. Thus, we have illustrated that
the program is capable of taking real data, locating an ellipsoid, and analyzing its shape.

5. Discussion

5.1. Analysis

Analysis of the data shows the strength of this program in accurately predicting the ellipsoid shape of the data.

OPEN ACCESS AM



A.R.BILLINGTON ET AL. 237

Table 3. The calculated inverse A matrix with associated eigenvalues and eigenvectors. Note that the diagonal values
of the inverse matrix are close to the actual values of 0.25 and that the distances calculated for the axis length of the
ellipsoid are close to the actual value of 2 x 2 x 2 units.

Al Matrix Eigenvalues \/m Eigenvectors
0.250 0.008 -0.0060 3.8422 1.9601 1 0 0
0.00846 0.24932 0.00615 4.1495 2.0370 0 1 0
—0.0060 —0.006 0.229 4.4136 2.1009 0 0 1

25 390 422 495 499 46 39 387 178 8 219 293 259 449 466 435 459 434 41 366 2670008

276 292 397 454 457 42 382 354 207 33 40 309 361 437 41 427 517 606 452 194 226
352 374 421 409 407 441 41 356 184 207 39 405 325 347 305 309 37 328 215
153 271 307 428 452 473 413 355 332/ 183 246 31 38 407 317 353 33 261 188 206
264 37 434 445 46 445 43 319 15 252 327 362 337 373 298 348 327 209 263
203 384 436 437 404 427 405 3540 17 223 316 359 393 375 332 242 326 261 229
249 342 359 393 446 443 37 32 167 207 314 316 377 413 379 336 26 287 191
231 276 370 397 367 346 372 3580108 149 353 303 308 402 37 3080045 286 211
157 197 283 34 377 365 347 289 24 328 251 555 318 28 345 319 27 156
21 248 266 297 273 249 2530030 149 347 415 361 396 400 17 205 33 145000
200 222 255 228 212 251 27.1 227 148 155 250 206 261 39 388 183 247 188 212
199 25 311 337 324 298 24 213 174 25 252 265 312 364) 215 23.1 264 252 213
207 262 313 341 328 319 306 238 229 269 179 225 204 2651163 313 271165 173
207 269 302 331 323 333 293 269 244 202 244 33 309 233 287 348 312 259
162 22 269 274 303 306 261 243 21.3.1 179 271 306 327 25.1 392 333 346 188 193123
19 236 304 314 314 298 302 281 206 I5, 187 246 338 267 356 43.1 356 246 299 222 153
234 288 351 39.1 402 389 363 329 28 20.NHOMMNOA 213 293 342 35 434 437 347 348 31 253 167
121 235 32 377 414 406 396 366 209 202 181 257 315 357 304 566 303 395 369 354 269 127
169 F144 214 249 304 33.1 366 412 43 384 309 2530002M 27 402 31 485 306 469 463 426 358 288 202
22 30 370 432 538 664 631 453 343/ 211 257 313 386 30.6 664 498 498 442 342 272 185
144 245 324 403 496 8061353 1473 724 36 269 U0 231 424 876 901 890 652 456 372 261 189

246 33.1 46.1 72.8 244.6 1178 41.6 304 172 289 437 51191.7 207.3 1383 79.1 479 343 264 175
214 297 429 9417 256 114.1 437 324 175 225 327 411  59°196.1 248.1 176.8 91 449 33.6 22.
192 285 43.6 86.221.1 256 229.6 68.1 41 334 247 212 324 39.7 50.4 122.5194.7 1589 824 439 295 21.9
188 26.2 357 537 938 108 849 489 41.5 358 284 279 344 426 482 709 107.2 1025 63.6 419 27.9 174
M 23.1 304 409 48.1 51.8 486 452 39 332 267 258 34.1 423 41.6 486 543 563 432 342 22014

168 241 33 381 406 427 393 38 332 262 26 332 338 36.5 41.8 405 365 33.1 2517167

206 277 309 339 349 329 327 318 223 312 337 367 34 351 297 248 21
(143 219 248 242 269 29 277 287 178 28.1 275 255 266 262 205 16
(151 161 181 218 22 229 21 273 218 209 209 19 133
152 134 138 118 199 163

Figure 1. Sample data collected from a 36 x 36 matrix. Values increase in magnitude from blue to yellow to red. Box
highlighted in black denotes cell which the program calculated as being at the center of the ellipsoid on left half of
matrix.

