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ABSTRACT 
The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral 
images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. 
The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hy-
perspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and 
produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW 
algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The pro-
posed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and 
lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the 
proposed image compression not only is more efficient but also has better compression ratio. 
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1. Introduction 
Hyperspectral images are widelyused in various fields 
such as agriculture, topography, meteorology and mili-
tary, since they can provide more accurate and detailed 
spectral information than other images. NASA Jet Pro-
pulsion Laboratory developed Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) to produce the 614 pix-
el × 512 line hyperspectral images in 224 contiguous 
spectral bands with wavelengths from 400 to 2500 na-
nometers (nm) [1]. The spectrometer generates huge 
amounts of data and causes that distribution facilities 
cannot economically handle this level of data. It is im-
perative to perform compression.  

One popular and widely used image compression is 
transform-based compression which successful incorpo-
rates the useful statistical properties of transform for im-
age compression such as energy compaction and decor-
related components. Examples of transforms include the 
Karhunen-Loève Transform (KLT), Discrete Fourier 
Transform (DFT), Discrete Cosine Transform (DCT) and 
Discrete Wavelet Transform (DWT). In general, the 
standard image compression, Joint Photographic Experts 
Group (JPEG), uses 8 x 8 DCT and the later JPEG2000 
uses 2D DWT. Penna et al. [2] compressed hyperspectral 

images using JPEG2000 and investigated the perfor-
mance under different transform techniques including 
WT, DCT, KLT, and various combinations.  

Shapiro [3] proposed the classic embedded zerotree 
coding (EZW) using wavelet transform to compress im-
ages. Bilgin et al proposed three-dimensional (3D) image 
compression algorithm [4].The 3D-SPIHT was proposed 
by Kim and Pearlman [5]. Sohn and Lee [6] successfully 
applied the 3D-SPIHT algorithm with symmetrical 3D- 
DWT to hyperspectral images. 

The proposed image compression utilizes the 3D 
space-spectral: The Karhunen-Loève Transform (KLT) is 
first applied to remove the correlations among the 224 
contiguous highly correlated spectral bands. 2D-Discrete 
Wavelet Transform (DWT) is applied to remove the spa-
tial redundancies. After the hybrid transform, the mod-
ified EZW algorithm is applied to encode the trans-
formed hyper spectral images. The modifications include 
defining a new tree structure, only running the dominant 
pass using six symbols and coding residual values. Fig-
ure 1 shows a block diagram of the transform-base- di-
mage compression. The remainder of the paper is orga-
nized as follows: Section 2 describes the integer KLT. 
Section 3 discusses the 2D integer DWT. In Section 4, 
the modified EZW algorithm for hyperspectral images is 
introduced. The last three sections describe the testing of  *Corresponding author. 
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Figure 1. System diagram. 

 
the algorithms using AVIRIS hyperspectral images; pro-
vide results for this proposed hyperspectral image com-
pression and conclusions. 

2. Integer Karhunen-Loève Transform  
(KLT) 

The Karhunen-Loève Transform (KLT) is the data de-
pendent and optimal linear orthogonal transform because 
of the eigenvectors matrix derived from the covariance 
matrix of the data. 

The pixel vector at the 𝑖𝑖𝑡𝑡ℎ band is expressed as 
1 2[ , , , ]i i i iMA a a a= …………  in the spatial dimension 

(x-y plane). If the spatial dimension has m rows and n 
columns, the length of the vector is equal to .M m n= ×  
The number of 𝐴𝐴𝑖𝑖  is same as the hyperspectral bands N, 
namely i = 1…N. Figure 2 demonstrates the perspective 
of the pixel vector in the hyperspectral image. 

The covariance matrix is derived from the pixel vec-
tors as follows:  

{( )( ) }T
aC E A a A a= − −          (1) 

where E{∙} is the expected value of the argument, T is 
matrix transpose and the 𝒂𝒂� is defined as the mean value 
of 𝐴𝐴, as in 

1
M

iia a M
=

= ∑               (2) 

Since the covariance matrix is a real and symmetric 
𝑁𝑁 × 𝑁𝑁 square matrix, the eigenvectors and eigenvalues 
for this matrix can be found [7].  

In general, once eigenvectors are found from the cova-
riance matrix, the next step is to order them by eigenva-
lues, highest to lowest. This gives you the components in 
order of significance. If applying the ordered eigenve c-
tors to the image, two important features are presented in 
the spectral dimensions and they are the decorrelated 
spectral data, and the energy compaction. Figure 3 de-
picts the energy compaction in the spectral dimension. 
The optimal energy distribution declines monotonically 
from the first band to the bottom. After KLT, we call 
these bands KLT bands. IKLT bands mean that integer 
KLT (IKLT) is implemented by mapping integers to in-
tegers as described below.  

In order to attain lossless compression, the reversible 
integer KLT is utilized because it is able to map integers 
to integers. Based on matrix factorizations [8], the non-
singular eigenvectors of the KLT is factorized as A =  

 
Figure 2. The perspective of the pixel vector in the hyper-
spectral image. 
 

 
Figure 3. Energy compaction in spectral dimensions. 

 
PLUS where L and S are lower Triangular Elementary 
Reversible Matrices (TERM), U is upper TERM, and P 
is a reversible permutation matrix. P defines the row in-
terchanges to guarantee diagonal elements that are not 
zero. The transformation can be implemented by the lift-
ing scheme, which includes operations of multiplication, 
addition and rounding up.  

These factorized matrices must be recorded as over-
head information for the reverse transform. Even if not 
compressed, representing these matrices as 32-bit float-
ing point numbers computes an overhead of about 0.11 
bpppbs for the 224 × 224 matrices. In the experiment 
section, we include the overhead into the lossless results 
in each table. Figure 3 describes that the integer KLT is 
optimal transform in terms of optimal energy compaction 
and best decorrelation. 

3. 2D-Wavelet Transform 
Instead of implementing the 3D discrete wavelet trans-
form (DWT), the following step is to transform the im-
age in the spatial dimension by the use of 2D DWT. The 
optimal implementation of the 2D-DWT is the lifting 
scheme. It not only has less computational complexity, 
but also realizes a reversible integer wavelet transform 
[9].  

In our experiments, the 3D hyperspectral image was 
decomposed by the 2D dyadic wavelet Band by Band, 
separately. Figure 4 depicts the perspective of the second  
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Figure 4. 2-D wavelet transform coefficients  are stored in a 
data cube. 
 
level decomposition on each band. 

The DWT has two important properties which are 
critical for image compression: 

1) Energy packing: When an image is wavelet trans-
formed, the transformed image has energy compaction in 
spectral dimensions, that is, the wavelet coefficients in 
the higher level subbands will, on average, be larger than 
those in the lower level subbands.  

2) Self-similarity: A wavelet coefficient at a higher 
level subband and all wavelet coefficients of the same 
spatial orientation at lower level subbands have certain 
predictable relationships. 

4. Shapiro’s EZW Algorithm 
Shapiro invented his Embedded Zerostree Wavelet 
(EZW) algorithm taking advantage of the wavelet trans-
form [2]. The EZW algorithm implements a progressive, 
embedded image coding method based on the zerotrees 
of data structure. All currently significant bits at the same 
bitplane together and recursively encodes other pixels for 
the next significant bitplane until reaching the least sig-
nificant bitplane. As a result, the lower significant bits 
are embedded behind the higher significant bits, so that a 
decoder quickly displays a low quality image and better 
quality as more bits are received. 

We notethree crucial components that make Shapiro’s 
EZW algorithm effectivein image compression. First, 
due to energy packing, these wavelet coefficients in 
higher level subbands could be scanned earlier than oth-
ers in low level subbands. In other words, larger coeffi-
cients will be encoded first. In addition, both receiver and 
transmitter know what scanning order is selected such 
that it does not include the scanning order in the over-
head. Scanning order used in this paper is Morton scan. 

Second, the quad-tree is the fundamental idea of the 
EZW algorithm to interpolate the relations among wave-
let coefficients in different subbands; therefore, it is set 
up based on the self-similarity. The definition of the 
quad-tree was introduced in [2]. 

There are two steps to complete EZW algorithm: the-
dominant pass and the subordinate pass. The dominant 

pass keeps track of the search for significant coefficients 
by labeling each pixel among these four labels: signific-
ance positive symbol (POS), significant negative symbol 
(NEG), zerotree root (ZTR) and isolated zeros (IZ) in 
Figures 5(a)-(c). The subordinate pass quantizes each 
significant coefficient that has been found in the domi-
nant pass. 

The definitions of four symbols are described below. If 
a root coefficient, in absolute value, is larger than a thre-
shold, it is labeled as significant positive (POS) or sig-
nificant negative (NEG) in Figure 5(b). It implies that 
some of the coefficients’ descendants are significant. An 
isolated zero (IZ) is a root coefficient that is insignificant 
but has some significant descendants in Figure 5(c). If 
the coefficient is zerotree root (ZTR), it means the root 
coefficient itself and its descendants are all insignificant 
such that these descendants don’t have to be encoded in 
the current iteration in Figure 5(a). 

5. Modified EZW Algorithm 
We propose some modifications to simplify the conven-
tion EZW algorithm and improved the compression re-
sults. [10-13] have studied the asymmetrical 3D-DWT 
decomposition that causes the asymmetrical statistics of 
the transformed hyperspectral image; thus the asymme-
trical tree structure is more suitable for describing the 
transformed hyperspectral image. In this paper, the 3D 
asymmetric tree structure was designed according to the 
properties of hybrid transforms. In Figure 4, a wavelet 
coefficient at a higher subband is not only relative to all 
wavelet coefficients of the same spatial orientation at 
lower subbands at the same band but also in the neighbor 
band. Therefore, if the approximation subband is  

/ 2lm   -by- / 2lm    with 𝑙𝑙-level decomposition at the 
first band, while the spatial dimensions of the image are 
m-by-n. Any root ( ), ,0x y  in the approximation has 
four immediate children at ( / 2 , ,0)lx m y+ ,  
( , / 2 ,0), ( / 2 , / 2 ,0)l l lx y m x m y m+ + +  and ( ), ,1x y  
In addition, except ones in the approximation, any root (x, 
y, 0) at the first band has four children located at the 
same spatial orientations (2x, 2y, 0), (2x + 1, 2y, 0), (2x, 
2y + 1, 0), and (2x + 1, 2y + 1, 0) on the first band and 
one more child (x, y, 1) below it. Note that any pixel not 
in the first band has only one child below it. The new tree 
structure will continue to branch until no offspring can be 
found. The new and simple definition of tree structure is 
demonstrated in Figure 6. Each pixel in the low-pass 
(approximation) section of band 1 is a tree root. 

In addition to the four labels defined in Shapiro’s 
EZW algorithm, in this study, we define two more labels, 
called positive and negative ZTR (PZT and NZT) in 
Figure 5(d). According to [14], they are degree-1 zero-
trees since every coefficient except the root coefficient is 
all zeros. Roots of PZT and NZT are positive and nega- 
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Figure 5. Explanation of (a) ZRT (b) POS/NEG (c) IZ and 
(d) PZT/NZT. 
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(a)  
Figure 6. A new tree structure: The root has three children 
at the same band and one child at the lower band. 
 
tive significant, respectively. A higher degree zero tree 
coder generates a shorter symbol stream. 

Table 1 shows the coding results of tree (b) and (d) in 
Figure 5. Any significant coefficient should do further 
search on its child nodes such that there are eight more 
symbols generated for each POS/NEG symbol. If applied 
to the new PZT/NZT symbols, some redundant symbols 
for coding tree (d) can be replaced by one PZT symbol, 
which saves an extra eight symbols. This is the main ad-
vantage of adding extra symbols (PZT/NZT). 

Table 2 demonstrates that the conventional EZW al-
gorithm encodes the image, Jasper, with and without 
PZR/NZT. Their performances are studied in terms of the 
total numbers of outputs. Basically, the PZR/NZR is  

Table 1. Examples of coded symbols generated by EZW 
algorithm for tree (b) and (d). 

 EZW 

Coding  
tree (b) 

POS, 
POS, ZRT, ZRT, ZRT, ZRT, ZRT, ZRT, ZRT, ZRT, 

ZRT, ZRT, ZRT, ZRT, ZRT, ZRT, ZRT. 

Coding  
tree (d) 

POS, 
ZRT, ZRT, ZRT, ZRT, ZRT, ZRT, ZRT, ZRT 

Coding tree (d) PZT 

 
Table 2. Numbers of coded symbols from the conventional 
EZW algorithm with PZR/NZT and without PZR/NZT, 
using the bior-4.4 filter on Jasper. 

Number of 
symbols 

EZW with  
PZR/NZT 

EZW without 
PZR/NZT 

Num of ZRT 9,265,805 10,584,445 

Num of PZR 1633198 NA 

Num of NZR 1585476 NA 

Num of POS/NEG 278442 3497116 

Num of IZ 1505055 1505055 

 
parts of the POS/NEG symbols. The total number of 
PZR/NZR and POS/NEG should be equal to that of the 
POS/NEG from the EZW algorithm without PZR/NZT, 
that is, 1633198 + 1585476 + 278442 = 3497116 in Ta-
ble 2. Compared with the numbers of ZRT symbol, add-
ing extra symbols help to reduce 1,318,640 ZRT symbols 
in Table 2. Overall, the total symbols are reduced and 
the result in better compression ratios. 

Moreover, in Shapiro’s EZW algorithm, if a coeffi-
cient is recognized as a significant pixel, the coefficient 
will be sent to the subordinate list and set to 0. Table 3 
lists the bits rates generated from the dominant and sub-
ordinate passes and shows that the subordinate pass con-
tributes on average one-third of the total bit rate. In order 
to improve the compression ratio, we consider removing 
the subordinate list such that the significant coefficient is 
replaced by a residual value. 

( , , ) ( , , ) iR x y z I x y z T= −          (3) 

where: 
( ), ,R x y z  is residual value at (x, y, z) 

iT  is threshold at the thi  iteration 
( , , )I x y z  is absolute value of a pixel at (x, y, z) 

This is a simple way to replace the subordinate list, but 
still complete the job of quantizing coefficients. In sum, 
the outputs of the modified EZW algorithm only have the 
symbols stream that contains a sequence of symbols 
(POS, NEG, ZTR, PZT, NZT and IZ). At this point, the 
proposed method we call is the residual EZW algorithm 
incorporating with the PZT/NZT symbols and the new 
tree structure. 
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Table 3. Comparison of the bit rates generated by the con-
ventional EZW algorithm using new 3D asymmetric trees 
and the hybrid transform. 

 
Compression performance (bpppbs) 

Jasper Moffett Low Altitude 
Dominant pass 4.23 4.16 4.26 

Subordinate pass 1.64 1.48 1.62 
Total bit rate 5.87 5.64 5.88 

6. Experimental Results 
The residual EZW algorithm compresses the first scene 
of AVIRIS images, Moffett 01, Jasper 01 and Low Alti-
tude 01. The size of each image is 256 x 256 x 224 and is 
stored as 16 bits signed integers. Compression ratio is the 
bit per pixel per band (bpppb). The rate-distortion per-
formance is expressed as the signal to noise ratio (SNR) 
for various bit rates. The definition of SNR is the average 
squared value of the original AVIRIS images is divided 
by the mean squared error (MSE).  

First, Table 4 demonstrates the lossless performance 
of the residual EZW algorithm along with various wave-
let filters. They are Daubechies wavelets (dbN), Symlets 
(symN), and Biorthogonal wavelets (biorNr. Nd), which 
can be found in the Matlab wavelet toolbox. As a result, 
there is no the optimal wavelet filter for all test images. 
General speaking, the biorthogonal wavelets are more 
suitable for compressing images because of the perfect 
symmetry and linear phase. 

Second, the lossy performance of the selected conven-
tional technique (3D-SPIHT and 3D-EZW) is compared 
to the proposed method. Both methods are based on the 
symmetrical 3D-DWT and 3D quad-tree. For lossy com-
pression, the transform-based coder can be stopped at a 
predetermined threshold or when the bit budget is 
reached. Table 5 to Table 7 show all results (bpppbvs 
SNR) of the lossless, and lossy compression based on 
predetermined thresholds. All images are decomposed by 
4-level bior 4.4 filters, which have better performance for 
lossy compression. The results show that the proposed 
EZW algorithm outperforms two conventional methods. 
Tables 5 and 7 shows that the proposed method consis-
tently has lower compression ratios and relative high 
SNRs. 

We demonstrate the complexity in terms of simulation 
times (s) on a workstation with Intel(R) Core i5 CPU 
2.67 GHz processor and Windows 7 operating system. 
All algorithms, compressing the hyperspectral images, 
are implemented in MATLAB. Table 8 shows that our 
proposed EZW using 6 symbols has a moderate compu-
tational complexity and achieves an improved compres-
sion ratio. Therefore, the residual EZW algorithm is an 
efficient lossy and lossless compression algorithm for 
hyperspectral images. 

Table 4. Lossless compression results (bpppbs) of the resi-
dual EZW algorithm with PZT/NZT using new 3D asym-
metric trees and hybrid transform. 

Wavelet 
Compression performance (bpppb) 

Jasper Moffett Low Altitude 

Db 2 5.57 5.42 5.72 

Db 6 6.59 6.48 6.66 

Sym 4 5.49 5.34 5.63 

Sym 6 6.53 6.44 6.56 

Bior 3.5 5.58 5.41 5.74 

Bior 1.3 5.38 5.22 5.53 

Bior 1.5 5.40 5.24 5.55 

Bior 4.4 5.47 5.29 5.56 

Bior 2.4 5.34 5.17 5.49 

Bior 2.6 5.33 5.16 5.48 

 
Table 5. Rate distortion (bpppb vs SNR) of various tech-
niques for Moffett 01. 

Bitplane 
Cutoff Algorithm 

Moffett 01 

0 1 2 4 8 

3D-EZW 7.91 6.51 5.01 3.579 2.41 

3D-SPIHT 6.38 5.30 4.15 2.97 1.95 

SNR(dB) NA 51.06 48.25 44.09 39.10 

Residual -EZW 5.47 3.94 2.53 1.36 0.55 

SNR(dB) NA 55.00 52.69 49.71 47.02 

 
Table 6 Rate distortion (bpppb vs SNR) of various tech-
niques for Jasper 01. 

Bitplane 
Cutoff Algorithm 

Jasper 01 

0 1 2 4 8 

3D-EZW 8.02 6.61 5.13 3.70 2.53 

3D-SPIHT 6.42 5.34 4.19 3.01 2.01 

SNR(dB) NA 54.21 51.42 47.29 42.28 

Residual -EZW 5.29 4.11 2.71 1.47 0.70 

SNR(dB) NA 57.23 54.92 51.83 48.53 

 
Table 7. Rate distortion (bpppb vs SNR) of various tech-
niques for Jasper 01. 

Bitplane 
Cutoff Algorithm 

Low Altitude 01 

0 1 2 4 8 

3D-EZW 8.28 6.87 5.29 3.76 2.42 

3D-SPIHT 6.57 5.50 4.38 3.19 2.08 

SNR(dB) NA 54.37 51.50 47.17 42.12 

Residual -EZW 5.56 4.26 2.86 1.53 0.66 

SNR(dB) 0 54.78 52.24 48.87 45.82 
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Table 8. Compare the simulation time in second of various 
techniques for hyperspectral images. 

Images 
Time(s) Jasper 01 Moffett 01 

3D EZW 145.49 146.29 
3DSPIHT 116.89 120.85 

Residual -EZW 66.58 64.64 

7. Conclusions 
In this paper, we propose a novel transform-based algo-
rithm for lossy and lossless hyperspectral image com-
pression. The introduction of modifications in the resi-
dual EZW algorithm results in higher compression ratios 
and moderate computational complexity. Therefore, it is 
an efficient image compression for hyperspectral images. 
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