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ABSTRACT 
The characteristic property of white Gaussian noise (WGN) is derived in S-transformation domain. The results 
show that the distribution of normalized S-spectrum of WGN follows 2χ  distribution with two degrees of free-
dom. The conclusion has been confirmed through both theoretical derivations and numerical simulations. Com-
bined with different criteria, an effective signal detection in S-transformation can be realized. 
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1. Introduction 
THE S-transform(ST) has been well studied since it was 
proposed by R. G. Stockwell in 1996 [1] and has already 
found applications in many fields such as geophysics [2], 
mechanical systems [3] and medical signal analyses [4]. 
The signal processing framework in S-transformation 
domain is under building and more and more ST based 
methods are proposed. The most contributive works 
among them were conducted by C. R. Pinnegar who ex- 
tended the original ST to generalized ST [2] and pre- 
sented several kinds of useful STs for specific conditions, 
such as the asymmetric ST [2], the bi-Gaussian ST [5] 
and the complex ST [6]. Other outstanding works were 
concentrated on ST based time-frequency filtering [7], 
the side effects of inverse ST [8], ST based instantaneous 
frequency estimation [9] and ST based pattern recog- 
nition [10,11]. However, the noise analysis in S-trans- 
formation domain, which is the essential problem for 
signal detection, has not been well studied yet. [11] pre-
sented an illuminating idea for noise distribution in a 
specific generalized ST domain but didn’t prove it theo-
retically. In this paper, the characteristic property of 
WGN in original ST domain is derived theoretically and 
the conclusion is further verified by Monte Carlo method. 
Its application in nonstationary signal detection is also 
illustrated. 

The rest of this paper is organized into as follows: In 

Section 2, the proposition of WGN distribution followed 
by its theoretical derivation is given. Section 3 verifies 
the proposition by Monte Carlo method. In Section 4, the 
performance of signal detection is illustrated by detecting 
transient sinusoid signals under the constant-false-alarm- 
rate (CFAR) criterion. Finally, conclusions are drawn in 
Section 5. 

2. Characteristic Property of WGN in ST  
Domain 

2.1. Proposition 
The S-transform of a signal ( )x t  is defined by [1] 

1( , ) ( ) exp( 2 ) ( , )
2xS t f x j f w t f dτ π τ τ τ
π

∞

−∞
= − −∫   (1) 

where the window function is 
2 2( , ) exp( / 2)w f f fτ τ= −         (2) 

And the characteristic and the advantage of ST has 
been sufficiently described by previous literature [2-6]. 

Let 2( , )xS t f  be the S-spectrum of ( )x t and white 
Gaussian noise 2( ) (0, )n t N σ ; then the normalized  
S-spectrum of ( )n t , 2 22 ( , ) / ( , )n nS t f E S t f 

   (de-

noted as 2( , )nNS t f ), follows 2χ  distribution with 
two degree of freedom. 
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2.2. Proof 
Step.1: Derive the distribution of Re[ ( , )]nS t f  and 
Im[ ( , )]nS t f  and prove that they follow the identical 
Gaussian distribution.  

By definition, the S-spectrum of ( )n t  can be expressed as 

( ) 2 2 2, Re [ ( , )] Im [ ( , )]n n nS t f S t f S t f= +     (3) 

Before further proceeding, let us analyze the distri- 
bution of Re[ ( , )]nS t f  and Im[ ( , )]nS t f , respectively. 
The real part of ( , )nS t f  is given by  

2 2( )Re[ ( , )] ( ) exp( )cos(2 )
22n

f t fS t f n f dττ π τ τ
π

∞

−∞

− −
= ∫

 
(4) 

Re[ ( , )]nS t f  is the integral of ( )n t  multiplied by 
deterministic signals, thus the distribution of  
Re[ ( , )]nS t f  is the same as ( )n t  with zero mean and 
its variance 2 ( )R tσ  expressed as  
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(5) 
Similarly, the imaginary part Im[ ( , )]nS t f  follows the 