Statistical analysis based on the 13 actual and predicted values of the known ellipsoid showed a very low aver-
age error of —0.288% and average absolute error of 0.507%. The center coordinates of the ellipsoid calculated
automatically by the program were also extremely accurate, with an average —1.06% error. As discussed above,
the A™ matrix gave values close to the expected value of 0.25, as seen in Table 3. The summed difference
between zand 7 served as the optimization function in the Solver Add-in. The difference between the actual and
predicted values was calculated to be only 0.266, again supporting the validity of this method in predicting the
ellipsoid shape. The sum squared difference was also calculated, giving a value of 0.00019, with the above men-
tioned parameters also lower than with the summed difference. However, it was decided that the summed dif-
ference would be preferable to the sum squared difference as anticipated outliers will lead to distortion of the
model. Finally, the square roots of the calculated eigenvalues reproduce close to the expected axis lengths of 2
units with only a 2.96% average absolute error.

For the measured sample data set, the summed absolute difference between the measured and predicted values
ranged from 364.52 to 1070.4 and the average absolute percent error was 20.478%. There are several considera-
tions for the absolute percent error. First, the measured data is an irregular shape and is not a perfect he-
mi-ellipsoid. Second, while the overall shape may appear hemi-ellipsoid-like, outliers can affect the overall pre-
diction of the model. We determined the values of the mound by eliminating low extreme values, but we did not
eliminate high extreme values. Thus, it may be important in future applications to consider removal of these
high peak values in order to focus on the values that best fit the shape of the hemi-ellipsoid.
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Visualization of the data is an important validation method when testing modeling predictability, which allows
interpretation of fit as well location of extreme differences and also verifies that the resulting model is actually
ellipsoidal. The Add-in R Excel was used to give 3-D graphical representation, as shown in Figure 2 below.
Additionally, Matlab was used to create a hemi-ellipsoid shape that fit the actual data based on using trian-
gle-based cubic interpolation of the given values. A 3-D representation of the ellipsoid, actual, and predicted data
are shown in Figure 3.

To our knowledge, this is the first description of the ischial tuberosities being modeled as hemi-ellipsoids using
the matrix equation of an ellipsoid with sum of least squares in a continuous fashion. This model allows for con-
tinuous monitoring of data over long periods of sitting time due to its automation.

5.2. Limitations and Considerations

A major limitation of using a gradient descent method is that it is possible for local maxima or minima to be
discovered that are not the true absolute maximum or minimum. In order to circumvent this, we created a loop
allowed for different lower bound values for z to be assumed and it initiated the search in different points on the
xy grid. We tuned the model to determine the best “center,” represented by a lower bound of “z”. Additionally,
the assumption was made that the center of the ellipsoid was on the map. Thus, the parameter k was set equal to
0.

When automating, a trade-off has to be made between accuracy and computation time. Depending on the ne-
cessity for precision, a decreased stepping parameter may be desired to ensure the best possible fit occurs. The
complexity of the problem and the running time for automation must be taken into consideration when deciding
what step should be used and over what range of possible z lower bound values. For example, the running time
from 0 to 150 with a step of 30 runs for 13.9 seconds while with a step of 15 runs for 38.8s. If multiple frames of
data are collected per second over a period of several minutes to hours, the computation time increases to several
hours.

A point of consideration when examining the results of the eigenvalues and eigenvectors is that Matrix.xla
offered multiple means of calculating the eigen numbers. For example, the eigenvectors did not have to be as-
sumed to be orthogonal with some methods. However, since we initially based our assumption of the A" ma-
trix as being positive definite, we chose the Jacobi method that forced orthogonalization. Ultimately, we felt that
in order for the results to be comprehensible, it was most logical to force the vectors to be orthogonal.

The method described allows for complex modeling of 3-D data by assuming a hemi-ellipsoid shape. While
some of the assumptions and constraints force that data to fit a symmetrical shape, it allows for a means of
comparison between constantly evolving shapes. This method is useful in showing trends over time and has a
variety of applications in modeling systems with changing hemi-ellipsoid-like shapes.
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Figure 2. Sample data is in blue and predicted values are in green for the hemi-ellipsoid taken from the left portion of
the matrix. The image on the left is a 3-D rendering of the data isolated as the mound from Figure 1. The image on
the right models a different frame, and shows that the program can have difficulty in calculating the peak values at
the top of the mound at times.
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Figure 3. MATLAB rendering of ellipsoid created based on actual values of ellipsoid. Actual values are denoted by
green circles. Predicted values are denoted by open blue circles with crosses.
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