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ABSTRACT 
Building the prediction model(s) from the historical time series has attracted many researchers in last few dec-
ades. For example, the traders of hedge funds and experts in agriculture are demanding the precise models to 
make the prediction of the possible trends and cycles. Even though many statistical or machine learning (ML) 
models have been proposed, however, there are no universal solutions available to resolve such particular prob-
lem. In this paper, the powerful forward-backward non-linear filter and wavelet-based denoising method are 
introduced to remove the high level of noise embedded in financial time series. With the filtered time series, the 
statistical model known as autoregression is utilized to model the historical times aeries and make the prediction. 
The proposed models and approaches have been evaluated using the sample time series, and the experimental 
results have proved that the proposed approaches are able to make the precise prediction very efficiently and 
effectively. 
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1. Introduction 
In last few decades, the analysis of time series has at-
tracted much attention from statistical and machine 
learning perspectives [1,2], with a variety of applications 
in different fields [3,4]. For example, the traders of hedge 
funds and experts in agriculture are demanding the pre-
cise models to make the prediction of the possible trends 
and cycles. Even though a number of techniques and 
models are proposed for analyzing financial time series, 
however, there are no universal solutions to such specific 
application, due to its inherent randomness in nature. 
Also it is very difficult to determine which approach or 
model is superior to others, since many statistical and 
machine learning approaches are application-oriented 
methods. 

Many real applications, such as the electric signals and 
financial time series, consist of high level of white noise 
and colored noise, making it almost impossible to build 
the appropriate model(s) for prediction and forecasting. 
Most of statistical models and machine learning tech-
niques have no capability of noise resistance. Separating 
the deterministic time series from the noisy raw signal(s) 
is becoming another obstacle to build the effective pre-
diction models.  

To address the problems discussed above, several dif- 

ferent approaches are proposed in this work. In doing so, 
two diversified denoising techniques are introduced and 
evaluated through the comparative studies. Also the au-
toregression (AR) model is utilized for modeling and 
prediction.  

The major task of this work is to develop the statistical 
or machine learning (ML) models for analyzing the his-
torical financial time series. Such models should be able 
to derive the useful knowledge such as patterns and re-
gularities, trends and cycles, so as to make the precise 
prediction. The major contributions of this paper are 
summarized as follows: 
• Propose two efficient and effective denoising tech-

niques to remove the noise embedded in the time se-
ries i.e., non-line low-pass forward-backward filter 
and wavelet orthogonal projection denoising method. 

• Build the AR model with the relative low order, and 
the excellent performance has been obtained in the 
experimental analysis. 

• Utilize two new criteria—approximate entropy and 
student-t test to assess the performance of filters and 
AR model. 

The paper is organized as follows: The forward- 
backward filter and wavelet denoising method are de-
tailed in Section 2. In Section 3, the AR model is dis-
cussed and the performance criterion is described. In 
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Section 4, the experimental results are specified and 
evaluated with the sample financial time series available 
in book (Analysis of Financial Time Series) [3]. Section 
5 concludes the paper.  

2. Filters 
Normally, the financial time series is embedded with 
high level of noise (random trading behaviors), such as 
white noise and colored noise. It is very difficult to de-
termine the level of such unknown noise and find the 
appropriate filtering techniques that can separate the de-
terministic time series and random events. If the raw 
noisy time series is less denoised, the prediction model 
performs poorly due to the high level noise; if the noisy 
time series is over denoised, the filtered time series loses 
some genuine features of raw time series. The conven-
tional time series cannot filter such high level noise such 
as financial time series. Indeed, the effective filtering is 
dependent on the several factors, e.g., the ability to re-
move the noise, the types of noise, and the thresholds 
estimation, etc. 

In this paper, two different types of filtering tech-
niques are utilized in this paper: one is the traditional 
non-linear low-pass filter with forward and backward 
filtering (FBF) processes; another is the wavelet based 
denoising method (WLD) for which the time series is 
projected into orthogonal basis. Also, the measure crite-
rion known as approximate entropy (ApEn) is considered 
to evaluate the performance of proposed filters. 

2.1. Forward and Backward Filter 

The forward-backward filter (FBF) actually is a matrix 
with no-linear processing networks. It utilizes the 
second-order matrix SOS and the scale vector G, by 
conducting the forward and reverse the filtering pro- 
cesses [5]. The scale G defines the weights of input sam-
ples. The SOS and G are defined by: 
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FBF filters the time series X with the SOS filter de-
scribed by the matrix SOS and the vector G. After filter-
ing in the forward direction, the filtered sequence is then 
reversed and run back through the filter. In this project, 
the Butterworth second-order filtering is used for filter-
ing the time series. 

The example of FBF filtering process with the finan-
cial time series is illustrated in Figure 1.  

2.2. Wavelet-Based Denosing 
Wavelet theory is an emerging new signal processing 
technique in recent two decades [6,7], which is called the 
mathematical microscope due to it high recognition ac-
curacy in both time domain and frequency spectrum. 
With the scaling factor a (dilation factor) and translation 
parameter b, a, b ∊ R, and a ≠ 0. The prototype wavelet 
is scaled and translated. The wavelet function can be 
expressed as:  

( ) 1, t bt a b
aa
− Ψ = Ψ 

 
 

1/ a  is the normalized factor, so as to make sure for 
all a, b, Ψ(𝑡𝑡) has the unit energy. 

The concept of multiresolution was proposed by Mal-
lat and Meyer in 1989 [8], meaning that one signal can 
be decomposed into the orthogonal projections and can 
also be fully reconstructed. The components of the de-
composition are divided into the approximation (a) and 
details (d) at different levels. The approximation repre- 
sents the major feature of the signal and the details de-
scribe the detailed changes and noise. The time series can 
be denoised by removing some ingredients from the pro-
jections in details. 

The example of wavelet denoising is given in Figures 
2 and 3. 

2.3. Performance Measurement 
To evaluate two filters proposed above, two measur e-
ments are introduced: 1). One indicator is the fit rate of 
autoregression model (AR), the details about AR model 
are available in Chapter 3. 2). Another criterion known as 
the approximate entropy (ApEn) [9] is also introduced. 

The major ability of ApEn is to evaluate the time se-
ries by quantifying the amount of regularity and the un-
predictability of fluctuations. The successful applications 
have been found in EEG signal diagnosis [10] and in 
financial time series [11]. In [11], it was reported that the 
uncertainty events such as the Asian financial crisis can 
be detected by analyzing Hang Seng index. There are 
two parameter m and r in ApEn. The value of m is be-
tween 2 - 3, and the value of r is about 0.2 × σ (σ is the 
value of standard deviation of the time series). 

The smaller of ApEn, the better regularity and trends 
of the time series. 

Here, an example is given to assess the performance of 
two filters using AR model and ApEn. Firstly, I compare 
the quality of filtering with time series L0 using AR(p) 
model, detailed as below (FPE—final prediction error, 
MSE—mean square error): 
• For original signal L0, the results with AR (6) are: Fit 

to estimation data—0.3754%, FPE—0.0002323, MSE 
—0.0002308. Even AR with order of 30, the results 
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Figure 1. Original and filtered times series (FBF). 

 

 
Fgure 2. Approximate and details of times series. 
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Figure 3. Original and filtered times series (Wavelet). 

 
are still very poor: Fit to estimation data—1.202%, 
FPE—0.0002344, MSE—0.000227. 

• For the forward-backward filtered L0, the results with 
AR (6) are: Fit to estimation data—99.98%, FPE— 
1.557e-12, MSE—1.548e-12. 

• For the wavelet-based denoised L0, the results with 
AR (6) are: Fit to estimation data—99%, FPE— 
6.884e-10, MSE—6.842e-10. 

• It is almost impossible to build the AR model with the 
original signal (fit rate (r) is too low, 0 < r < 22%). 
After filtering using FBF or wavelet, AR(p) model 
can be built and used to make the prediction. The 
performance (almost 100% fit rate) of AR is excellent 
using the filtered time series by FBF or wavelet. 

Also two filters can be evaluated by another criterion 
ApEn. As shown in Figure 4, we can find the ApEn va l-
ue of original signal is significant bigger at r = 0.2. Fig-
ure 5 suggests that wavelet-based denoising is slightly 
better than that of forward-backward filter. However, AR 
model indicates that FBF outperforms a little better than 
wavelet-based denoising method. 

Due to space limit, I only use the filtered datasets by 
FBF to conduct the model training and prediction. 