Gaussian distribution with 2Im[ ( , )] (0, ( ))n IS t f N tσ , 
where 

( )2 2 21( ) 1 exp( 4 )cos(4 )
2 2I

f
t ftσ σ π π

π
= ⋅ − −   (6) 

In Equation (5) and Equation (6), the constant term, 
2exp( 4 ) 7.1572e-18π− ≈ , is of very small value which 

can approximately equal to zero, thus ( , )nS t f  can be 
regarded as having identically distributed real and im-
aginary parts, that is, Re[ ( , )]nS t f  and Im[ ( , )]nS t f   

21(0, )
2 2

f
N σ

π
⋅ .  

Step.2: Derive the expression of the average S-spec- 
trum of ( )n t , 2( , )nE S t f 

  , and Prove that  
Re[ ( , )]nNS t f  and Im[ ( , )]nNS t f  follow identical  
standard normal distribution. 

The normalized S-spectrum of ( )n t  can be written as 
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Since the average S-spectrum of ( )n t ,  
2( , )nE S t f 

  , is given by 
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then the distribution of Re[ ( , )]nNS t f and Im[ ( , )]nNS t f  
can be obtained as  

Re[ ( , )] ~ (0,1); Im[ ( , )] ~ (0,1)n nNS t f N NS t f N  (9) 

Step.3: Prove that Re[ ( , )]nNS t f  and  
Im[ ( , )]nNS t f  are independent.  

To determine the distribution of 2( , )nNS t f , the cor-
relation of Re[ ( , )]nNS t f  and Im[ ( , )]nNS t f  need to 
be analyzed. The correlation function is 
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Since both Re[ ( , )]nNS t f  and Im[ ( , )]nNS t f  follow 
Gaussian distribution, Equation (10) means they are inde-
pendent. This concludes the proof that ( , )nNS t f  has 
independent and identical distributed real and imaginary 
parts of standard normal distribution, thus 2( , )nNS t f  
follows 2χ  distribution with two degrees of freedom.  

3. Numerical Simulations 
In this section, Monte Carlo methods are used to demon-
strate the rationalities of above derivations. The variance 
of WGN is set to be zero mean and 2 0.2σ =  with 512 
data points. The results are shown in Table 1, where the 
theoretical values 2 ( )nαχ  are obtained by 2χ  distribu-
tion table according to { }2 2( ) ( )P n nαχ χ α> = , n  is 
the degree of freedom, k  is the times of Monte Carlo 
methods and the simulation results are obtained by k  
realizations.  

A good agreement between the theoretical values and 
the simulation results can be observed. And as the times 
of Monte Carlo experiments increase, the simulation re-
sults become closer to their theoretical values. Hence, we 
have proved our proposition and obtained the distribution 
of WGN in S transformation domain. 

4. Signal Detection in ST Domain 
In this section, the task of ST based detector is to provide 
time-varying information in addition to detecting whe- 
ther a transient signal is present or absent. We use the 
concept of frame detection which is similar to the com-
mon method in voice activity detection (VAD) and no 
cumulation operator is used. The time slice of S-spec- 
trum is employed as the frame and the decision function 
is 

0

1

: ( ) ( )
: ( ) ( ) ( )

H x t n t l
H x t s t n t l

= < Γ
 = + ≥ Γ

     (11) 

where ( )x t  is the observed signal, ( )s t  is the signal to 
be detected and ( )n t  is WGN at the time t  (also t
the frame index). Γ  is the detection threshold and its 
value can be calculated as 

{ }21 ( , )
2 nE S t f

f
γ

Γ = ⋅          (12) 

where the value of γ  can be determined by 2χ  distri-
bution table according to the specific false alarm proba-
bility FAP  and the value of { }2( , )nE S t f  can be es-
timated under the assumption that the initialization of 

( )x t  is the noise only. The detection statistic can be 
expressed as  

( )2max ( )x t
l S f f=           (13) 

where 2( )x t
S f  is the time slice of 2( , )xS t f  at the 

time t . The constant-false-alarm-rate(CFAR) criterion 

is employed in our detector. The probability of detection 
DP  is used as the performance variable and its value can 

be numerically expressed as  

H1|H1 H11
(1/ ) ( )k

D i
P k N N

=
= ∑          (14) 

where k  is the time of Monte Carlo realizations, H1N  
is the number of the transient signal frames and H1|H1N  
is that of the correct detection frames.  

