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ABSTRACT 
This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog 
nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation constraint 
is modeled with the approximated scalar sign function which is a smooth nonlinear function. The resulting non- 
linear model is further linearized at any operating point with the optimal linearization technique, and Linear 
Quadratic Regulator (LQR) is then applied for a state-feedback controller optimal for each operating point. As 
input saturation is encountered, an iterative procedure is developed to adjust control gains by systematically 
updating LQR weighting matrices until the inputs lie within the saturation limits. Through global digital rede- 
sign, the analog LQR controller is converted to an equivalent digital one for keeping the essential control per- 
formance, and moreover, delay compensation is taken into account during digital redesign for compensating the 
potential time delays in a control loop. The swing-up and stabilization control of single rotary inverted pendulum 
system is used to illustrate and verify the proposed method. 
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1. Introduction 
Various types of hardware limitations always exist in 
practical control systems with potential effects on the 
final control performance. A typical one encountered in 
practice is actuator saturation. For instance, as common 
actuation devices, motors have limited speed and torque 
range, power sources have output bounds, control valves 
cannot be more than fully open or fully closed, etc. As 
the control command is saturated at the top or bottom 
limit during actuator saturation, the control loop is bro- 
ken and the controller loses the ability to regulate plant’s 
behavior for the time being. This phenomenon, called 
controller windup, may lead to significant degradation in 
control performance, such as long settling time, high 

overshoot or even instability [1]. 
In order to circumvent the windup effect, there exist 

many anti-windup approaches in the literature in the past 
decades. Most of them are proposed for linear systems, 
like the extensively-studied two-phase approach [1-4] (a 
nominal linear controller is first designed with the satura- 
tion constraints ignored and then a conditioning scheme 
is developed for reducing the windup effects of satura- 
tion) and Linear Matrix Inequalities (LMI)-based me- 
thods [5-7]. To the authors’ knowledge, however, few 
anti-windup approaches have been developed for nonli- 
near systems. The very limited efforts include the work 
of converting the physical constraint problem to a state- 
dependent constraint problem through a coordinate trans- 
formation method [8,9], and those based on input-output 
linearization or feedback linearization [8-11]. *Corresponding author. 
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This paper proposes an approximated-scalar-sign- 
function-based anti-windup technique for analog nonli-
near systems with input constraints. As a non-differen- 
tiable function, sign function or absolute-value function 
has the inherent capability to describe the instantaneous 
jumps where the system model loses smoothness, so they 
commonly appear in many analytical models of non- 
smooth nonlinearities, such as Bouc-Wen hysteresis 
model [12,13] and Stribeck friction model [14]. In this 
paper, sign function is used to represent the constrained 
input functions, capturing the instantaneous behavior as 
saturation occurs. In order to solve the non-differentia- 
bility due to sign function, approximated scalar sign 
function in [15] is utilized. Arising from the matrix sign 
function and the matrix sector function [15,16], the ap- 
proximated scalar sign function is able to approximate 
the sign function in a smooth rational form with adjusta- 
ble accuracy. Compared with other approximation tech- 
niques, like Hyperbolic tangent function, the approx- 
imated scalar sign function is stable in numerical evalua- 
tion. The constrained input functions represented with 
the approximated scalar sign function are differentiable, 
then optimal linearization in [17] is applied for the local 
linear model at any operating point and a state-feedback 
controller is developed via Linear Quadratic Regulator 
(LQR) for each point. As saturation occurs, an iterative 
procedure is developed to systematically adjust control 
gains by tuning the LQR weighting matrices until the 
saturation limits are not violated. 

In addition to input constraints, time-delayed systems 
are another practical concern in the proposed design. 
This concern arises from the fact that in a sampled-data 
control system which is a popular control scheme nowa- 
days due to the advance of computer technology, some 
fundamental operations like controller computation, A/D 
and D/A conversions, sensing and actuation etc, could 
cause time delays in the control loop. Another example is 
networked control systems where components commu- 
nicate with each other through a real-time network, 
which inevitably causes transmission delays. Ignoring the 
delays in a control loop may lead to the failure of de- 
signed control so it is of practical interest to extend the 
developed anti-windup methodology to time-delayed 
systems. In this paper, the authors propose an input-de- 
lay-compensating digital redesign approach: an analog 
state-feedback controller is first designed in the delay- 
free case for the desired control performance; then a dig-
ital controller is obtained from the analog one through 
global digital redesign with the delay compensation con- 
sidered. The resulting digital controller is able to main- 
tain the essential control performance of the analog 
counterpart even in a time-delayed environment.  

The rest of this paper is organized as follows. Section 
2 introduces preliminary techniques used in the proposed 

anti-windup design, including approximated scalar sign 
function, optimal linearization and LQR. In Section 3, a 
global digital redesign method is developed for input 
delay compensation. The proposed anti-windup metho- 
dology is described in Section 4. Section 5 gives simula- 
tion results of proposed method on the swing up and sta- 
bility control of single rotary inverted pendulum. Finally, 
the paper is concluded in Section 6. 

2. Preliminaries 
A) Approximated Scalar Sign Function 
The scalar sign function is defined in [18] as 

( )
( )
( )

1 if Re 0

1 if Re 0

z
sign z

z

>= 
− <

         (1) 

where C Cz − +∈  , C− and C+ denotes the open left- 
half complex plane and the open right-half complex 
plane, respectively. It is noted that the imaginary axis 

( )Re 0z =  is undefined in ( )sign z . 
The scalar sign function has an alternative form in [15] 

as  

( ) 2sign z z z=              (2) 

where C Cz − +∈   and  
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2 if Re 0

if Re 0

z z
z

z z

>= 
− <

          (3) 

It is also reported in [15] that 2z , called the prin- 
cipal square-root of 2z , can be expanded into a contin- 
ued fraction form as  
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and its j-th truncation can be written as  
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It can be shown that the j-th truncation (5) gives the 
better approximation of (3) as the value of j approaches 
the infinity, i.e.  

( ) ( )
( )

2 2 if Re 0
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if Re 0j j

z z
z z

z z→∞

>= = 
− <

     (6) 

Replacing 2z  in (2) with the j-th truncation (5) 
yields the approximated scalar sign function for a com- 
plex number C Cz − +∈   as 

( ) ( ) ( )
( ) ( )
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1 1

j j
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z z

+ − −
=

+ + −
          (7) 

where Zj +∈  which denotes the positive integer set. It 
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can be inferred from (6) that (7) has the limit 

( ) ( )
( )
( )

1 if Re 0
lim

1 if Re 0jj

z
sign z sign z
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>= = 
− <

     (8) 

Particularly, the approximated scalar sign function for 
a real number 0σ ≠  is  
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which has the limit  
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If the definition of scalar sign function for real num-
bers is extended to include zero, i.e.   

( )
1 if 0
0 if 0

1 if 0
sign

σ
σ σ

σ

>
= =
− <

          (11) 

then 

( ) ( )lim for Rjj
sign signσ σ σ

→∞
= ∈ ,     (12) 

as ( )0 0jsign = . 
The concern of this paper is limited to the real number 

case (9) and the definition (11) is considered. Differen- 
tiating the approximated scalar sign function (9) with 
respect to the real number σ yields  
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for Rσ ∈ . It is easy to find that (13) is continuous every- 
where, which proves the approximated scalar sign func- 
tion (9) is differentiable everywhere.  

Figure 1(a) gives a big scope of the evaluated ap- 
proximated scalar sign function (9) for different values of 
j, and Figure 1(b) shows the figure detail near zero. The 
corresponding derivative (13) is shown in Figure 2(a) 
and the figure detail near zero in Figure 2(b). It can be 
found from Figure 1 that the larger the value of j is, the 
closer the curve of the approximated scalar sign function 
(9) approaches the one of the scalar sign function (11), so 
j is also called the approximation order in the following 
context. Figure 2 shows that the approximated scalar 
sign function (9) is differentiable everywhere because its 
derivative value is always finite with the largest one lo- 
cated at σ = 0, equal to the approximation order j.  

By utilizing the approximated scalar sign function, an 
approximate model can be obtained for a non-smooth  

 
(a) 

 
(b) 

Figure 1. Approximated scalar sign function. 
 
dynamical system with sign function constraints, whose 
approximation accuracy can be adjusted with the ap- 
proximation order j. Due to the smoothness and nonli- 
nearity of the approximated scalar sign function, the re- 
sulting approximate model is still nonlinear, but differen- 
tiable everywhere, which makes possible the further local 
linearization. 

Remark 1: As shown in Figure 1, ( ) 1jsign σ ≤  for j 
is even. This property will be exploited in the proposed 
anti-windup method in Section IV. 

B) Optimal Linearization 
Local linearization is a typical way of handling nonli- 

near systems and the most popular technique is Jacobian 
linearization [19]. However, as pointed out in [17,20], 
Jacobian Linearization usually produces an affine rather 
than linear model even at the equilibrium operating point. 
The only exception case is that the operating point is an 
equilibrium at the origin, which cannot be ensured through- 
out a nonlinear control process.  

In order to circumvent the limitation of Jacobian linea- 
rization, Teixeira and Zak formulated linearization prob-  
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(a) 

 
(b) 

Figure 2. Derivative of approximated scalar sign function. 
 
lem as a convex constrained optimization problem and 
proposed an optimal linearization approach in [17]. Ac- 
cording to this approach, an optimal local linear model 
can be achieved at any operating point, which possesses 
the exact dynamics of the original nonlinear system at the 
operating point and minimum approximation error (in the 
least square sense) in the neighborhood of that point. Due 
to the space limit, only the final conclusions are briefed 
below. 

Consider a general class of nonlinear system in the 
form  

( ) ( )( ) ( )( ) ( )x t f x t G x t u t= +          (14) 

where ( ) nx t ∈ℜ  is the state vector, ( ) mu t ∈ℜ
 

is the 
input vector, ( ) : nf ⋅ ℜ → ℜ

 
with ( )0 0f =  is a diffe- 

rentiable nonlinear function vector and ( ) : m nG ⋅ ℜ → ℜ
 is a function matrix. Its optimal local linear model at an 

arbitrary operating point kx
 

is in the state-space form  

( ) ( ) ( )k kx t A x t B u t= +           (15) 

where 
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( )k kB G x=                (17) 

( )kf x∇
 

is the Jacobian matrix of ( )f x
 

evaluated at 
the operating point xk. It is noted that the case for xk = 0 
in (16) agrees with the aforementioned exception case of 
the operating point being an equilibrium at the origin. 

Remark 2: When f(x) in (14) is a scalar nonlinear func- 
tion, (16) is reduced to a scalar number as  
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k
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′ =
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C) Analog Linear Quadratic Regulator 
Together with a linear output equation, the linearized 

state Equation (15) constitutes a complete local linear 
model as   

( ) ( ) ( )k kx t A x t B u t= +       (18a) 

( ) ( )y t Cx t=           (18b) 

where ( ) py t ∈ℜ  is the controlled output vector and 
p nC ×∈ℜ  is a constant matrix. According to LQR [21], 

if the linear system (18) is both controllable and observ- 
able, the optimal control law to minimize the perfor- 
mance index  

( ) ( ) ( ) ( ) ( ) ( ){ }T T
0

dJ Cx t r t Q Cx t r t u t Ru t t
∞

= − − +      ∫
  (19) 

with 0Q ≥  and 0R > , is then given by  

( ) ( ) ( )ck cku t K x t E r t= − +           (20) 

where 
1 T

ck k kK R B P−=                (21) 

( )
T11 T T

ck k k k ckE R B A B K C Q−−  = − −         (22) 

r(t) is the reference for the controlled output y(t) to 
track, and Pk is the positive definite and symmetric solu- 
tion of the Ricatti equation  

T 1 T T 0k k k k k k k kA P P A P B R B P C QC−+ − + =        (23) 

The weighting matrices Q and R should be tuned to 
make the resulting analog controller (20) give a desired 
control performance in the delay-free case. 

3. Digital Redesign with Delay  
Compensation 

For time-delayed systems where delays can be caused by 
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network transmission, controller computation, A/D and 
D/A conversions etc, a delay compensating technique is 
proposed next based on global digital redesign. Com- 
pared with the conventional digital redesign methods that 
the conversion is limited in the scope of the controller, 
like the bilinear transformation ( ) ( )2 1 1s z T z= − +    
[22], closed-loop global digital redesign techniques take 
into account the closed-loop nature of the whole control 
system, so the resulting digital controller is able to main- 
tain the essential performance of the analog counterpart 
even with a low sampling frequency [20,23-25]. 

For a Single-Input-Single-Output (SISO) plant, the 
time delays in a control loop from network transmission, 
controller computation, A/D and D/A conversions, sens- 
ing and actuation etc, can be combined and then allo- 
cated to either the input or the output side of the plant for 
control design purpose [26]. The input side is used in this 
paper, so the local linear model (15) is modified to in- 
clude the time delays as  

( ) ( ) ( )k kx t A x t B u t τ= + −           (24) 

where τ is the combined input delay. Among global digi- 
tal redesign methods, the prediction-based digital rede- 
sign in [20] reduces the conversion errors by shifting the 
digital control signal to defined inter-sampling instant, 
which is readily extendable for input delay compensation. 
This method is briefly introduced as follows and then 
extended to develop the proposed digital controller fea- 
turing the input delay compensation. 

The analog linear plant (18) and the analog control law 
(20) constitute a complete analog control system as de- 
picted in Figure 3(a) where the subscript c is intended to 
differ from the following equivalent hybrid system which 
is subscripted with d. Suppose the equivalent hybrid sys- 
tem as depicted in Figure 3(b) and formulated by 

( ) ( ) ( )d k d k dx t A x t B u t= +      (25a) 

( ) ( )d dy t Cx t=               (25b) 

( ) ( ) ( )d dk d dku kT K x kT E r kT= − +     (25c) 

where the analog control input ( )du t  is a piecewise- 
constant signal generated from the digital control input 

( )du kT  through Zero Order Hold (ZOH) as  
( ) ( )d du t u kT=  for ( )1kT t k T≤ ≤ + , and the digital 

state xd(kT) is the sample of the analog state xd(t) at the 
sampling instant t = kT; T is the sampling/control period. 
Equation (25c) is the digital control law to be designed 
so that the closed-loop state ( )dx t in the hybrid system 
can closely match the closed-loop state ( )cx t  in the 
analog system at defined inter-sampling instant.  

The solution ( )cx t of (18a) at vt t kT vT= = +  for 
0 1v≤ ≤  is 

 
(a) 

 
(b) 

Figure 3. Analog control system and its equivelent hybrid 
cotnrol system. 
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where ( )c vu t  is a piecewise-constant input,  
( ) ( )expv
k kG A vT=  
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λ λ
+

−
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, 

in which nI  is an identity matrix of appropriate dimen- 
sion. The solution ( )dx t of (25a) at vt t=  is 

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

exp

exp d

d v k d

kT vT
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+
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∫ (27) 

Comparing (27) with (26) yields that with the assump-
tion of ( ) ( )d cx kT x kT= , the condition of 

( ) ( )d v c vx t x t=  is ( ) ( )d c vu kT u t= , which leads to the 
prediction-based digital controller 

( ) ( ) ( ) ( )
( ) ( )

d c v ck c v ck v

ck d v ck v

u kT u t K x t E r t

K x t E r t

= = − +

= − +
    (28) 

By substituting (27) into (28), ( )du kT  is solved as 

( ) ( )( ) ( ) ( ) ( )
1v v

d m ck k ck k d ck vu kT I K H K G x kT E r t
−

 = + − +   
(29) 

where mI  is an identity matrix of appropriate dimension. 
As a result, the desired digital control law (25c) is found 
from (29) having digital control gains 

( )( ) ( )1v v
dk m ck k ck kK I K H K G

−
= +        (30a) 

( )( ) 1v
dk m ck k ckE I K H E

−
= +       (30b) 
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and the digital reference ( ) ( )r kT r kT vT= + . The pa- 
rameter v can be tuned to adjust the control performance. 

Next, the conclusion in (28) will be extended for the 
input delay compensation. Considering the combined 
input delay τ, the state equation (25a) in the hybrid sys-
tem is changed to  

( ) ( ) ( )d k d k dx t A x t B u t τ= + −       (31) 

In order to compensate the input delay, the digital con-
trol input ( )du kT  in (28) should be further predicted 
for the delay duration τ as   

( ) ( ) ( ) ( )d c v ck d v ck vu kT u t K x t E r tτ τ τ= + = − + + +  (32) 

where the future state ( )d vx t τ+  needs to be predicted 
based on the available signals ( )dx kT  and ( )du kT . 

Compared with the sampling/control period, the time 
delays from controller computation, A/D and D/A con- 
versions etc, are relatively small, so a reasonable as- 
sumption is made in the following reasoning for simplic- 
ity purpose that the total duration of time delays in the 
control loop should not be larger than a sampling period, 
i.e. the combined input delay Tτ ≤ . As for the case that 

Tτ > , the proposed method can still handle but will 
produce a more complicated controller structure.  

Let 
T
τσ = , so 0 1σ≤ ≤  and Tτ σ= . The solution 

( )dx t
 

of (31) at vt t τ= +  is 

( ) ( )
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v
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σ

τ σ
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 (33) 

where  
( ) ( )expv
k kG A v Tσ σ+ = +   , ( ) ( )( ) 1

0
v v
k k n k kH G I A Bσ+ −= −  

and ( ) ( ) ( )( ) 1
1

v v v
k k k k kH G G A Bσ σ+ + −= − . 

By substituting (33) into (32), ( )du kT  is solved as 

( ) ( )( ) ( ) ( ){
( ) ( ) ( )}

1

0

1 1

v v
d m ck k ck k d

v
ck k d ck v

u kT I K H K G x kT

K H u k T E r t

σ σ

σ τ

−+ +

+

= + −

− − + +  

 (34) 

As a result, the desired digital controller for input de- 
lay compensation is derived from (34) as  

( ) ( ) ( ) ( )1d dk d dk d dku kT K x kT D u k T E r kT= − − − +    
(35) 

where 

( )( ) ( )1

0
v v

dk m ck k ck kK I K H K Gσ σ−+ += +       (36a) 

( )( ) ( )1

0 1
v v

dk m ck k ck kD I K H K Hσ σ−+ += +     (36b) 

( )( ) 1

0
v

dk m ck k ckE I K H Eσ −+= +        (36c) 

and ( ) ( ) ( )vr kT r t r kT v Tτ σ= + = + +   . The result- 
ing hybrid control system has the configuration as shown 
in Figure 4. It is noted that for τ = 0, i.e. in the delay-free 
case, (35) agrees with the prediction-based digital control 
law (25c) as 0dkD = . Therefore, the prediction-based 
digital redesign can be taken as a special case of pro- 
posed delay-compensating digital redesign. 

4. Iterative Procedure for Anti-windup  
Control 

Consider a general nonlinear plant  

( ) ( )( ) ( )( ) ( )c c c cx t f x t G x t u t= +       (37a) 

( ) ( )c cy t Cx t=               (37b) 

where the symbols are defined as in (14) and (18b), 
( ) m

cu t ∈ℜ  is the true input vector whose i-th entry has 
the constraints   

( )
( )

( ) ( )
( )

max , max

, min , max

min , min

if

if

if

i i i
c ideal

i i i i i
c c ideal c ideal

i i i
c ideal

U u t U

u t u t U u t U

U u t U

 >
= ≤ ≤


<

  (38) 

for 1,2, ,i m=  , in which ( ),
i
c idealu t ∈ℜ  is the ideal 

i-th input and max min,i iU U ∈ℜ  are the top and bottom 
limits for the i-th input, respectively. For the purpose of 
simplicity, let max min 0i iU U= − >  in the following rea-
soning. Through the optimal linearization in Section 2, 
the optimal local linear model of the nonlinear plant (37) 
at the k-th sampling instant is obtained as   

( ) ( ) ( )c k c k cx t A x t B u t= +         (39a) 

( ) ( )c cy t Cx t=             (39b) 

where ( ),k kA B  are given by (16) and (17), respectively. 
Should no input saturation occur, i.e. ( ), max

i i
c idealu t U≤  

for 1,2, ,i m=  , the state equation (39a) becomes 
( ) ( ) ( ),c k c k c idealx t A x t B u t= +  as ( ) ( ),c c idealu t u t= .  
Whenever input saturation happens, say, the i-th ideal 

input ( ),
i
c idealu t  is out of limits, the state Equation (39a) 

becomes  
 

 
Figure 4. Proposed control scheme for input delay compen- 
sation. 

r(k)
Edk
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( ) ( )

( )
( )

( )( )

( )

1
,

2
,

max ,

,

c ideal

c ideal

c k c k i i
c ideal

m
c ideal

u t
u t

x t A x t B
U sign u t

u t

 
 
 
 
 = +
 
 
 
 
 







   (40) 

which is apparently non-smooth due to the scalar sign 
function. Substituting approximated scalar sign function 
(9) for ( )( ),

i
c idealsign u t  yields an approximated equation 

as 

( ) ( ) ( )( )max ,

...

...

i i
c k c k j c idealx t A x t B U sign u t

 
 

≈ +  
 
 

    (41) 

Equation (41) is still nonlinear due to  
( )( ),

i
j c idealsign u t  which can be further linearized by 

Remark 2 as  

( )( ) ( )( )
( )

( ),
, ,

,

i
j c ideali i

j c ideal c ideali
c ideal

sign u kT
sign u t u t

u kT

 
 ≈
 
 

 

where ( ),
i
c idealu kT  is the k-th operating point of  

( ),
i
c idealu t . In this way, the non-smooth saturation Equa- 

tion (41) is fully linearized as 

( ) ( )

( )
( )

( )

( )
( ) ( ) ( ) ( )

1
,

2
,

, ,

,

, ,

c ideal

c ideal

c k c k i
k i c ideal

m
c ideal

k c k k c ideal k c k c ideal

u t
u t

x t A x t B
u t

u t

A x t B u t A x t B u t

κ

κ

 
 
 
 
 ≈ +
 
 
 
 
 

= + = +







  

   (42) 
where 

( )( )
( )

,
, max

,

i
j c ideali

k i i
c ideal

sign u kT
U

u kT
κ

 
 =
 
 

,  

,diag 1,1, , , ,1k k i

m

κ κ
  =  
  

 



  

and k k kB B κ= . kκ  is called input scaling factor. 
To prevent the i-th input from saturation at t = kT, the 

input scaling factor kκ  should be tuned such that  

( ) ( ), , , , max
i i i

k i c ideal k i c idealt kT
u t u kT Uκ κ

=
= ≤ , that is  

( )( )
( )

( )

( )( )

,
max ,

,

max , max

i
j c ideali i

c ideali
c ideal

i i i
j c ideal

sign u kT
U u kT

u kT

U sign u kT U

 
 
 
 

= ≤

. 

As mentioned in Remark 1, ( ) 1jsign σ ≤  for j is 
even, so the approximation order j is always an even 
number in the proposed anti-windup design. 

From the linear state Equation (42), the input matrix 
kB  is required for designing the ideal control input 

( ),c idealu t , while the input scaling factor kκ , which de-
termines kB , involves the ideal control input ( ),c idealu t  
at t=kT which has not been designed yet. To break this 
deadlock, a pre-designed control input is used to estimate 

kB  which is then utilized to design the true control input. 
For a sampled-data control system, a pre-designed digital 
control input can be used for this purpose. As a result, the 
linear state Equation (42) is modified to    

( ) ( ) ( )
( ) ( )

,

,

ˆ
ˆ

c k c k k c ideal

k c k c ideal

x t A x t B u t

A x t B u t

κ≈ +

= +



          (43) 

where the estimated input matrix ˆ ˆk k kB B κ=  , the esti-  
mated input scaling factor ,ˆ ˆdiag 1,1, , , ,1k k i

m

κ κ
  =  
  

 



 
with 

( )( )
( )

( )
( )( ) ( )( )
( )( ) ( )( )

,
, max

,

, ,max

, , ,

ˆ

1 1

1 1

i
j d ideali

k i i
d ideal

j ji ii
d ideal d ideal

i j ji i
d ideal d ideal d ideal

sign u kT
U

u kT

u kT u kTU
u kT u kT u kT

κ =

+ − − 
=    + + − 

  (44) 
for j is even. ( ),

i
d idealu kT  is the pre-designed digital 

control input which can be the digitally redesigned con- 
trol input for the i-th component of ( ),c idealu t  at t = kT 
from the prediction-based digital redesign (25c) or the 
proposed delay-compensating digital redesign (35). With 
arbitrary input elements saturated, the state Equation (43) 
is generalized as 

( ) ( ) ( )
( ) ( )

,

,

ˆ
ˆ

c k c k k c ideal

k c k c ideal

x t A x t B u t

A x t B u t

κ≈ +

= +



        (45) 

with { },ˆ ˆdiagk k iκ κ=  for 1,2, ,i m=  , where ,ˆ 1k iκ =  
or is given by (44) depending on whether the corres-
ponding ideal input violates the constraints or not. 

The general saturated state Equation (45) and the out- 
put Equation (39b) form a saturated system with mod-
ified system matrices ( )ˆ, ,k kA B C . Applying LQR (21-23) 
to it yields that with weighting matrices (Q, R), the op-
timal control law is determined by solving the Riccati 
equation 

T 1 T Tˆ ˆ ˆ ˆ ˆ ˆ 0k k k k k k k kA P P A P B R B P C QC−+ − + =    (46) 

which can be rewritten as 
T 1 T Tˆ ˆ ˆ ˆ ˆ 0k k k k k k k kA P P A P B R B P C QC−+ − + =    (47) 

where 1 1ˆ ˆ ˆk kR Rκ κ− −= . The resulting optimal control law 
is 
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( ) ( ) ( ),
ˆ ˆ

c ideal ck c cku t K x t E r t= − +     (48) 

where the feedback gain  
1 T 1 1 T 1ˆ ˆ ˆ ˆ ˆˆ ˆck k k k k k k ckK R B P R B P Kκ κ− − − −= = =   

with 1 Tˆ ˆ
ck k kK R B P−= , and the forward gain  

( )

( )

T11 T T

T11 1 T T 1

ˆ ˆ ˆ ˆ

ˆˆ ˆ

ck k k k ck

k k k k ck k ck

E R B A B K C Q

R B A B K C Q Eκ κ

−−

−− − −

 = − −  

 = − − =  
 

with ( )
T11 T Tˆ

ck k k k ckE R B A B K C Q
−−  = − −  

. 

On the other hand, applying LQR to the original sys- 
tem ( ), ,k kA B C in (39) with the modified weighting pair 
( )ˆ,Q R  yields the optimal control law  

( ) ( ) ( )c ck c cku t K x t E r t= − +       (49) 

where the feedback gain ckK  and the forward gain ckE  
are shown above. The corresponding Riccati equation is 
the same as (47). 

It can be observed by comparing the above two LQR 
designs that the problem of finding the optimal control 
law for the saturated system (45) with the weighting ma- 
trices (Q, R) can be reformulated as the same problem for 
the original system (39) using the same performance in- 
dex (19), but with the new weighting matrices ( )ˆ,Q R
where 1 1ˆ ˆ ˆk kR Rκ κ− −= . Generally, both weighting matrices 
are selected to be positive definite diagonal matrices. So 
when the input scaling factor’s i-th diagonal element 

,ˆ 1k iκ < , the corresponding i-th diagonal elements of R 
and R̂  have the relationship of 1 1

, ,
ˆ ˆ ˆi k i i k i iR R Rκ κ− −= > . As 

the matrix Q is kept the same in the performance index, 
the resulting control law ( ),c idealu t  with ( )ˆ,Q R  will 
have a smaller i-th element than the counterpart with (Q, 
R). Accordingly, the corresponding i-th element of digi-
tally redesigned control input ( ),d idealu t  would be 
smaller as well, thus possibly avoiding input saturation. 
It is noted that although ˆ

iR  is 2
,ˆk iκ −  times greater than 

Ri, the newly resulting digital input ( ),
i
d idealu t  is not 

necessarily 2
,ˆk iκ −  times smaller than the original one and 

may be still out of input limits after a single update. 
Therefore, it might be necessary to recursively update on 
ˆ

iR  until the input lies within the saturation limits. Fig- 
ure 5 summarizes the general steps of proposed anti- 
windup digital controller design for analog nonlinear 
system with input constraints. The digital redesign 
adopted is the proposed delay-compensating technique, 
so besides the anti-windup functionality, the proposed 
digital controller can also survive in a time-delayed en- 
vironment. 

Remark 3: The approximation order j in the approx- 
imated scalar sign function can be tuned to achieve cer- 
tain tradeoff between the control performance and the 
recursion efficiency. As shown in Figure 1, a smaller  

 
Figure 5. Anti-windup plus delay-compensating digital con- 
troller. 
 
approximation order j leads to a faster decaying approx- 
imated scalar sign function, which results in a smaller 

,ˆk iκ . This can be regarded as an ‘aggressive’ update 
scheme with the advantage that a smaller number of ite- 
rations are needed for suppressing the input to within the 
limits. But the disadvantage is that the input could be 
suppressed too much below the limit, which may bring a 
fairly slow system response. 

5. Simulation Results 
As a typical nonlinear system, the rotary inverted pendu- 
lum system depicted in Figure 6 presents many chal- 
lenging topics for investigation, like coupling, underac- 
tuation, instability, multivariable, time-sensitivity etc. 
The pendulum control can be simply categorized into 
swing-up (the motor drives the L-shaped arm to swing 
the pendulum up to around the upright position) and sta- 
bilization (the motor drives the arm to stabilize the pen- 
dulum at the upright position). Nonlinear control me- 
thods are usually proposed for swing-up control while 
LQR is commonly used for stabilization control. The 
failure to apply LQR on swing-up control results from 
the deficiency of traditional linearization method which 
only works around the equilibrium points while the pen-
dulum is running in off-equilibrium region in swing-up 
process. In the proposed anti-windup design, the optimal 
linearization approach is utilized to obtain the local linear 
model at any operating point, and then LQR is applied to 
produce a state-feedback controller optimal for each op- 
erating point. Therefore, the proposed design can be ap- 
plied throughout both swing-up and stabilization pro- 
cesses, avoiding the trouble of switching controllers in 
conventional methods. 

The dynamics between the arm angle θ, the pendulum 
angle α and the motor voltage Vm is derived using La- 

Initialization
• Derive the optimal linear model via Optimal Linearization (16) (17).
• Initialize the weighting matrices Q and R.
• Set the value of the approximation order j and combined input delay τ.

Output digital control input to the plant

Sample the plant’s states   →

Analog LQR controller design (21-23)    →

Evaluate digital control input (35)    →

YES

NO

Proposed anti-windup digital controller

Digital redeisgn (36)    →

Update the optimal linear model   →

Adjust R:
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grangian equations as  

(
) ( )

2 2 2
11 12 13

2
14 15 16 1 2

sin cos sin sin cos

sin cos sinm

c c c

c c c V d d

θ α αθ αα α αθα

α α θ α

= + +

+ + + +

  

 



 

   (50a) 

(

) ( )

2 3 2
21 22

2 2
23 24

3
25 26 27

2
28 1 2

sin cos sin cos

sin cos sin cos

sin sin cos

cos sinm

c c

c c

c c c

c V d d

α α αθ α αθ

α αα α αθα

α α αθ

α α

= +

+ +

+ + +

+ +

 





 



   (50b) 

where  

11 p p pc M l J r= − , 12 p p pc M l J r= , 2
13 2 pc J= − , 

2 2
14 p pc M l rg= − , 15 p t m mc J K K R= − , 16 p t mc J K R= , 

( )2
21 eq p pc J M r J= + , 2

22 pc J= , 2 2 2
23 p pc M l r= − , 

24 2 p p pc M l J r= , 25 p p pc M l J g= ,  
 

 
Figure 6. Single rotary inverted pendulum. 

( )2
26 eq p p pc J M r M l g= + , 27 p p t m mc M l rK K R= , 

28 p p t mc M l rK R= − , 2 2 2 2
1 eq p p p p pd J J M r J M l r= + − , 
2 2 2 2

2 p p pd J M l r= + . 
The parameters have physical meanings defined in 

Table 1 as well as their values used in the following si- 
mulations. Apparently, (50) is highly nonlinear and cou- 
pled expressions. 

For space-saving purpose, the derivation of optimal 
local linear model of (50) is skipped, and only salient 
simulation results and necessary explanations are pre- 
sented here. The proposed anti-windup methodology in 
Figure 5 was implemented in simulations with the initial 
pendulum angle of 179˚ (almost the downward position), 
the initial weighting matrices Q = diag{50, 0, 1, 0} and R 
= 1, and the digital control period T = 0.01 s. Figure 7 
compares the simulated control performances of pro- 
posed method under no input limit and the limits ±30 V 
with different approximation order j. The corresponding 
control inputs are shown in Figure 8. Obviously, the 
freely redesigned digital control voltage in Figure 8 is 
out of the limits ±30 V over multiple control periods; 
using the proposed anti-windup method, whatever the 
value of j is, the control voltage is successfully sup- 
pressed to within the specified limits ±30 V. Another 
apparent fact is that over the first few control periods, the 
control voltage for j = 16 is suppressed more than the one 
for j = 26, which results in a little slower control perfor- 
mance in Figure 7. This echoes the claims by Remark 3. 
No time delay is introduced in the control loop in this 
case, so the proposed delay-compensating digital control 
law (35) converges to the prediction-based digital control 
law (25c) and the parameter v is set to 1. 

Next, an input time delay is introduced between the 
pendulum’s motor and the digital controller to represent  

 
Table 1. Single rotary inverted pendulum nomenclature. 

Symbol Description Value Unit 

Mp Mass of the pendulum assembly (weight and link combined). 0.027 kg 

lp Length of pendulum center of gravity from pivot. 0.156 m 

r Length of arm pivot to pendulum pivot. 0.0826 m 

Jeq Equivalent moment of inertia about motor shaft pivot axis. 1.23e−4 kg∙m2 

Jp Pendulum moment of inertia about its pivot axis. 7.3e−4 kg∙m2 

Rm Motor armature resistance. 3.3 Ω 

Kt Motor torque constant. 0.02797 N∙m 

Km Motor back-electromotive force constant. 0.02797 V/(rad/s) 

g Gravitational acceleration constant. 9.81 m/s2 
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Figure 7. Control performance of proposed design in the 
delay-free case. 
 

 
Figure 8. Control inputs of proposed design in the delay- 
free case. 
 
the potential time delays in the real-world control loop. 
In order to demonstrate the delay-compensating capabil- 
ity, a reasonably long time delay τ = 0.02 s is used. The 
control period T is accordingly extended to 0.02 s as the 
proposed design assumes a control period no shorter than 
the delay duration. Other parameters and initial condi-
tions are the same as the delay-free case. Simulation re-
sults showed that the controller from the prediction-based 
digital redesign cannot succeed any more, exhibiting an 
unstable behavior. In contrast, the proposed anti-windup 
plus delay-compensating controller can still survive with 
performances shown in Figure 9. Figure 10 depicts the 
evolutions of control inputs: the motor voltages in con-
strained cases are successfully suppressed to within the 
desired range. Hence, the efficacy of proposed design is 
well demonstrated. 

6. Conclusions 
This paper describes the design and application of an  

 
Figure 9. Control performance of proposed design in the 
delayed case. 
 

 
Figure 10. Control inputs of proposed design in the delayed 
case. 
 
optimal anti-windup digital controller for analog nonli- 
near plants subject to input constraints. As a new anti- 
windup technique for sampled-data control systems, the 
proposed method has the following contributions: 1) the 
approximated scalar sign function is utilized to model 
non-smooth input saturations, which presents a new ef- 
fective solution to sign-function constrained non-smooth 
problems; 2) through the optimal linearization, a general 
approach is developed for handling nonlinear systems 
with linear control theories in a broader region instead of 
conventionally being limited to around equilibriums; 3) 
aside from the anti-windup functionality, the proposed 
digital controller is capable of compensating time delays 
in the control loop, which would help guarantee its de- 
signed performance in real world implementations. 
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