3. Model 
3.1. Autoregression 
Let {r0, r1,…, rt, …} be a time series, the pth order au-
toregressive polynomial model AR(p) model [1,2] is de-
fined by: 

( ) 0 1 1 1 1t p t p t p t p tr t r r r r a− − − −= ∅ +∅ +…+∅ +∅ +…+∅ +  

where p is a non-negative integer and ∅p  are the coeffi-
cients in the autoregressive model, { }ta  is assumed to 
be a white noise series with mean zero and variance 2

ta . 
The parameters of the AR(p) can be estimated by sev- 

 
Figure 4. Predicted output and target value (1). 

 

 
Figure 5. ApEn value of original and filtered signal. 

 
eral ways to replace the theoretical covariance, including 
the forward-backward approach, the Least Squares me-
thod, the Yule-Walker method, etc. In this project, the 
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forward-backward approach is used to estimate the pa-
rameters of the AR(p) model. The AR(p) can be trained 
and validated by sample time series. Once the AR(p) is 
built, it can be used to predict the future trends and 
cycles. 

3.2. Student-T Test 
One statistical criterion known as Student-t test is used to 
quantify the “goodness” of the prediction. This is the 
statistical criterion to make a test decision for paired time 
series. The test decision for the null hypothesis is to be 
made in terms of the acceptance or rejection (h: 0 or 1) 
and the confidence level (p-value). For example, if p = 
0.95, the probability of rejecting null hypothesis is only 
5%, and thus the prediction will be regarded as the high 
quality. 

4. Experiments 
There are two parameters in AR to be tuned, i.e., the 
length of prediction (output), and the order p in AR. The 
order of p is required to be tuned in advance. Also it is 
not easy to evaluate the quality of the AR model, I in-
clude a function to calculate the Student-t test values and 
thus can adjust the order of AR model easily. The order 
of p is tuned according to the student-t p-values. After 
several times trials, I find the best solution to all time 
series in datasets when the order of p is 18. Also I found 
that AR model can predict 10 - 15 days perfectly, but it is 
getting worse when the prediction period is more than 20 
days. So I define the prediction period is 10 days. 

The last 10 records in the time series in dataset 1 are 
retained for testing, while the rest of the records (total 
length - testing length) is used for training and valida-
tion.The prediction and the filtered testing is a good 
matching, as shown in Figure 4. 

The p-value of this experiment is excellent (0.998), 
which indicates that the prediction of AR model is pre-
cisely matched to testing records. 

To further evaluate the proposed methods, additional 
testing is conducted by making prediction at any point of 
time series.  

For example, the financial time series (1 - 2097) is 
used for training and next 10 days (2098-2107) as the 
testing data, as shown in Figure 6. The related p-values 
are 0.982 and MSE 1.81e - 08. 

Another example is given in Figure 7, the related 
training data are from 1 to 2157 and the testing data are 
from 2158 to 2167. From Figures 6 and 7, we can see 
the predicted data and testing data is matched precisely. 
The related p-values are 0.915 and MSE 4.03e−09. 

5. Conclusions 
In this paper, several methods have been used to com- 

 
Figure 6. Predicted output and target value (2). 

 

 
Figure 7. Predicted output and target value (3). 

 
plete the tasks, i.e., two denoising filters, AR prediction 
models, and two assessment criteria. The approaches of 
two filters (filtering and wavelet denoising) are proposed 
from different perspectives.  

The advantage of using different approaches and mod-
els can provide alternative solutions and the comparative 
studies to this specified application. The quality measure 
known as approximate entropy is introduced to assess the 
quality of preprocessing methods; another statistical cri-
terion known as Student-t test is used for quantifying the 
prediction models. The software codes for all models and 
approaches have been developed and tested with two 
sample datasets under Matlab. The experimental results 
and related performance are excellent.  

In summary, there are some challenges and difficulties 
in this work, outlined as follows: 
• Further analysis is needed to analyze: which filter is 

better? 
• The back-propagation neural networks is to be consi-

dered as alternative model, so as to provide alterna-
tive  

• The use of different portfolio analysis models is 
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needed to conduct the analysis folio optimization. 
In a word, it is clear that the satisfactory results have 

been obtained; indicating that the proposed approaches 
and criteria are very effective in analyzing the big 
finance time series. If the prediction models can be 
trained using more systematic samples (different cycles 
and scenarios), the trained models should be more smart 
and adaptive. 

REFERENCES 
[1] G. U. Yule, “On a Method of Investigating Periodicities 

in Disturbed Series,” Philosophical Transactions of the 
Royal Society of London, Vol. 226, 1927, pp. 267-298.  
http://dx.doi.org/10.1098/rsta.1927.0007 

[2] T. C. Fu, “A Review on Time Series Data Mining,” En- 
gineering Applications of Artificial Intelligence, Vol. 24, 
2011, pp. 164-181.  
http://dx.doi.org/10.1016/j.engappai.2010.09.007 

[3] R. S. Tsay, “Analysis of Financial Time Series,” John 
Wiley & Sons, Inc., New York, 2010. 

[4] D. B. Percival and A. T. Walden, “Wavelet Methods for 
Time Series Analysis,” Cambridge University Press, 
Cambridge, 2000.  
http://dx.doi.org/10.1017/CBO9780511841040 

[5] F. Gustafsson, “Determining the Initial States in For-

ward-Backward Filtering,” IEEE Transactions on Signal 
Processing, Vol. 44, No. 4, 1996, pp. 988-992.  
http://dx.doi.org/10.1109/78.492552 

[6] I. Daubechies, “Ten Lectures on Wavelets,” Society for 
Industrial and Applied Mathematics, Philadelphia, 1992.  
http://dx.doi.org/10.1137/1.9781611970104 

[7] C. K. Chui, “An Introduction to Wavelets,” Academic 
Press, 1992. 

[8] S. G. Mallat, “A Theory for Multiresolution Signal De- 
composition: The Wavelet Representation,” IEEE Trans- 
actions on Pattern Analysis and Machine Intelligence, 
Vol. 11, 1989, pp. 674-693.  
http://dx.doi.org/10.1109/34.192463 

[9] S. M. Pincus, “Approximate Entropy as a Measure of 
System Complexity,” National Academy of Sciences of 
the United States of America, Vol. 88, No. 6, 1991, pp. 
2297-2301. http://dx.doi.org/10.1073/pnas.88.6.2297 

[10] S. M. Pincus, I. M. Gladstone and R. A. Ehrenkranz, “A 
Regularity Statistic for Medical Data Analysis,” Journal 
of Clinical Monitoring and Computing, Vol. 7, No. 4, 
1991, pp.335-345. 

[11] S. M. Pincus and E. K Kalman, “Irregularity, Volatility, 
Risk, and Financial Market Time Series,” Proceedings of 
the National Academy of Sciences, Vol. 101, No. 38, 
2004, pp. 13709-13714.  
http://dx.doi.org/10.1073/pnas.0405168101 

 
 

http://dx.doi.org/10.1098/rsta.1927.0007�
http://dx.doi.org/10.1016/j.engappai.2010.09.007�
http://dx.doi.org/10.1017/CBO9780511841040�
http://dx.doi.org/10.1109/78.492552�
http://dx.doi.org/10.1137/1.9781611970104�
http://dx.doi.org/10.1109/34.192463�
http://dx.doi.org/10.1073/pnas.88.6.2297�
http://dx.doi.org/10.1073/pnas.0405168101�

	In this paper, several methods have been used to com-
	/
	Figure 6. Predicted output and target value (2).
	/
	Figure 7. Predicted output and target value (3).
	plete the tasks, i.e., two denoising filters, AR prediction models, and two assessment criteria. The approaches of two filters (filtering and wavelet denoising) are proposed from different perspectives.
	The advantage of using different approaches and models can provide alternative solutions and the comparative studies to this specified application. The quality measure known as approximate entropy is introduced to assess the quality of preprocessing m...
	In summary, there are some challenges and difficulties in this work, outlined as follows:
	Further analysis is needed to analyze: which filter is better?
	The back-propagation neural networks is to be considered as alternative model, so as to provide alternative
	The use of different portfolio analysis models is needed to conduct the analysis folio optimization.
	In a word, it is clear that the satisfactory results have been obtained; indicating that the proposed approaches and criteria are very effective in analyzing the big finance time series. If the prediction models can be trained using more systematic sa...