In the analysis, a transient sinusoid signal under WGN 
environment is used to illustrate the performance of sig-
nal detection in ST domain. The simulation signal is of 
500 data points with 150 points pure noise at the begin-
ning segment and the end segment, respectively.  

Figure 1 shows an example of frame detection at 
H1|H1N . In this simulation, 4 different frames are selected 

and it is obvious that the frame at 175t =  is the signal 
frame while others are noise ones. In Figure 2, the de-
tector performance is shown in terms of DP  versus SNR 
curves according to three different FAP  under CFAR 
criteria. The results show that the proposed detector can 
achieve reliable detection at the noise level higher than 
0dB . 

Figure 3 depicts the performance comparison of pro-
posed detector with the same frame detector which uses 
STFT instead of ST. The threshold corresponding to spe-
cific FAP  of STFT based detector is obtained by Monte 
Carlo method of 10000 realizations. The superiority of 
frame detection is to provide time-varying information. 
Thus in Figure 4, the initiation time detection result of 
the transient sinusoid signal is shown under the error 
tolerance of 1 frame. The simulation result essentially 
means that this linear time-frequency representation 
could be potentially used for accurate estimation of the 
time-varying parameters for nonstationary signals. 

5. Conclusion 
In this paper, the characteristic analysis of white Gaussian 
 
Table 1. Simulation results of 2 ( )αχn  according to  

{ }( ) ( )2 2
α =P n nα >χ χ  by k  realizations. 

α  0.025 0.05 0.1 0.25 0.75 

theoretical 7.378 5.991 4.605 2.773 0.575 

1000k =  7.4969 6.0005 4.6058 2.7514 0.5640 

10000k =  7.3757 5.9915 4.6036 2.7628 0.5732 

 

α  0.90 0.95 0.975 0.99 0.995 

theoretical 0.211 0.103 0.051 0.020 0.010 

1000k =  0.2079 0.1006 0.0500 0.0218 0.0108 

10000k =  0.2096 0.1025 0.0504 0.0203 0.0102 



Characteristic Analysis of White Gaussian Noise in S-Transformation Domain 

OPEN ACCESS                                                                                         JCC 

23 

 
Figure 1. Frame detection results at four different indexes 
under the noise level of SNR = 0 dB . 
 

 
Figure 2. SNR - DP  curve for presented detector under 
three different false alarm probabilities. 
 

 
Figure 3. Detection performance of frame detector based on 
ST and STFT at -2= 10FAP . 

 
Figure 4. Initiation time detection results of transient sinu-
soid signals using frame detection. 
 
noise in S transformation domain has been performed. 
Accurate distribution of WGN has been analytically de-
rived and been further verified through numerical analy-
sis. This result could be useful in signal detection and 
ST-based signal processing scheme. 

Acknowledgments 
This research was supported in part by a National Natural 
Science Foundation of China (61301286, 61201287) and 
a Fundamental Research Funds for the Central Universi-
ties (K50511020022). 

REFERENCES 
[1] R. G. Stockwell, L. Mansinha and R. P. Lowe, “Localiza-

tion of the Complex Spectrum: The S-Transform,” IEEE 
Transactions on Signal Processing, Vol. 44, No. 4, 1996, 
pp. 998-1001. http://dx.doi.org/10.1109/78.492555 

[2] C. R. Pinnegar and L. Mansinha, “The S-Transform with 
Windows of Arbitrary and Varying Shape,” Geophysics, 
Vol. 68, No. 1, 2003, pp. 381-385.  
http://dx.doi.org/10.1190/1.1543223 

[3] A. G. Rehorn, E. Sejdic and J. Jiang, “Fault Diagnosis in 
Machine Tools Using Selective Regional Correlation,” 
Mechanical Systems and Signal Processing, Vol. 20, No. 
5, 2006, pp. 1221-1238.  
http://dx.doi.org/10.1016/j.ymssp.2005.01.010  

[4] G. Livanos, N. Ranganathan and J. Jiang, “Heart Sound 
Analysis Using the S-Transform,” Proceedings of Com-
puters in Cardiology, Cambridge, 24-27 September 2000, 
587-590. 

[5] C. R. Pinnegar and L. Mansinha, “The Bi-Gaussian S- 
Transform,” SIAM: SIAM Journal on Scientific Compu-
ting, Vol. 24, No. 5, 2003, pp. 1678-1692.  
http://dx.doi.org/10.1137/S1064827500369803 

[6] C.R. Pinnegar, L. Mansinha, “Time-Local Fourier Analy-
sis with a Scalable, Phase-Modulated Analyzing Function: 

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Normalized Frequency

A
m

pl
itu

de

 

 
t=100
t=125
t=175
t=400
Threshold

-15 -10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
d

 

 

PFA=10-2

PFA=10-3

PFA=10-4

-5 0 5
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
d

 

 

STFT

ST

-15 -10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P d

http://dx.doi.org/10.1109/78.492555�
http://dx.doi.org/10.1190/1.1543223�
http://dx.doi.org/10.1016/j.ymssp.2005.01.010�
http://dx.doi.org/10.1137/S1064827500369803�


Characteristic Analysis of White Gaussian Noise in S-Transformation Domain 

OPEN ACCESS                                                                                         JCC 

24 

The S-Transform with a Complex Window,” Signal 
Process, Vol. 84, No. 7, 2004, pp. 1167-1176.  
http://dx.doi.org/10.1016/j.sigpro.2004.03.015 

[7] M. Schimmel and J. Gallart, “The Inverse S-Transform in 
Filters with Time-Frequency Localization,” IEEE Trans-
actions on Signal Process, Vol. 53, No. 11, 2005, pp. 
4417-4422. http://dx.doi.org/10.1109/TSP.2005.857065 

[8] C. Simon, S. Ventosa, M. Schimmel, A. Heldring, J. J. 
Dañobeitia, J. Gallart and A. Mànuel, “The S-Transform 
and Its Inverses: Side Effects of Discretizing and Filter-
ing,” IEEE Transactions on Signal Processing, Vol. 55, 
No. 10, 2007, pp. 4928-4937.  
http://dx.doi.org/10.1109/TSP.2007.897893 

[9] E. Sejdic, L. Stankovic, M. Dakovic and J. Jiang, “In- 
stantaneous Frequency Estimation Using the S-Trans- 
form,” IEEE Signal Processing Letters, Vol. 15, 2008, pp. 
309-312. http://dx.doi.org/10.1109/LSP.2008.917014 

[10] E. Sejdic and J. Jiang, “Selective Regional Correlation for 
Pattern Recognition,” IEEE Transactions on Systems, 
Man, and Cybernetics, Vol. 37, No. 1, 2007, pp. 82-93.  

[11] J. H. Gao, W. S. Man and S. M. Chen, “Recognition of 
Signals from Colored Noise Background in Generalized 
S-Transformation Domain,” Chinese Journal of Geo-
physics, Vol. 47, No. 5, 2004, pp. 869-875.  
http://dx.doi.org/10.1002/cjg2.576 
 

 

http://dx.doi.org/10.1016/j.sigpro.2004.03.015�
http://dx.doi.org/10.1109/TSP.2005.857065�
http://dx.doi.org/10.1109/TSP.2007.897893�
http://dx.doi.org/10.1109/LSP.2008.917014�
http://dx.doi.org/10.1002/cjg2.576�

